
Overview

The goal of this project is to control the light emitted by an LED. We provide a signal that

specifies the brightness of the LED over time, and program the PIC to make the LED brightness

follow the signal. The steps to make this work are outlined here: they are extremely similar to

what must be done to control motors.

The project consists of 4 parts.

Parts 1 & 2 are due on Tuesday 2/18 before class. You will demo the response to part 2

question 7 in class. Include answers to all the questions (including nScope snapshots)

and the source code for the answer to part 2 question 7.

Parts 3 & 4 will be posted soon and will be due on Tuesday 2/25 before class

Here is a diagram, including the circuits and control loop. The reference signal is stored as an

array on the PIC.

 The project consists of several components:

1. The LED circuit. We control the brightness of the LED by turning it on and off really fast

using a PWM signal. The switching is too fast for the human eye to see, so it appears as

different brightness levels, depending on the duty cycle of the signal.

● Part 1 of the assignment had you control the light level of this LED

● In Part 2, you will use the Output Compare feature to control the light level, rather

than manually changing it in a timer.

2. The reference generator generates the signal (aka the reference) that we want the LED

to track. The signal is stored in an array on the PIC, and is played back by a timer

interrupt.

○ In Part 2, you will create this reference signal and use a timer to change the PWM

duty cycle. This will cause the LED to approximately follow your signal.

3. The sensing circuit. This is so we can measure how much light is emitted, and adjust

the brightness of the LED accordingly. The voltage will be measured on the PIC using

the analog to digital converter (ADC), which converts voltage into a digital integer value.

○ The sensing circuit includes a low-pass RC filter. In Part 2, you will see how this

RC filter converts the on/off signal from the PWM into a voltage that corresponds

to the brightness of the led

○ In Part 3, you will hook the output of this signal up to an analog input pin on the

PIC and read the values of this voltage.

4. The control loop. In the timer where you change the reference signal, you will also read

the sensor value. Using the reference and sensed value, you will implement a control

law that uses the error between what you want the LED brightness to be and what your

sensor reads to change the PWM signal, thus making the LED follow the reference

signal.

○ In part 1, the timer you created can be thought of as a primitive control loop. Each

time the ISR triggered, you turned the LED either on or off, this controlled the LED

○ In part 2, you will use the control loop to change the PWM signal to the LED,

according to a reference signal. This is known as “open loop” control because

you are sending a control signal to the LED, but are not using any sensor data.

○ In part 3, you will read sensor data in addition to outputting the reference signal.

You will also be able to output the reference and sensed signal on the computer

and compare them. You will see that the sensed value does not match the

reference signal.

○ In part 4, you will implement the controller. Your data will show that the controller

makes the sensor reading match the reference signal. Mission Accomplished!

Step 2 - In class 2/13

1. The sample code we have provided generates a 1kHz PWM signal on OC1 (which is

output on pin D0, the pin your LED should be connected to). The OC1RS tick count is

entered by the user over serial. View the output of this PWM signal on the nScope

(channel A). Play around with different numbers and observe how the wave changes.

Approximately how many ticks yield a 25% duty cycle? A 75% duty cycle?

2. Wire up the phototransistor circuit, EXCLUDING THE CAPACITOR. Use a 10kOhm

resistor to ground. Place the photo transistor so it is pointed directly at the LED. View

the output of the phototransistor on the nScope (Channel B). What do you observe?

Approximate orientation of the LEDs

3. Add a 1uF capacitor in parallel with the 10k resistor. How does the signal change? Try a

few different duty cycles.

4. We have provided an array named waveform. We will use this array to set the values of

the OC1RS register. This array is designed to be played back at 10 Hz. It is initialized by

the makeWaveform function, called from main(). Setup Timer 2 to operate at 10 Hz. In

the Timer 2 ISR, cycle through the waveform array and set the OC1RS register

according to the value at the current position in the waveform. Observe the output at the

LED and at the phototransistor. Are they the same?

Exercises:

4. Generate a 20KHz PWM signal on pin OC1. Use two different combinations of prescaler

and PR3 register. Which combination gives you more precise control over the duty

cycle?

5. What are the advantages of using the built in PWM function rather than manually

performing PWM in a timer, as in Part 1?

6. Setup Timer 2 to run at 1 kHz. Write a function that fills the duty cycle array with the

appropriate values to create a 1 Hz square wave, sampled at 1 kHz. Include the ability to

specify the minimum and maximum value for the square wave.

7. Generate a square wave with a minimum of roughly 1V and a maximum of roughly 2V.

Observe on the nScope. Do the minimum and maximum match with what you

specified? What about the frequency?

