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|. Introduction.

The behavior of a bouncing ball on an oscillasuogface is a very basic problem in
nonlinear dynamics that been studied in great déptbarticular, this problem has generated
interest due to the existence of stable fixed goivttich may lead to bifurcations at certain
forcing frequencies and amplitudes. For exampleglbebouncing on the surface of a one degree
of freedom oscillating bar with sinusoidal motionthe vertical direction may fall into a pattern
in which impacts occur at the same frequency asaine motion. The ball will bounce to the
same height every time. This pattern is known psreod one motion. If one were to increase the
forcing amplitude, the ball would continue in tfashion due to the existence of a stable fixed
point. For certain amplitude, however, this fixexn will bifurcate, creating two fixed points.
The existence of two stable fixed points will caaggeriod two to emerge, with the ball
alternating between two different heights.

The majority of research on the bouncing ball, &esv, has focused purely on vertical
stability, with little thought given to the side-side motion of the ball. The focus of this
independent study was to investigate the dynanfittsedbouncing ball problem with respect to
stability in both the vertical and horizontal ditieas. By adding periodic motion in the angular
and horizontal directions, it was possible to apalstability in the horizontal direction as well as
the vertical. These investigations were conductedgiboth Matlab simulations and an
experimental setup consisting of a three degrdéeeetlom oscillating bar. The ultimate goal of
the project was to be able to use the knowledgeadiility to control the side-to-side motion of
the ball as it is bouncing.



II. Experimental Setup.

In order to observe the behavior of the bouncinf &asetup was used similar to the
system employed in the pap@hnaotic Dynamics of a Bouncing Ball by Tufillaro and Albano.
Low curvature lenses or troughs were used to &alany undesirable motions. Concave lenses
with focal lengths of 15 and 20 cm were used inetkgeriments. As shown in Figure 1, a lens is
attached to a horizontal bar controlled by fouradees acting as actuators. The four speakers can
be used to create periodic motions in three degregsedom: vertical, horizontal, and angular.
The motion of the bar is controlled by two accefeeters located on either end of the bar. The
major difference between the Tufillaro-Albano agas and this setup is the method of data
capture. In Tufallaro and Albano’s experiment, ezpelectric crystal is used to measure the
force of impact between the ball and the lens. 8¢®imption is made that ball amplitude is
proportional to the impact force. In contrast, thesup uses a high speed camera to visually
capture the ball and calculate its real world cowmtés based on its location in the camera frame.
This has the advantage of allowing the experimdntéirectly observe the object trajectories.
Furthermore, the system can track multiple regiameking it possible to view both the path of
the ball and the path of the bar. It also has appbns for tracking more complicated polygons
as well as imaging in three dimensions.
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Figure 2.1.Experimental Setup, Arranged for Three Dimensiomalging

The high speed vision system is capable of cagjudata in the kilohertz range. Due to
the extremely brief exposure time, powerful ligisre necessary in order to capture a usable
image. The vision system works by applying a thoéko the grayscale images. As a result, it is
able to pick out the white ball against the blaakkground. It then calculates the area centroid



based on the number of white pixels. The bar adsodeveral white fiduciary markers which are
used to track the bar’s position.

The vision system is most commonly used for tragkire motion of an object in a plane
parallel to the image plane of the camera. Howeaeshown in Figure 2.2, the camera can also
be used for 3D imaging by using a small mirror pthat a 45 degree angle to create a second
“virtual” camera. By combining data from the twawearas, it is possible to calculate the position

of the ball in three dimensions. Figure 2.2 showdlastration of this concept.
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Figure 2.2.Image Tracking in Three Dimensions

As illustrated, the inclusion of the mirror create® lines of sight which can be used to
pinpoint the location of the object of interestusing a least squares calculation. Using a mirror
instead of purchasing a second camera providesapditernative for 3D object tracking. The
only disadvantage is a slight loss in resolutiantii@ reflected image, which proved
inconsequential for these experiments.

The coordinate system shown in Figure 2.2 willlleedonvention that will be used for
the remainder of this report. Positive x will poatbng the bar from left to right. The y direction
will point along the line of sight of the cameratwpositive being away from the camera. The
positive z axis will be straight up, opposing gtavi

The three dimensional object tracking providesatieantage of being able to observe the
horizontal excursions of the ball as well as thigleof each bounce. Figures 2.3 and 2.4
demonstrate this concept by showing the three-déioaal position of the ball in time.



Position of Ball in 3D Space Using Virtual Camera Technique
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Figure 2.3.X,Y, and Z Positions of the Ball Versus Time.
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This data can be used to observe the oscillatotyomof the ball in the XY plane as it is
bouncing. Figure 2.4 uses the data from the fivetlots in Figure 2.3 to calculate the radial
position of the ball in time. As shown in the figuthe ball often travels around the lens at a
frequency lower than that of the impact frequeraay the 3D imaging allows us to study these
motions.

Plot of X,Y Movement of Ball Over Time
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Figure 2.4.Motion of the Ball in the XY Plane




The ability to capture the position of the baltlmee dimensions also provides the advantage of
being able to adjust the ball's height over timae@isadvantage of using a concave lens is the
variable height of the surface. The lens is thinnghe middle, and thicker towards the edge.
This causes fluctuations in the z position datevédenced by the third plot in Figure 2.3.
However, since the both position of the ball in pene of the lens and the lens geometry are
known, it is possible to adjust for this variableffset.

Plot of Raw Height v. Time
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Figure 2.5.Z Position of the Ball v. Time, Before and Afteeight Adjustment

The first plot in Figure 2.5 shows the original.z data with the z position clearly fluctuating as
a result of the lens curvature. The second plotateated by adjusting the z offset based on the
x and y positions of the bar. Clearly, although petfect, this method is very effective in
reducing the error in ball height and demonstrttegroficiency of the 3D vision system. A
complete explanation of how to calibrate and usevikion system can be found on the
Mechatronics wiki under Projects and Miscellanedudigh Speed Vision System and Object
Tracking.



lll. Vertical Stability.

The first experiments conducted with the high spasidn system attempted to capture
examples of stable behaviors such as period 1 anddo2 motions. The investigation began
with the simplest possible case; that of the petiathere the bouncing ball comes into contact
with the bar as the same frequency as the baribatsm. For the data that follows, the vision
system was calibrated for two dimensional imagihg.as running at a frequency of 1000Hz,
alternating between two regions of interest. Thaeefdata for both the ball the bar were
collected at a 500Hz sampling rate. Each parab@ljectory or cycle of the bar is defined by
about 17 data points.

A. Period 1 Motion.
An example of an experimentally obtained period displayed in Figure 3.1.
Plot of Period 1 Oscillation
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Figure 3.1.Period 1 Behavior as Captured by the Vision System

As shown in the figure, for 1 second of data caditet the ball impacts the bar 30 times for a
30Hz bar frequency. The motion of the bar was @efito be

Zgpr(t) = Alin(at + @)
where A is equal to the position amplitude givertly equation
_ Acc
@ty
Acc is equal to the maximum acceleration of the Wdich in this case was 10.4m/s

In order to obtain more accurate values for theimaxand minima, parabolic fits were
calculated for each bounce. The fitted data andaltreg maxima and minima are shown in
Figure 3.2.



Plot of Period 1 Maxes and Mins Calculated from Fitted Data
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Figure 3.2.Period 1 Fitted Data with Maxima, Minima

The results of the data analysis are shown in TallleFor a period 1 motion at 10.4fkhe

ball impacts the bar at an average phase of 0ddd@ns. This value seems intuitive since the ball
is clearly impacting the bar in the first quartétiee bar’s sin wave. Therefore, the ball should
impact somewhere in between 0 and pi/2 radians.

IMPACT | MAXIMA | MINIMA | PHASE AT IMPACT
NUMBER (mm) (mm) (radians)
1 1.127 0.190 0.941
2 1.157 0.211 1.008
3 1.096 0.206 0.974
4 1.130 0.196 0.939
5 1.112 0.203 0.937
6 1.148 0.220 0.994
7 1.118 0.216 1.008
8 1.124 0.199 0.963
9 1.131 0.211 0.984
10 1.109 0.194 0.925
11 1.131 0.205 0.960
12 1.126 0.203 0.985
13 1.118 0.191 0.926
14 1.128 0.205 0.967
15 1.126 0.206 0.995




16 1.109 0.195 0.933

17 1.111 0.198 0.925

18 1.159 0.213 1.028

19 1.111 0.193 0.960

20 1.149 0.220 1.002

21 1.063 0.198 0.917

22 1.216 0.237 1.097

23 1.043 0.200 0.902

24 1.153 0.211 0.980

25 1.175 0.228 1.092

26 1.099 0.207 0.988

27 1.134 0.212 1.005

28 1.096 0.189 0.927

AVG 1.125 0.206 0.974

STD 0.033 0.012 0.048
Table 3.1:Maxima, Minima, and Impact Phase for Period 1

B. Period 2 Motion.
If one were to increase the amplitude of the lyer @verage phase at impact will approach the
critical value of pi/2, or 1.57 radians. Once tadue is reached, a bifurcation will occur and

pattern will change to a period 2, as shown irfigngre below.
Plot of Period 2 Oscillation

for Amplitude = 11.95m/s?, f = 30Hz
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Figure 3.3.Period 2 Behavior as Captured by the Vision System




The period two is characterized by bounces of rdtieng amplitudes. The ball still impacts the
bar once a cycle, however in one second, therémhegh bounces, and 15 low bounces. The

same analysis conducted for the period 1 produoedbtiowing:

Amplitude (mm)

Plot of Period 2 Maxes and Mins Calculated from Fitted Data

Figure 3.4.Period 2 Fitted Data with Maxima, Minima

IMPACT MAXIMA | MINIMA | PHASE AT IMPACT
NUMBER (mm) (mm) (radians)

1 0.9821 0.2295 0.7394

2 1.5045 0.3563 1.3465

3 1.0336 0.2754 0.8278

4 1.5311 0.4059 1.429

5 0.8656 0.1932 0.5038

6 1.5374 0.3508 1.2007

7 1.1078 0.2979 0.9058

8 1.4422 0.3972 1.3178

9 0.927 0.2149 0.6104

10 1.5318 0.3773 1.3002

11 0.9077 0.2136 0.6377

12 1.4573 0.3296 1.213

13 0.9774 0.2192 0.7028

14 1.399 0.3319 1.2576

15 0.9564 0.2068 0.7874

16 1.4383 0.3198 1.3642

17 0.8266 0.1453 0.5602
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18 | 1.4914 | 0.3235 1.3943

19| 0.8297 | 0.1609 0.6402

20| 1.4728| 0.3123 1.409

21| 08506 | 0.1823 0.7451

22| 1.4824| 0.3255 1.505

23| 07281| 0.1029 0.4955

24| 15719| 0.309 1.5054

25| 07818 | 0.1529 0.6364

26| 1.4816| 0.3245 1.3979

27 0.814 | 0.1512 0.6123

28| 15148 | 0.3313 1.3851
AVG(ODDS) | 0.9579 | 0.1961 0.6718
STD(ODDS) | 0.1028 | 0.0524 0.1196
AVG(EVENS) | 1.4897 | 0.3425 1.359
STD(EVENS) | 0.0464 | 0.0309 0.0943

Table 3.2:Maxima, Minima, and Impact Phase for Period 2

As indicated by Table 3.2, for a period 2 at anuplét of 11.95m/s the ball will impact the bar
with alternating phases of 0.67 and 1.36. In taisec the smaller value is indicative of a larger
bounce and the larger value indicates a smallendmurhis is because the larger of the two,
1.36 is very close to the bar’s zero velocity phafse.57, so the bar hits the ball with less energy
on these bounces.

C. Beyond Period 2.

Other types of stable periodic motion exist as yglth as a period 3. Period threes are more
difficult to predict, but seem to occur when thdl mtransitioning from one behavior to another,
or at high amplitudes when the ball is in chaos.

Figure 3.5 shows 1 second of a period 3 motionucagdtby the vision system. This data was
taken using 3D imaging with the vision system ee2Q00Hz divided over 3 regions of interest.
This is the equivalent of a 667Hz sampling rate.



Plot of Period 3 Oscillation

for Amplitude = 11.11m/sz, f=30Hz
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Figure 3.5.Period 3 Behavior as Captured by the Vision System

The same pattern can be observed for higher etetggvior. For example, by changing the
initial conditions of the experiment, it is possilib induce a Period 1 type behavior where the
ball is coming into contact with the bar exactlycerevery two cycles of the bar. This is known
as a Period 1, m = 2, where m is an integer vapeesenting the ratio of ball bounces to bar
cycles. In order to achieve this motion, the badjuires a larger initial energy, and generally
higher forcing amplitude. An example of a Periodnls 2 captured by the vision system is
shown in Figure 3.6.
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Figure 3.6.Period 1 Behavior with m = 2 as Captured by thedviSystem

Furthermore, there exists Period 2 behavior for fhas shown in Figure 3.7.
Plot of Period 2, m = 2 Oscillation

for Amplitude = 13.3m/sz, f=20Hz
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D. Putting it All Together — Bifurcation Diagrams.

By starting the ball bouncing at relatively low ditymle, and slowly increasing the
maximum acceleration of the bar over a long peobtiime, it is possible to create a bifurcation
diagram such as the one in Figure 3.8.

Bifurcation Diagrams (m =1, m = 2)
for Amplitude 7.7 - 15m/s?, f = 20Hz
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Figure 3.8.Bifurcation Diagram Created from Experimental Data

The data displayed in the plot was captured ugisgsgame experimental setup as in the period 3
example. The plot consists of two separate swédagis from the first sweep is shown in blue
and the bar's maximum acceleration was governettidgquation:

Acc(t) =0.0128 + 7.74

The second sweep was conducted using the samednétitdhe ball was given a larger initial
energy, and the sweep covered a different rangenplitudes. The governing equation for the
second sweep, shown in green, is given by:

Acc(t) =0.0123 +1012

In both cases, the bifurcation diagram was crelayethlculated the maxima of each ball bounce,
using the same parabolic fit method introducecetien 3A.

Not only does this figure demonstrate a very chéfarcation at around 11.2n3/sut it
also captures a second bifurcation, shown mosttyeen. This illustrates a very important
concept, which is the existence of bifurcationditierent values of m. The bifurcation form =1
is shown in blue, and the bifurcation for m = 3®wn mostly in green.

The same plot was generated using a simulatiotennn Matlab. The simulation uses a
binary search to calculate the intersection ofiatptraveling in a parabolic arch, with a sin
curve. The results of the simulation are displayeigure 3.9.



Bifurcation Diagrams from Simulator (m=1, m=2)

for Amplitude = 2 - 15m/s?, f = 20Hz
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Figure 3.9.Bifurcation Diagram Created from Simulator

As shown in the figure, the simulator yielded vemyilar results. There are some small
differences, however. First of all, while both gimulator and experimental setup produced very
similar values for the ball’'s amplitude, the accal®ns at which these amplitudes occur are
slightly different. This is most likely due to tagsumption of finite restitution. The coefficient
of restitution between the ball and the glass \eas experimentally determined by taking
several traces of the ball bouncing being droppethe bar and watching it decay. An average
value for the coefficient of restitution was cakueld to be 0.856. This value was plugged into
the simulator to create the bifurcations abovearactice, however, there was a great variation in
the C.0.R. values, and the plastic balls usedaret#tperiments were far from perfect. The
simulator also shows the ball continuing to bousicextremely low amplitudes down to nearly
2m/<. In practice, this would never be feasible, beptly shows that the stable fixed point still
exists at these low amplitudes.

Lowering the coefficient of restitution to 0.75the simulator produced results that
correlated much more closely to the experimengllts. In Figure 3.10, the results from the
simulator are plotted on top of the experimentalrsations from Figure 3.8.



Bifurcation Diagrams from Experimental Setup (Blue, Green)
and Simulation (Black)
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Figure 3.10.Both Experimental and Simulated Bifurcations forrh,2

As shown in the figure, for a coefficient of regtion of 0.75, the simulator shows the
bifurcation at m=1 occurring slightly earlier themexperiment. For the m = 2 case on the other
hand, the bifurcation appears to occur before thdipted value. However, both the height of the
bounces and the shape of the bifurcations agreegy.

If we continue to increase the value of m, so thatball is bouncing every third or fourth
cycle, a pattern begins to emerge as shown in &igurl.



Plot of Stable Period 1
for several values of m
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Figure 3.11.Bifurcation Diagrams for Several Values of m

In this figure, gamma is equal to the nondimendiaed acceleration as defined by “Bouncing
Ball with Finite Restitution” by Luck and Mehta.i# given by

r:ﬂ

g
Luck and Mehta’s paper shows defines the regiohiwitvhich a stable period 1 exists for all
values of m. The lower bound of this region is gy
1-a
1+a
where alpha is equal to the coefficient of restitut The upper bound is defined by

[an] 2]
m| +
1+a i+ a)?

where the upper bound is asymptotically approactiiedower bound.

Another way of illustrating the system is displayedrigure 3.12. This figure uses experimental
data to replicate the results found using simutatiothe Luck and Mehta paper. It shows
reduced phase space of the system. Each poineacétterplot represents an impact, where tau
is equal to the phase of the bar at impact, and ¥qual to the relative velocity between the bar
and the ball. As shown in the figure, the pointsstr around spiraling lines given by the
equation

W =a[r+n+T cos@rr)]



Phase Portrait for [ = 0.71
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Figure 3.12.Phase Portrait, Generated from Experimental Data



IV. Horizontal Stability.

After investigating vertical stability, the simutatwas modified to see if bar motions exist that
will stabilize the ball in the x direction. To begwith, a simple motion was investigated which
adds motion in the theta direction. A small angufation was introduced at half the frequency
of the vertical motion. The phase between the twtions was then varied to see if one of the
phase values would cause side-to-side stabilizalfiba results of these first simulations are
shown in Figure 4.1, wheigy is equal to the phase of the angular componertivelt the

vertical component, angdescribes how fast the ball is sourcing or sinkasydescribed by the

.yt . . . . .
equation g’ Al parameters used in the simulator have been inogrsionalized, so the valye
has been normalized by the base frequency.
Plot of Source/Sink Behavior for Accx = Om/sz, AccZ = 8m/52, Acc9 = 50rad/s?
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Figure 4.1.Plot of Source/Sink Behavior with Angular Motiorg R-Motion

As indicated by the figure, since gamma never tdgdew zero, this motion of the bar always
causes the ball to exponentially deviate from #&&er of the bar.

This same motion was used to generate the surfateip Figures 4.2 and 4.3. These figures
illustrate the effect on gamma of varying the theteeleration and phase.
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Since this simple motion did not stabilize the badbtion in the x-direction was added in
addition to the theta and z motions. By adding orotn the x-direction and varying the phases
and frequencies of each component, many differenitoms become possible. One such motion
is shown in Figure 4.4, where the blue traces d@st¢he motion of the bar’s centroid.

An in-depth study of the parabolic motion in Figdtd was conducted. The following equations
describe the motion used in the following simulasio

x(t) = A, sin(et +g)
2(t) = A, sin(2at +§)
o(t) = A;sin(at + @)

An illustration of the motion described by these&ipns is shown below.

Figure 4.4.Two Possible Bar Motions.

In this caseg = -n/2 for this first illustration, and a2 for the second illustration. The illustration
on the left is actually a motion that will causeisie-like behavior, whereas the illustration on
the right will cause sink-like behavior.

Introducing a small component in the x-directiortite motion of the bar leads to a modification
of the behavior from Figure 4.1. As shown in Figdrg, this new x-motion causes the sin wave
from Figure 4.1 to be distorted in the center. Sealaes for gamma are now negative.



Plot of Source/Sink Behavior for Ach = 1m/s2, AccZ = 8m/s2, Acce = 50rad/s?
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Figure 4.5.Adding a Small Component in the x-Direction

The corresponding surface plot is shown in Figuée 4

Figure 4.6.Adding a Small Component in the x-Direction



Continuing to increase the amplitude of this moteads to an even stronger effect as shown in
Figure 4.6.

Plot of Source/Sink Behavior for Various Values of Accx
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Figure 4.7.Source/Sink Behavior for Several Different Valuég-@mplitude

For a large enough x-amplitude, the repeated sweduom Figure 1 becomes a single sin curve,
which is now more or less centered on the x-axas tlkis motion of the bar, the ball will
exponentially approach the center of the bar fgraximately half the values of phi, and
exponentially diverge from the center for the othaif.



V. Conclusion.

Ultimately, while some unanswered questions stibte a great deal was accomplished
regarding bifurcation, and vertical and horizorstalbility. To begin with, the ability to capture
three-dimensional experimental data using the misigstem allows experimental verification of
theoretical concepts. The vision system was usedpiture examples of period 1, period 2 and
period 3 behavior as well as period 1 m=2 and pe2in=2. This data can be used to calculate
phases at impact among other things. Furthermotealkbifurcation diagrams were created by
gradually ramping up the acceleration of the btabiBty in the horizontal direction proved
somewhat more difficult. Results from simulatiorygest that a simple motion including vertical
as well as angular motion will not stabilize thaiboing ball, but rather will always cause it to
move away from the center of the bar. Adding antemtchl motion in the x-direction, however,
will sometimes cause source behavior and somettiaese sink behavior. Increasing the
amplitude of the x motion will magnify gamma. Altngh results from the simulator are
promising, experimental verification was never @ipéed. This would be a significant next step
in the study of bouncing ball stability.
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