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I. Introduction. 
 
 The behavior of a bouncing ball on an oscillating surface is a very basic problem in 
nonlinear dynamics that been studied in great depth. In particular, this problem has generated 
interest due to the existence of stable fixed points which may lead to bifurcations at certain 
forcing frequencies and amplitudes. For example, a ball bouncing on the surface of a one degree 
of freedom oscillating bar with sinusoidal motion in the vertical direction may fall into a pattern 
in which impacts occur at the same frequency as the bar’s motion. The ball will bounce to the 
same height every time. This pattern is known as a period one motion. If one were to increase the 
forcing amplitude, the ball would continue in this fashion due to the existence of a stable fixed 
point. For certain amplitude, however, this fixed point will bifurcate, creating two fixed points. 
The existence of two stable fixed points will cause a period two to emerge, with the ball 
alternating between two different heights.  
 
 The majority of research on the bouncing ball, however, has focused purely on vertical 
stability, with little thought given to the side-to-side motion of the ball. The focus of this 
independent study was to investigate the dynamics of the bouncing ball problem with respect to 
stability in both the vertical and horizontal directions. By adding periodic motion in the angular 
and horizontal directions, it was possible to analyze stability in the horizontal direction as well as 
the vertical. These investigations were conducted using both Matlab simulations and an 
experimental setup consisting of a three degree of freedom oscillating bar. The ultimate goal of 
the project was to be able to use the knowledge of stability to control the side-to-side motion of 
the ball as it is bouncing.  
 



 
II. Experimental Setup. 
 

In order to observe the behavior of the bouncing ball, a setup was used similar to the 
system employed in the paper Chaotic Dynamics of a Bouncing Ball by Tufillaro and Albano. 
Low curvature lenses or troughs were used to stabilize any undesirable motions. Concave lenses 
with focal lengths of 15 and 20 cm were used in the experiments. As shown in Figure 1, a lens is 
attached to a horizontal bar controlled by four speakers acting as actuators. The four speakers can 
be used to create periodic motions in three degrees of freedom: vertical, horizontal, and angular. 
The motion of the bar is controlled by two accelerometers located on either end of the bar. The 
major difference between the Tufillaro-Albano apparatus and this setup is the method of data 
capture. In Tufallaro and Albano’s experiment, a piezoelectric crystal is used to measure the 
force of impact between the ball and the lens. The assumption is made that ball amplitude is 
proportional to the impact force. In contrast, this setup uses a high speed camera to visually 
capture the ball and calculate its real world coordinates based on its location in the camera frame. 
This has the advantage of allowing the experimenter to directly observe the object trajectories. 
Furthermore, the system can track multiple regions, making it possible to view both the path of 
the ball and the path of the bar. It also has applications for tracking more complicated polygons 
as well as imaging in three dimensions.  

 

 
Figure 2.1. Experimental Setup, Arranged for Three Dimensional Imaging 

 
The high speed vision system is capable of capturing data in the kilohertz range. Due to 

the extremely brief exposure time, powerful lights were necessary in order to capture a usable 
image. The vision system works by applying a threshold to the grayscale images. As a result, it is 
able to pick out the white ball against the black background. It then calculates the area centroid 



based on the number of white pixels. The bar also has several white fiduciary markers which are 
used to track the bar’s position.  

The vision system is most commonly used for tracking the motion of an object in a plane 
parallel to the image plane of the camera. However, as shown in Figure 2.2, the camera can also 
be used for 3D imaging by using a small mirror placed at a 45 degree angle to create a second 
“virtual” camera. By combining data from the two cameras, it is possible to calculate the position 
of the ball in three dimensions. Figure 2.2 shows an illustration of this concept.  

 
Figure 2.2. Image Tracking in Three Dimensions 

 
As illustrated, the inclusion of the mirror creates two lines of sight which can be used to 

pinpoint the location of the object of interest by using a least squares calculation. Using a mirror 
instead of purchasing a second camera provides a cheap alternative for 3D object tracking. The 
only disadvantage is a slight loss in resolution for the reflected image, which proved 
inconsequential for these experiments.  

The coordinate system shown in Figure 2.2 will be the convention that will be used for 
the remainder of this report. Positive x will point along the bar from left to right. The y direction 
will point along the line of sight of the camera, with positive being away from the camera. The 
positive z axis will be straight up, opposing gravity.  

The three dimensional object tracking provides the advantage of being able to observe the 
horizontal excursions of the ball as well as the height of each bounce. Figures 2.3 and 2.4 
demonstrate this concept by showing the three-dimensional position of the ball in time.  
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Figure 2.3. X,Y, and Z Positions of the Ball Versus Time. 

 
This data can be used to observe the oscillatory motion of the ball in the XY plane as it is 
bouncing. Figure 2.4 uses the data from the first two plots in Figure 2.3 to calculate the radial 
position of the ball in time. As shown in the figure, the ball often travels around the lens at a 
frequency lower than that of the impact frequency, and the 3D imaging allows us to study these 
motions.  
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Figure 2.4. Motion of the Ball in the XY Plane 



The ability to capture the position of the ball in three dimensions also provides the advantage of 
being able to adjust the ball’s height over time. One disadvantage of using a concave lens is the 
variable height of the surface. The lens is thinner in the middle, and thicker towards the edge. 
This causes fluctuations in the z position data as evidenced by the third plot in Figure 2.3. 
However, since the both position of the ball in the plane of the lens and the lens geometry are 
known, it is possible to adjust for this variable z offset.   

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

R
ec

or
de

d 
H

ei
gh

t

Plot of Raw Height v. Time 

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

Time(s)

A
dj

us
te

d 
H

ei
gh

t

Plot of Height, Adjusted Using x,y Data

 
Figure 2.5. Z Position of the Ball v. Time, Before and After Height Adjustment 
 
The first plot in Figure 2.5 shows the original z v. t data with the z position clearly fluctuating as 
a result of the lens curvature. The second plot was created by adjusting the z offset based on the 
x and y positions of the bar. Clearly, although not perfect, this method is very effective in 
reducing the error in ball height and demonstrates the proficiency of the 3D vision system. A 
complete explanation of how to calibrate and use the vision system can be found on the 
Mechatronics wiki under Projects and Miscellaneous� High Speed Vision System and Object 
Tracking. 
 



 
III. Vertical Stability. 
 The first experiments conducted with the high speed vision system attempted to capture 
examples of stable behaviors such as period 1 and period 2 motions. The investigation began 
with the simplest possible case; that of the period 1 where the bouncing ball comes into contact 
with the bar as the same frequency as the bar’s oscillation. For the data that follows, the vision 
system was calibrated for two dimensional imaging. It was running at a frequency of 1000Hz, 
alternating between two regions of interest. Therefore, data for both the ball the bar were 
collected at a 500Hz sampling rate. Each parabolic trajectory or cycle of the bar is defined by 
about 17 data points. 
 
A. Period 1 Motion. 
An example of an experimentally obtained period 1 is displayed in Figure 3.1.  
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Figure 3.1. Period 1 Behavior as Captured by the Vision System 
 
As shown in the figure, for 1 second of data collection, the ball impacts the bar 30 times for a 
30Hz bar frequency. The motion of the bar was defined to be 

)sin()( ϕω +∗= tAtzBAR  
where A is equal to the position amplitude given by the equation 

2)2( f

Acc
A

π
=  

Acc is equal to the maximum acceleration of the bar, which in this case was 10.4m/s2.  
 
In order to obtain more accurate values for the maxima and minima, parabolic fits were 
calculated for each bounce. The fitted data and resulting maxima and minima are shown in 
Figure 3.2.  
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Figure 3.2. Period 1 Fitted Data with Maxima, Minima 
 
The results of the data analysis are shown in Table 3.1. For a period 1 motion at 10.4m/s2, the 
ball impacts the bar at an average phase of 0.97 radians. This value seems intuitive since the ball 
is clearly impacting the bar in the first quarter of the bar’s sin wave. Therefore, the ball should 
impact somewhere in between 0 and pi/2 radians.  
 

IMPACT 

NUMBER 

MAXIMA 

(mm) 

MINIMA 

(mm) 

PHASE AT IMPACT 

(radians) 

1 1.127 0.190 0.941 

2 1.157 0.211 1.008 

3 1.096 0.206 0.974 

4 1.130 0.196 0.939 

5 1.112 0.203 0.937 

6 1.148 0.220 0.994 

7 1.118 0.216 1.008 

8 1.124 0.199 0.963 

9 1.131 0.211 0.984 

10 1.109 0.194 0.925 

11 1.131 0.205 0.960 

12 1.126 0.203 0.985 

13 1.118 0.191 0.926 

14 1.128 0.205 0.967 

15 1.126 0.206 0.995 



16 1.109 0.195 0.933 

17 1.111 0.198 0.925 

18 1.159 0.213 1.028 

19 1.111 0.193 0.960 

20 1.149 0.220 1.002 

21 1.063 0.198 0.917 

22 1.216 0.237 1.097 

23 1.043 0.200 0.902 

24 1.153 0.211 0.980 

25 1.175 0.228 1.092 

26 1.099 0.207 0.988 

27 1.134 0.212 1.005 

28 1.096 0.189 0.927 

AVG 1.125 0.206 0.974 

STD 0.033 0.012 0.048 

Table 3.1: Maxima, Minima, and Impact Phase for Period 1 
 
B. Period 2 Motion. 
If one were to increase the amplitude of the bar, the average phase at impact will approach the 
critical value of pi/2, or 1.57 radians. Once this value is reached, a bifurcation will occur and 
pattern will change to a period 2, as shown in the figure below. 
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Figure 3.3. Period 2 Behavior as Captured by the Vision System 
 



The period two is characterized by bounces of alternating amplitudes. The ball still impacts the 
bar once a cycle, however in one second, there are 15 high bounces, and 15 low bounces. The 
same analysis conducted for the period 1 produced the following: 
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Figure 3.4. Period 2 Fitted Data with Maxima, Minima 
 

IMPACT 

NUMBER 

MAXIMA 

(mm) 

MINIMA 

(mm) 

PHASE AT IMPACT 

(radians) 

1 0.9821 0.2295 0.7394 

2 1.5045 0.3563 1.3465 

3 1.0336 0.2754 0.8278 

4 1.5311 0.4059 1.429 

5 0.8656 0.1932 0.5038 

6 1.5374 0.3508 1.2007 

7 1.1078 0.2979 0.9058 

8 1.4422 0.3972 1.3178 

9 0.927 0.2149 0.6104 

10 1.5318 0.3773 1.3002 

11 0.9077 0.2136 0.6377 

12 1.4573 0.3296 1.213 

13 0.9774 0.2192 0.7028 

14 1.399 0.3319 1.2576 

15 0.9564 0.2068 0.7874 

16 1.4383 0.3198 1.3642 

17 0.8266 0.1453 0.5602 



18 1.4914 0.3235 1.3943 

19 0.8297 0.1609 0.6402 

20 1.4728 0.3123 1.409 

21 0.8506 0.1823 0.7451 

22 1.4824 0.3255 1.505 

23 0.7281 0.1029 0.4955 

24 1.5719 0.309 1.5054 

25 0.7818 0.1529 0.6364 

26 1.4816 0.3245 1.3979 

27 0.814 0.1512 0.6123 

28 1.5148 0.3313 1.3851 

AVG(ODDS) 0.9579 0.1961 0.6718 

STD(ODDS) 0.1028 0.0524 0.1196 

AVG(EVENS) 1.4897 0.3425 1.359 

STD(EVENS) 0.0464 0.0309 0.0943 

Table 3.2: Maxima, Minima, and Impact Phase for Period 2 
 
As indicated by Table 3.2, for a period 2 at amplitude of 11.95m/s2, the ball will impact the bar 
with alternating phases of 0.67 and 1.36. In this case, the smaller value is indicative of a larger 
bounce and the larger value indicates a smaller bounce. This is because the larger of the two, 
1.36 is very close to the bar’s zero velocity phase of 1.57, so the bar hits the ball with less energy 
on these bounces.  
 
C. Beyond Period 2. 
Other types of stable periodic motion exist as well, such as a period 3. Period threes are more 
difficult to predict, but seem to occur when the ball is transitioning from one behavior to another, 
or at high amplitudes when the ball is in chaos.  
 
Figure 3.5 shows 1 second of a period 3 motion captured by the vision system. This data was 
taken using 3D imaging with the vision system set to 2000Hz divided over 3 regions of interest. 
This is the equivalent of a 667Hz sampling rate.  
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Figure 3.5. Period 3 Behavior as Captured by the Vision System 
 
The same pattern can be observed for higher energy behavior. For example, by changing the 
initial conditions of the experiment, it is possible to induce a Period 1 type behavior where the 
ball is coming into contact with the bar exactly once every two cycles of the bar. This is known 
as a Period 1, m = 2, where m is an integer value representing the ratio of ball bounces to bar 
cycles. In order to achieve this motion, the ball requires a larger initial energy, and generally 
higher forcing amplitude. An example of a Period 1, m = 2 captured by the vision system is 
shown in Figure 3.6.  
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Figure 3.6. Period 1 Behavior with m = 2 as Captured by the Vision System 
 
Furthermore, there exists Period 2 behavior for m = 2 as shown in Figure 3.7.  
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Figure 3.7. Period 2 Behavior with m = 2 as Captured by the Vision System 
 



D. Putting it All Together – Bifurcation Diagrams.  
 By starting the ball bouncing at relatively low amplitude, and slowly increasing the 
maximum acceleration of the bar over a long period of time, it is possible to create a bifurcation 
diagram such as the one in Figure 3.8. 
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Figure 3.8. Bifurcation Diagram Created from Experimental Data 
 
The data displayed in the plot was captured using the same experimental setup as in the period 3 
example. The plot consists of two separate sweeps. Data from the first sweep is shown in blue 
and the bar’s maximum acceleration was governed by the equation: 

74.70128.0)( += ttAcc  
The second sweep was conducted using the same method, but the ball was given a larger initial 
energy, and the sweep covered a different range of amplitudes. The governing equation for the 
second sweep, shown in green, is given by: 

12.100123.0)( += ttAcc  
In both cases, the bifurcation diagram was created by calculated the maxima of each ball bounce, 
using the same parabolic fit method introduced in section 3A.  
 Not only does this figure demonstrate a very clear bifurcation at around 11.2m/s2, but it 
also captures a second bifurcation, shown mostly in green. This illustrates a very important 
concept, which is the existence of bifurcations at different values of m. The bifurcation for m = 1 
is shown in blue, and the bifurcation for m = 2 is shown mostly in green.  
 
 The same plot was generated using a simulation written in Matlab. The simulation uses a 
binary search to calculate the intersection of a point, traveling in a parabolic arch, with a sin 
curve. The results of the simulation are displayed in Figure 3.9.  
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Figure 3.9. Bifurcation Diagram Created from Simulator 
 

As shown in the figure, the simulator yielded very similar results. There are some small 
differences, however. First of all, while both the simulator and experimental setup produced very 
similar values for the ball’s amplitude, the accelerations at which these amplitudes occur are 
slightly different. This is most likely due to the assumption of finite restitution. The coefficient 
of restitution between the ball and the glass lens was experimentally determined by taking 
several traces of the ball bouncing being dropped on the bar and watching it decay. An average 
value for the coefficient of restitution was calculated to be 0.856. This value was plugged into 
the simulator to create the bifurcations above. In practice, however, there was a great variation in 
the C.o.R. values, and the plastic balls used in the experiments were far from perfect. The 
simulator also shows the ball continuing to bounce at extremely low amplitudes down to nearly 
2m/s2. In practice, this would never be feasible, but theory shows that the stable fixed point still 
exists at these low amplitudes.  

Lowering the coefficient of restitution to 0.75 in the simulator produced results that 
correlated much more closely to the experimental results. In Figure 3.10, the results from the 
simulator are plotted on top of the experimental bifurcations from Figure 3.8.  
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Figure 3.10. Both Experimental and Simulated Bifurcations for m = 1,2 
 

As shown in the figure, for a coefficient of restitution of 0.75, the simulator shows the 
bifurcation at m=1 occurring slightly earlier than in experiment. For the m = 2 case on the other 
hand, the bifurcation appears to occur before the predicted value. However, both the height of the 
bounces and the shape of the bifurcations agree strongly.  

 
If we continue to increase the value of m, so that the ball is bouncing every third or fourth 

cycle, a pattern begins to emerge as shown in Figure 3.11.  
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Figure 3.11. Bifurcation Diagrams for Several Values of m 
 
In this figure, gamma is equal to the nondimensionalized acceleration as defined by “Bouncing 
Ball with Finite Restitution” by Luck and Mehta. It is given by 
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Luck and Mehta’s paper shows defines the region within which a stable period 1 exists for all 
values of m. The lower bound of this region is given by 
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where alpha is equal to the coefficient of restitution. The upper bound is defined by 
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where the upper bound is asymptotically approaching the lower bound.  
 
Another way of illustrating the system is displayed in Figure 3.12. This figure uses experimental 
data to replicate the results found using simulation in the Luck and Mehta paper. It shows 
reduced phase space of the system. Each point on the scatterplot represents an impact, where tau 
is equal to the phase of the bar at impact, and W is equal to the relative velocity between the bar 
and the ball. As shown in the figure, the points cluster around spiraling lines given by the 
equation 

)]2cos([ πττα Γ++≈ nW  
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Figure 3.12. Phase Portrait, Generated from Experimental Data 
 



 
IV. Horizontal Stability. 
 
After investigating vertical stability, the simulator was modified to see if bar motions exist that 
will stabilize the ball in the x direction. To begin with, a simple motion was investigated which 
adds motion in the theta direction. A small angular motion was introduced at half the frequency 
of the vertical motion. The phase between the two motions was then varied to see if one of the 
phase values would cause side-to-side stabilization. The results of these first simulations are 
shown in Figure 4.1, where φθ is equal to the phase of the angular component relative to the 
vertical component, and γ describes how fast the ball is sourcing or sinking, as described by the 

equation e
±γt

. All parameters used in the simulator have been nondimensionalized, so the value γ 
has been normalized by the base frequency. 
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Figure 4.1. Plot of Source/Sink Behavior with Angular Motion, no x-Motion 
 
As indicated by the figure, since gamma never dips below zero, this motion of the bar always 
causes the ball to exponentially deviate from the center of the bar.  
 
This same motion was used to generate the surface plots in Figures 4.2 and 4.3. These figures 
illustrate the effect on gamma of varying the theta acceleration and phase.   
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Figure 4.2. Surface Plot of Gamma v. Phase v. Acceleration 
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Figure 4.3. Effect of Varying Angular Acceleration on Gamma 
 
 



Since this simple motion did not stabilize the ball, motion in the x-direction was added in 
addition to the theta and z motions. By adding motion in the x-direction and varying the phases 
and frequencies of each component, many different motions become possible. One such motion 
is shown in Figure 4.4, where the blue traces describe the motion of the bar’s centroid.  
 
An in-depth study of the parabolic motion in Figure 4.4 was conducted. The following equations 
describe the motion used in the following simulations: 

)
2

sin()(
πω += tAtx x  

)
2

2sin()(
πω += tAtz z  

)sin()( ϕωθ θ += tAt  

 
An illustration of the motion described by these equations is shown below. 
 

 
 
Figure 4.4. Two Possible Bar Motions. 
 
In this case, φ = -π/2 for this first illustration, and +π/2 for the second illustration. The illustration 
on the left is actually a motion that will cause source-like behavior, whereas the illustration on 
the right will cause sink-like behavior.  
 
Introducing a small component in the x-direction to the motion of the bar leads to a modification 
of the behavior from Figure 4.1. As shown in Figure 4.5, this new x-motion causes the sin wave 
from Figure 4.1 to be distorted in the center. Some values for gamma are now negative.  
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Figure 4.5. Adding a Small Component in the x-Direction 
 
The corresponding surface plot is shown in Figure 4.6. 
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Figure 4.6. Adding a Small Component in the x-Direction 
 



Continuing to increase the amplitude of this motion leads to an even stronger effect as shown in 
Figure 4.6.  
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Figure 4.7. Source/Sink Behavior for Several Different Values of x-Amplitude 
 
For a large enough x-amplitude, the repeated sin curve from Figure 1 becomes a single sin curve, 
which is now more or less centered on the x-axis. For this motion of the bar, the ball will 
exponentially approach the center of the bar for approximately half the values of phi, and 
exponentially diverge from the center for the other half.  
 



 
V. Conclusion. 
 
Ultimately, while some unanswered questions still exist, a great deal was accomplished 
regarding bifurcation, and vertical and horizontal stability. To begin with, the ability to capture 
three-dimensional experimental data using the vision system allows experimental verification of 
theoretical concepts. The vision system was used to capture examples of period 1, period 2 and 
period 3 behavior as well as period 1 m=2 and period 2 m=2. This data can be used to calculate 
phases at impact among other things. Furthermore, actual bifurcation diagrams were created by 
gradually ramping up the acceleration of the bar. Stability in the horizontal direction proved 
somewhat more difficult. Results from simulation suggest that a simple motion including vertical 
as well as angular motion will not stabilize the bouncing ball, but rather will always cause it to 
move away from the center of the bar. Adding an additional motion in the x-direction, however, 
will sometimes cause source behavior and sometimes cause sink behavior. Increasing the 
amplitude of the x motion will magnify gamma. Although results from the simulator are 
promising, experimental verification was never attempted. This would be a significant next step 
in the study of bouncing ball stability.  
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