Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions
Chap 4 Forward Kinematics
Chap 5 Velocity Kinematics and Statics
 5.1 Manipulator Jacobian
 5.2 Statics of Open Chains
Chap 6 Inverse Kinematics
Chap 8 Dynamics of Open Chains
Chap 9 Trajectory Generation
Chap 11 Robot Control
Chap 13 Wheeled Mobile Robots
Important concepts, symbols, and equations

Robot statics: \(\tau = J_{*}^{T}(\theta) \mathcal{F}_{*} \), where \(* = s \) or \(b \).

Proper interpretation: if a wrench \(-\mathcal{F}\) is applied to the last link, then \(\tau = J^{T}(\theta) \mathcal{F} \) is required to resist it.

If \(J(\theta) \) has rank 6, then the robot can *actively* generate an end-effector wrench in any direction. The static equation is useful for force control.

If \(J(\theta) \) has rank \(k < 6 \), then any applied wrench can be decomposed into the sum of components in \(k \) directions requiring motors to resist and components in \(6 - k \) directions that are resisted by the bearings.
What is the 6×3 Jacobian J_b? What is its rank? What wrenches can be resisted without using the motors?
A linear force f to the right is applied to link 3 at the point shown. What is the corresponding wrench $-F_b$? τ needed to resist it?