
Chapter 3

Looking Under The Hood: Software

In this chapter we explore how a simple C program interacts with the hardware described in the previous
chapter. We begin by introducing the virtual memory map and its relationship to the physical memory map.
We then use the simplePIC.c program from Chapter 1 to begin to explore the compilation process and the
XC32 compiler installation.

3.1 The Virtual Memory Map

In the last chapter we learned about the PIC32 physical memory map. The physical memory map is relatively
easy to understand: the CPU can access any SFR, or any location in data RAM, program flash, or boot
flash, by a 32-bit address that it puts on the bus matrix. Since we don’t really have 232 bytes, or 4 GB, to
access, many choices of the 32 bits don’t address anything.

In this chapter we focus on the virtual memory map. This is because almost all software refers only to
virtual memory addresses. Virtual addresses (VAs) specified in software are translated to physical addresses
(PAs) by the fixed mapping translation (FMT) unit in the CPU, which is simply

PA = VA & 0x1FFFFFFF

This bitwise AND operation simply clears the first three bits, the three most significant bits of the most
significant hex digit.

If we’re just throwing away those three bits, what’s the point of them? Well, those first three bits are
used by the CPU and the prefetch module we learned about in the previous chapter. If the first three bits of
the virtual address of a program instruction are 100 (so the corresponding most significant hex digit of the
VA is an 8 or 9), then that instruction can be cached. If the first three bits are 101 (corresponding to an A or
B in the leftmost hex digit of the VA), then it cannot. Thus the segment of virtual memory 0x80000000 to
0x9FFFFFFF is cacheable, while the segment 0xA0000000 to 0xBFFFFFFF is noncacheable. The cacheable
segment is called KSEG0 (for “kernel segment”) and the noncacheable segment is called KSEG1.1

You don’t need to worry about the mysteries of cacheable vs. noncacheable instructions. Su�ce to say
that your program instructions will be made cacheable, speeding up execution.

The relationship of the physical memory map to the virtual memory map is illustrated in Figure 3.1. One
important thing to note from the figure is that the SFRs are not included in the KSEG0 cacheable virtual
memory segment. This is because the SFRs correspond to physical devices, e.g., peripherals, and their values
cannot be cached. For example, if port B is configured as a digital input port, then the SFR PORTB contains
the current input values. When your program asks for these values, it needs the current values; it cannot pull
them from the cache.

For the rest of this chapter we will deal only with virtual addresses like 0x9D000000 and 0xBD000000, and
you should realize that these refer to the same physical address. Since virtual addresses start at 0x80000000,

1Another cacheable segment called USEG, for “user segment,” is available in the lower half of virtual memory. This memory
segment is set aside for “user programs” that are running under an operating system installed in a kernel segment. For safety
reasons, programs in the user segment cannot access the SFRs or boot flash. We will never use the user segment.
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Figure 3.1: (Left) The 4 GB physical and virtual memory maps are divided into 512 MB segments. The
mapping of the valid physical memory addresses to the virtual memory regions KSEG0 and KSEG1 is
illustrated. The PIC32 does not use the virtual memory segments KSEG2 and KSEG3, which are allowed
by the MIPS architecture, and we will not use the user segment USEG, which sits in the bottom half of
the virtual memory map. (Right) Physical addresses mapped to virtual addresses in cacheable memory
(KSEG0) and noncacheable memory (KSEG1). Note that SFRs are not cacheable. The last four words of boot
flash, 0xBFC02FF0 to 0xBFC02FFF in KSEG1, correspond to the device configuration words DEVCFG0 to
DEVCFG3. Memory regions are not drawn to scale.

and all physical addresses are below 0x20000000, there is no possibility of confusing whether we are talking
about a VA or a PA.

3.2 An Example: The Bootloaded simplePIC.c Program

Let’s build the simplePIC.c bootloaded executable from Chapter 1.4.2. For convenience, here is the program
again:

Code Sample 3.1. simplePIC.c. Blinking lights, unless the USER button is pressed.

#include <plib.h>

void delay(void);

int main(void) {
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.
TRISA = 0xFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear

// bits 4/5 to zero, for output. Others are inputs.
LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...
LATAbits.LATA5 = 1; // ... current on NU32, so "high" = "off."

while(1) {
delay();
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LATAINV = 0x0030; // toggle the two lights
}
return 0;

}

void delay(void) {
int j;
for (j=0; j<1000000; j++) { // number is 1 million
while(!PORTDbits.RD13); // Pin D13 is the USER switch, low if pressed.

}
}

Following the same procedure as in Chapter 1.4.1 (command line) or in Chapter 1.4.2 (MPLAB X IDE),
build the executable and load it onto your NU32. Remember to use the linker script NU32bootloaded.ld.
When you have the program loaded and running, the NU32’s two LEDs should alternate on and o↵, and stop
while you press the USER button.

This program refers to SFRs named TRISA, LATAINV, etc. These names align with the SFR names in
the Data Sheet and Reference Manual sections on I/O Ports. We will consult the Data Sheet and Reference
Manual often when programming the PIC32. We will come back to understanding the use of these SFRs
shortly.

3.3 What Happens When You Build?

Now let’s begin to understand how you created the .hex file in the first place. Figure 3.2 gives a schematic of
what happens when you click “Build” in your MPLAB X IDE or type make with a makefile.

First the preprocessor strips out comments and inserts #included header files. You can have multiple
.c C source files and .h header files, but only one C file is allowed to have a main function. The other files
may contain helper functions. We will learn more about this in Chapter 4.

Then the compiler turns the C files into MIPS32 assembly language files, machine commands that are
directly understood by the PIC32’s MIPS32 CPU. So while some of your C code may be easily portable to
non-MIPS32 microprocessors, your assembly code generally will not be. These assembly files are readable by
a text editor, and it is possible to program the PIC32 directly in assembly language.

The assembler then turns the assembly files into machine-level relocatable object code. This code cannot
be inspected with a text editor. The code is called relocatable because the final memory addresses of the
program instructions and data used in the code are not yet specified. The archiver is a utility that allows
you to package several related .o object files into a single .a library file. We will not be making our own
archived libraries, but we will certainly be using .a libraries that have already been made for us!

Finally, the linker takes multiple object files and links them together into a single executable file, with
all program instructions assigned to specific memory locations. The linker uses a linker script that has
information about the amount of RAM and flash on your particular PIC32, as well as directions as to where
to place the data and program instructions in virtual memory. The end result is an executable and linkable
format (.elf) file, a standard format. This file contains a plethora of information that is useful for debugging
and disassembling the file into the assembly code produced by the compiler (Chapter 5.1.3). In fact, building
simplePIC.c results in a .elf file that is hundreds of kilobytes! A final step creates a stripped-down .hex
file of less than 10 KB that is suitable for placing directly into the memory of your PIC32.

Although the entire process consists of several steps, it is often referred to as “compiling” for short. “Build”
or “make” is more accurate.

3.4 What Happens When You Reset the PIC32?

You’ve got your program running. Now you hit the RESET button on the NU32. What happens next?
The first thing your PIC32 does is to jump to the first address in boot flash, 0xBFC00000, and begin
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Figure 3.2: The “compilation” process.

executing instructions there.2 For an NU32 with a bootloader installed, the preloaded bootloader program
sits at that location in memory. The bootloader first checks to see if you are pressing the USER button. If
so, it knows that you want to reprogram your PIC32, so the bootloader attempts to establish communication
with the bootloader communication utility on your computer. When communication is established, the
bootloader receives your executable .hex file and writes it to your PIC32’s program flash. (See question 3.)
Let’s call the virtual address where your program is installed RESET ADDR.

Note: The PIC32’s reset address 0xBFC00000 is fixed in hardware and cannot be changed. On the other
hand, there is nothing too special about the choice of the program flash address where the bootloader writes
your program.

Let’s say you weren’t pressing the USER button when you reset the PIC32. Then the bootloader jumps

2If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks synchronize, etc.,
before jumping to 0xBFC00000.
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Figure 3.3: Port A registers, taken from the PIC32 Data Sheet.

to the address RESET ADDR and begins executing the program you previously installed there. Notice that
our program simplePIC.c is an infinite loop, so it never stops executing. That is the desired behavior in
embedded control. If your program exits, the PIC32 will just sit in a tight loop, doing nothing until it is reset.

3.5 Understanding simplePIC.c

OK, let’s get back to understanding simplePIC.c. The main function is very simple. It initializes values
of DDPCONbits, TRISA, and LATAbits, then enters an infinite while loop. Each time through the loop
it calls delay() and then assigns a value to LATAINV. The delay function simply goes through a for
loop a million times. Each time through the for loop it enters a while loop, which checks the value of
(!PORTDbits.RD13). If PORTDbits.RD13 is 0 (FALSE), then the expression (!PORTDbits.RD13) evaluates
to TRUE, and the program stays stuck here, doing nothing but checking the expression (!PORTDbits.RD13).
When this evaluates to FALSE, the while loop is exited, and the program continues with the for loop. After
a million times through the for loop, control returns to main.

Special Function Registers (SFRs) The only reason this program is even a little interesting is that
TRISA, LATA, and PORTD all refer to peripherals that interact with the outside world. Specifically,
TRISA and LATA correspond to port A, an input/output port, and PORTD corresponds to port D, another
input/output port.3 We can start our exploration by consulting the table in Section 1 of the Data Sheet
which lists the pinout I/O descriptions. We see that port A, with pins named RA0 to RA15, consists of 12
di↵erent pins, and port C, with pins named RC1 to RC15, has 8 pins. These are in contrast to port B, which
has a full 16 pins, labeled RB0 to RB15.

Now turn to the Data Sheet section on I/O Ports to get some more information. We find that TRISA,
short for “tri-state A,” is used to control the direction, input or output, of the pins on port A. For each pin,
there is a corresponding bit in TRISA. If the bit is a 0, the pin is an output. If the bit is a 1, the pin is an
input. (0 = Output and 1 = Input. Get it?) We can make some pins inputs and some outputs, or we can
make them all have the same direction.

If you’re curious what direction the pins are by default, you can consult the Memory Organization section
of the Data Sheet. Tables there list the VAs of many of the SFRs, as well as the values they default to upon
reset. There are a lot of SFRs! But after a bit of searching, you find that TRISA sits at virtual address
0xBF886000, and its default value upon reset is 0x0000C6FF. (We’ve reproduced part of this table for you in
Figure 3.3.) In binary, this would be

0x0000C6FF = 0000 0000 0000 0000 1100 0110 1111 1111.

The leftmost four hex digits (two bytes, or 16 bits) are all 0. This is because those bits don’t exist, technically.
Microchip calls them “unimplemented.” No I/O port has more than 16 pins, so we don’t need those bits,
which are numbered 16–31. (The 32 bits are numbered 0–31.) Of the remaining bits, since the 0’th bit (least
significant bit) is the rightmost bit, we see that bits 0–7, 9–10, and 14–15 have a value 1, while the rest
have value 0. The bits with value 1 correspond precisely to the pins we have available: RA0-7, RA9-10, and

3DDPCON corresponds to JTAG debugging, which we do not use in this book. The DDPCONbits.JTAGEN = 0 command
simply disables the JTAG debugger so that pins RA4 and RA5 are available for digital I/O. See the Special Features section of
the Data Sheet.
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RA14-15. (There is no RA8, for example.) This is for safety reasons; when we power on the PIC32, each pin
will take its default direction before the program has a chance to change it. If an output pin were connected
to an external circuit that is also trying to control the voltage on the pin, the two devices would be fighting
each other, with damage to one or the other a possibility. No such problems arise if the pin is configured as
an input by default.

So now we understand that the instruction

TRISA = 0xFFCF;

clears bits 4 and 5 to 0, implicitly clears bits 16–31 to 0 (which is ignored, since the bits are not implemented),
and sets the rest of the bits to 1. It doesn’t matter that we try to set some unimplemented bits to 1; those
bits are simply ignored. The result is that port A pins 4 and 5, or RA4 and RA5 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers using 0b at
the beginning of the number, so if you don’t get lost counting bits, you could have equally written

TRISA = 0b1111111111001111;

Another option would have been to use the instructions

TRISAbits.TRISA4 = 0; TRISAbits.TRISA5 = 0;

This allows us to change individual bits without worrying about specifying the other bits. We see this kind of
notation later in the program, with LATAbits.LATA4 and PORTDbits.RD13, for example.

The two other basic SFRs in this program are LATA and PORTD. Again consulting the I/O Ports section
of the Data Sheet, we see that LATA, short for “latch A,” is used to write values to the output pins. Thus

LATAbits.LATA5 = 1;

sets pin RA5 high. Finally, PORTD contains the digital inputs on the port D pins. (Notice we didn’t
configure port D as input; we relied on the fact that it’s the default.) PORTDbits.RD13 is 0 if 0 V is present
on pin RD13 and 1 if approximately 3.3 V is present.

Pins RA4, RA5, and RD13 on the NU32 Figure 2.4 shows how pins RA4, RA5, and RD13 are wired
on the NU32 board. LED1 (LED2) is on if RA4 (RA5) is 0 and o↵ if it is 1. When the USER button is
pressed, RD13 registers a 0, and otherwise it registers a 1.

The result of these electronics and the simplePIC.c program is that the LEDs flash alternately, but
remain unchanging while you press the USER button.

CLR, SET, and INV SFRs So far we have ignored the instruction

LATAINV = 0x0030;

Again consulting the Memory Organization section of the Data Sheet, we see that associated with the
SFR LATA are three more SFRs, called LATACLR, LATASET, and LATAINV. (Indeed, many SFRs have
corresponding CLR, SET, and INV SFRs.) These are used to easily change some of the bits of LATA without
a↵ecting the others. A write to these registers causes a one-time change to LATA’s bits, but only in the bits
corresponding to bits on the right-hand side that have a value of 1. For example,

LATAINV = 0x30; // flips (inverts) bits 4 and 5 of LATA; all others unchanged
LATAINV = 0b110000; // same as above
LATASET = 0x0005; // sets bits 0 and 2 of LATA to 1; all others unchanged
LATACLR = 0x0002; // clears bit 1 of LATA to 0; all others unchanged

A less e�cient way to toggle bits 4 and 5 of LATA is

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;
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We’ll look at e�ciency in Chapter 5.
You can go back to the table in the Data Sheet to see the VA addresses of the CLR, SET, and INV registers.

They are always o↵set from their base register by 4, 8, and 12 bytes, respectively; they are consecutive in the
memory map. Since LATA is at 0xBF886020, LATACLR, LATASET, and LATAINV are at 0xBF886024,
0xBF886028, and 0xBF88602C, respectively.

OK, we should now have a pretty good understanding of how simplePIC.c works. But we have been
ignoring the fact that we never declared TRISA, etc., before we started using them. We know you can’t do
that in C; they must be declared somewhere. The only place they could be declared is in the included file
plib.h. We’ve been ignoring that #include <plib.h> statement until now. Time to take a look.4

3.5.1 Down the Rabbit Hole

But where do we find plib.h? If our program had the preprocessor command #include "plib.h", the
preprocessor would look for plib.h in the same directory as the C file including it. But we had #include
<plib.h>, and the <...> notation means that the preprocessor will look in directories specified in your
include path. This include path was generated for you automatically when you installed the XC32 compiler.
For us, the default include path means that the compiler finds plib.h sitting in the directory path

microchip/xc32/v1.30/pic32mx/include/plib.h

Your path or version number might be slightly di↵erent. In this book the directory separator character is /,
consistent with Linux, Unix, and Mac OS X. On Windows, the directory separator character is \.

Including plib.h gives us access to many data types, variables, constants, macros, and functions that
Microchip has provided for our convenience. While plib.h stands for “peripheral library,” including plib.h
provides functionality beyond just the peripherals.

Before we open up plib.h, let’s look at the directory structure that was created when we installed the
XC32 compiler. There’s a lot here! We certainly don’t need to understand all of it at this point, but let’s try
to get a sense of what’s going on. Let’s start at the level microchip/xc32/v1.30 and summarize what’s in
the nested set of directories, without being exhaustive.

1. bin: This contains the actual executable programs that do the compiling, assembling, linking, etc. For
example, xc32-gcc is the C compiler.

2. docs: Some manuals, including the XC32 C Compiler User’s Guide, and other documentation.

3. examples: Some sample code.

4. lib: Contains some .h header files and .a library archives containing general C object code.

5. pic32-libs: This directory is notable because it contains the .c C files, .h header files, and .S
assembly files needed to create the object code for a number of pre-built PIC32 functions, particularly
for the peripherals. Later we might want to look at these more closely, as they are some of the best
documentation on the peripheral library functions. A few notable subdirectories:

(a) peripheral: The subdirectories under this directory contain the C code for peripheral library
functions.

(b) include/peripheral: This directory contains header files for peripheral library functions. Though
there is a plib.h here, it is not the one the compiler finds when building simplePIC.c.

(c) dsp: This directory contains some C functions that call vector math, filter, and Fourier transform
code in the MIPS Digital Signal Processing library.

(d) libpic32: This directory contains a number of C and assembly files for basic PIC32 functions,
such as code that should be executed at the beginning of any executable (see next).

4Microchip often makes changes to the software it distributes, so there may be di↵erences in details, but the broad strokes
described here will be the same.
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(e) libpic32/startup/crt0.S: This “C run-time startup” assembly code gets inserted at the begin-
ning of every program we create. This code takes care of a number of initialization tasks. For
example, if your program uses uninitialized global variables, crt0 writes zeros into their data
RAM locations. If your global variables are initialized at the time of definition, e.g., int k=3,
then crt0 copies the initialized values from program flash to data RAM.

6. pic32mx: This directory has a number of files we are interested in.

(a) lib: This directory consists mostly of PIC32 object code and libraries that are linked with our
compiled and assembled source code. For some of these libraries, source code exists in pic32-libs;
for others we have only the object code libraries. Some important files in this directory include:

i. crt0.o: This is the compiled object code of crt0.S. The linker combines this code with our
program’s object code and makes sure that it is executed first.

ii. libmchp peripheral.a: This library contains the .o object code versions of the .c core timer
functions in the top-level pic32-libs library.

iii. libmchp peripheral 32MX795F512L.a: This library contains the .o object code versions of
the .c peripheral library functions in the top-level pic32-libs library. There are versions of
this file for every type of PIC32MX.

iv. libdsp.a: This library contains MIPS implementations of finite and infinite impulse response
filters, the fast Fourier transform, and various vector math functions.

v. ldscripts/elf32pic32mx.x: For a standalone program, this is the default linker script that
gives the linker rules as to where it is allowed to finally place the relocatable object codes in
virtual memory. This script includes procdefs.ld, below.
If your program is built to be bootloaded, the linker uses your custom linker script instead,
such as NU32bootloaded.ld.

vi. proc/32MX795F512L/procdefs.ld: This file is included by the default linker script, above.
It declares segments of data RAM and program flash where the linker can place data and
instructions, and it is specific to your particular PIC32 model. It also includes processor.o,
below.

vii. proc/32MX795F512L/processor.o: This object file gives the SFR virtual memory addresses
for your particular PIC32. We can’t look at it directly with a text editor, but there are utilities
that allow us to examine it. For example, from the command line you could use the xc32-nm
program in the top-level bin directory to see all the SFR VAs:

> xc32-nm processor.o
bf809040 A AD1CHS
...
bf886000 A TRISA
bf886004 A TRISACLR
bf88600c A TRISAINV
bf886008 A TRISASET
...

All of the SFRs are printed out, in alphabetical order, with their corresponding VA. The
spacing between SFRs is four, since there are four bytes (32 bits) in an SFR. The “A” means
that these are absolute addresses. This tells the linker that it must use these addresses when
making final address assignments. This makes sense; the SFR’s are implemented in hardware
and can’t be moved! The listing above indicates that TRISA is located at VA 0xBF886000,
agreeing with the Memory Organization section of the Data Sheet.

viii. proc/32MX795F512L/configuration.data: This file describes some constants used in setting
the configuration bits in DEVCFG0 to DEVCFG3 (Chapter 2.1.4). The main purpose of
these constants is to make your code more readable. For example, a standalone program like
simplePIC standalone.c from Chapter 1.5 has the following code:

#pragma config DEBUG = OFF // Background Debugger disabled
#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20
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These #pragmas are nonstandard C code, and for our particular compiler, they are used
to write to the DEVCFGx bits the values defined by constants like MUL 20, defined in
configuration.data. Many of these #pragmas are used to set up the timing generation
circuit that turn our 8 MHz resonator into an 80 MHz SYSCLK, an 80 MHZ PBCLK, and a
48 MHz USBCLK. You can learn more about the DEVCFGx configuration bits in the Special
Features section of the Data Sheet.
For bootloaded code, the configuration bits are set by the bootloader program, so these
#pragmas are not necessary.

(b) include: This directory contains a number of .h header files, including the one we’ve been looking
for, plib.h.

i. plib.h: This is the file that was found in our compiler’s include path. If we open it up, we
find that it includes a bunch of other files! One of them is peripheral/ports.h, so let’s open
that one up.

ii. peripherals/ports.h: This file provides constants, macros, and function prototypes for
library functions that work with the I/O ports. More importantly, for now, is that it includes
xc.h. This file is found one directory up in the directory tree. Let’s open that next.

iii. xc.h: This file does a few di↵erent things, such as defining constants and macros, and including
files defining MIPS constants and macros, but the most important for the moment is that it
includes proc/p32mx795f512l.h because of the lines

#elif defined(__32MX795F512L__)
#include <proc/p32mx795f512l.h>

Why does this code include proc/p32mx795f512l.h? When you were setting up your
simplePIC project in the first place, you had to specify the particular PIC32 you were
using. The MPLAB X IDE passed your answer to the compilation process by “defining” the
constant 32MX795F512L . This allows the preprocessor to include the right files for your
PIC32. Let’s open proc/p32mx795f512l.h.

iv. proc/p32mx795f512l.h: Whoa! This file is over 40,000 lines long. It also includes one other
file in the same directory, ppic32mx.h, which is over 1000 lines long. With these we have
reached the bottom of our include chain. Let’s pop out of this big directory tree we are sitting
in and look at those two files in a little more detail.

3.5.2 The Include Files p32mx795f512l.h and ppic32mx.h

The first 30% of p32mx795f512l.h, about 14,000 lines, consists of code like this:

extern volatile unsigned int TRISA __attribute__((section("sfrs")));
typedef union {
struct {

unsigned TRISA0:1; // TRISA0 is bit 0 (1 bit long), interpreted as an unsigned int
unsigned TRISA1:1; // bits are in order, so the next bit, bit 1, is called TRISA1
unsigned TRISA2:1; // ...
unsigned TRISA3:1;
unsigned TRISA4:1;
unsigned TRISA5:1;
unsigned TRISA6:1;
unsigned TRISA7:1;
unsigned :1; // don’t give a name to bit 8; it’s unimplemented
unsigned TRISA9:1; // bit 9 is called TRISA9
unsigned TRISA10:1;
unsigned :3; // skip 3 bits, 11-13
unsigned TRISA14:1;
unsigned TRISA15:1; // later bits are not given names

};
struct {

unsigned w:32; // w is a field referring to all 32 bits; the 16 above, and 16 more
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};
} __TRISAbits_t;
extern volatile __TRISAbits_t TRISAbits __asm__ ("TRISA") __attribute__((section("sfrs")));
extern volatile unsigned int TRISACLR __attribute__((section("sfrs")));
extern volatile unsigned int TRISASET __attribute__((section("sfrs")));
extern volatile unsigned int TRISAINV __attribute__((section("sfrs")));

The first line, beginning extern, indicates that TRISA is an unsigned int variable that has been defined
elsewhere; no space has to be allocated for it.5 The processor.o file is the one that actually defines the VA
of the symbol TRISA, as mentioned earlier. (The attribute syntax tells the linker that TRISA is in the
sfrs section of memory.)

The next section of code defines a data type called TRISAbits t. The purpose of this is to provide a
struct that gives easy access to the bits of the SFR. After defining this type, a variable named TRISAbits
is declared of this type. Again, since it is an extern variable, no memory is allocated, and, in fact, the
asm ("TRISA") syntax means that TRISAbits is at the same VA as TRISA. The definition of the bit

field TRISAbits allows us to use TRISAbits.TRISA0 to refer to bit 0 of TRISA. In general, fields do not
have to be one bit long; for example, TRISA.w is the unsigned int created from all 32 bits, and the type
RTCALRMbits t defined earlier in the file by

typedef union {
struct {

unsigned ARPT:8;
unsigned AMASK:4;

...
} __RTCALRMbits_t;

has a first field ARPT that is 8 bits long and a second field AMASK that is 4 bits long. Since RTCALRM is
a variable of type RTCALRMbits t, a C statement of the form RTCALRMbits.AMASK = 0xB would put the
values 1, 0, 1, 1 in bits 11, 10, 9, 8, respectively, of RTCALRM.

After the declaration of TRISA and TRISAbits, we see declarations of TRISACLR, TRISASET, and
TRISAINV. The presence of these declarations in this included header file allows simplePIC.c, which uses
these variables, to compile successfully. When the object code of simplePIC.c is linked with the processor.o
object code, references to these variables are resolved to the proper VAs.

With these declarations in p32mx795f512l.h, the simplePIC.c statements

TRISA = 0xFFCF;
LATAINV = 0x0030;
while(!PORTDbits.RD13)

finally make sense; these statements write values to, or read values from, SFRs at VAs specified by processor.o.
You can see that p32mx795f512l.h declares a lot of SFRs, but no memory has to be allocated for them; they
exist at fixed addresses in the PIC32’s hardware.

The next 9% of p32mx795f512l.h is the extern variable declaration of the same SFRs, without the bit
field types, for assembly language. The VAs of each of the SFRs is given, making this a handy reference.

Starting at about 17,500 lines into the file, we see constant definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001
#define _T1CON_TCS_MASK 0x00000002
#define _T1CON_TCS_LENGTH 0x00000001

#define _T1CON_TCKPS_POSITION 0x00000004
#define _T1CON_TCKPS_MASK 0x00000030
#define _T1CON_TCKPS_LENGTH 0x00000002

5The volatile keyword, applied to all the SFRs, means that the value of this variable could change without the CPU
knowing it. Thus the CPU should reload it every time it is needed, not assume that its value is unchanged just because the
CPU has not changed it.
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These refer to the Timer 1 SFR T1CON. Consulting the information about T1CON in the Timer1 section of
the Data Sheet, we see that bit 1, called TCS, controls whether Timer 1’s clock input comes from the T1CK
input pin or from PBCLK. Bits 4 and 5, called TCKPS for “timer clock prescaler,” control how many times
the input clock has to “tick” before Timer 1 is incremented (e.g., TCKPS = 0b10 means there is one clock
increment per 64 input ticks). The constants defined above are for convenience in accessing these bits. The
POSITION constants indicate the least significant bit location in TCS or TCKPS in T1CON—one for TCS
and four for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of two
bits. Finally, the MASK constants can be used to determine the values of the bits we care about. For example:

unsigned int tckpsval = (T1CON & _T1CON_TCKPS_MASK) >> _T1CON_TCKPS_POSITION;
// AND MASKing clears all bits, except bits 5 and 4, which are unchanged and shifted to 1 and 0

Another example usage is in pic32mx/include/peripheral/timer.h, where we find the constant definition

#define T1_PS_1_64 (2 << _T1CON_TCKPS_POSITION) /* 1:64 */

T1 PS 1 64 is set to the value of 2, or binary 0b10, left-shifted by T1CON TCKPS POSITION positions, yielding
0b100000. If this is bitwise OR’ed with other constants, you can specify the properties of Timer 1 using code
that is readable without consulting the Data Sheet or Reference Manual. For example, you could use the
statement

T1CON = T1_ON | T1_PS_1_64 | T1_SOURCE_INT;

to turn the timer on, set the prescaler to 1:64, and set the source of the timer to be the internal PBCLK. Of
course you have to read the file timer.h to know what the available constants are! You might find it easier
to consult the Data Sheet or Reference Manual and assign the bit values based on the information there.

The definitions of the POSITION, LENGTH, and MASK constants take up most of the rest of the file. At the
end, some more constants are defined, like below:

#define _ADC10
#define _ADC10_BASE_ADDRESS 0xBF809000
#define _ADC_IRQ 33
#define _ADC_VECTOR 27

The first is merely a flag indicating to other .h and .c files that the 10-bit ADC is present on this PIC32. The
second indicates the first address of 22 consecutive SFRs related to the ADC (see the Memory Organization
section of the Data Sheet). The third and fourth relate to interrupts. The PIC32MX’s CPU is capable of
being interrupted by up to 96 di↵erent events, such as a change of voltage on an input line or a timer rollover
event. Upon receiving these interrupts, it can call up to 64 di↵erent interrupt service routines, each identified
by a “vector” corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33
(out of 0 to 95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63). Interrupts are
covered in Chapter 6.

Finally, p32mx795f512l.h concludes by including ppic32mx.h, which defines a number of other constants,
again with the intent to help you write more readable code. These constants are common for all PIC32 types,
unlike those defined in p32mx795f512l.h.

3.5.3 The NU32bootloaded.ld Linker Script

To create the executable .hex file, we needed the C source file simplePIC.c and the linker script NU32bootloaded.ld.
Examining NU32bootloaded.ld with a text editor, we see the following three lines near the beginning:

INPUT("processor.o")
OPTIONAL("libmchp_peripheral.a")
OPTIONAL("libmchp_peripheral_32MX795F512L.a")

43 20:19 January 17, 2014



CHAPTER 3. LOOKING UNDER THE HOOD: SOFTWARE

The first line tells the linker to load the processor.o file specific to your PIC32. This allows the linker to
resolve references to SFRs to actual addresses. The next two lines tell the linker to give the code access to
the .o object codes for the PIC32 peripheral library.

The rest of the NU32bootloaded.ld linker script has information such as the amount of program flash
and data memory available, as well as the virtual addresses where program elements and global data should
be placed. Below is a portion of NU32bootloaded.ld:

_RESET_ADDR = (0xBD000000 + 0x1000 + 0x970);

/*************************************************************************
* NOTE: What is called boot_mem and program_mem below do not directly
* correspond to boot flash and program flash. For instance, here
* kseg0_boot_mem and kseg1_boot_mem both live in program flash memory.
* (We leave the boot flash solely to the bootloader.)
* The boot_mem names below tell the linker where the startup codes should
* go (here, in program flash). The first 0x1000 + 0x970 + 0x490 = 0x1E00
* of program flash memory is allocated to the interrupt vector table and
* startup codes. The remaining 0x7E200 is allocated to the user’s program.
*************************************************************************/
MEMORY
{

/* interrupt vector table */
exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000
/* Start-up code sections; some cacheable, some not */
kseg0_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970
kseg1_boot_mem : ORIGIN = (0xBD000000 + 0x1000 + 0x970), LENGTH = 0x490
/* User’s program is in program flash, kseg0_program_mem, all cacheable */
/* 512 KB flash = 0x80000, or 0x1000 + 0x970 + 0x940 + 0x7E200 */
kseg0_program_mem (rx) : ORIGIN = (0x9D000000 + 0x1000 + 0x970 + 0x490), LENGTH = 0x7E200
debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = 0xFF0
/* Device Configuration Registers (configuration bits) */
config3 : ORIGIN = 0xBFC02FF0, LENGTH = 0x4
config2 : ORIGIN = 0xBFC02FF4, LENGTH = 0x4
config1 : ORIGIN = 0xBFC02FF8, LENGTH = 0x4
config0 : ORIGIN = 0xBFC02FFC, LENGTH = 0x4
configsfrs : ORIGIN = 0xBFC02FF0, LENGTH = 0x10
/* all SFRS */
sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000
/* PIC32MX795F512L has 128 KB RAM, or 0x20000 */
kseg1_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000

}

Converting virtual to physical addresses, we see that the cacheable interrupt vector table (we will learn
more about this in Chapter 6) in exception mem is placed in a memory region of length 0x1000 bytes
beginning at PA 0x1D000000 and running to 0x1D000FFF; cacheable startup code in kseg0_boot_mem is
placed at PAs 0x1D001000 to 0x1D00196F; noncacheable startup code in kseg1_boot_mem is placed at PAs
0x1D001970 to 0x1D001DFF; and cacheable program code in kseg0_program_mem is allocated the rest of
program flash, PAs 0x1D001E00 to 0x1D07FFFF. This program code includes the code we write plus other
code that is linked.

The linker script for the NU32 bootloader placed the bootloader completely in the 12 KB boot flash with
little room to spare. Therefore, the linker script for our bootloaded programs should place the programs solely
in program flash. This is why the boot_mem sections above are defined to be in program flash. The label
boot_mem simply tells the linker where the startup code should be placed, just as the label kseg0_program_mem
tells the linker where the program code should be placed. (For the bootloader program, kseg0_program_mem
was in boot flash.)

If the LENGTH of any given memory region is not large enough to hold all the program instructions for
that region, the linker will fail.
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Upon reset, the PIC32 always jumps to 0xBFC00000, where the first instruction of the startup code
for the bootloader resides. The last thing the bootloader does is jump to VA 0xBD001970. Since the first
instruction in the startup code for our bootloaded program is installed at the first address in kseg1_boot_mem,
NU32bootloaded.ld must define the ORIGIN of kseg1_boot_mem at this address. This address is also known
as _RESET_ADDR in NU32bootloaded.ld.

3.6 Summarizing the Build

Section 3.5 was a long one, so let’s summarize by looking at what happens when you build a project. If you
look at the output when you type make out.hex at the command line, or at your IDE’s Output window after
pressing “Build,” you see the actual command line commands that were executed. They look approximately
like this:

xc32-gcc -g -x c -c -mprocessor=32MX795F512L -o simplePIC.o simplePIC.c

xc32-gcc -mprocessor=32MX795F512L -o out.elf simplePIC.o \
-Wl,--defsym=__MPLAB_BUILD=1,--script="NU32bootloaded.ld",-Map=out.map

xc32-bin2hex out.elf

The first line preprocesses, compiles, and assembles the simplePIC.c program, the second links the resulting
.o file to make a .elf file, and the third line converts the .elf file to a .hex file.6

Using the XC32 compiler guide, in the docs directory of our XC32 distribution, we see that the -g
flag in the first line tells the compiler to produce debugging information, which is useful for examining the
assembly code compiled from your source code; the -x c sequence indicates that the input file is C source
code; the -c flag tells the compiler to compile and assemble, but not to link, and instead produce a .o
object file; -mprocessor=32MX795F512L indicates the device so that the proper device-specific files are used
in compilation; and the -o flag indicates the name of the output file. The last argument, simplePIC.c, is
the name of the file to be compiled.

In the second line, the linker guide tells us that -mprocessor=32MX795F512L specifies the device type
(e.g., which processor.o file to load); -o indicates the name of the output file; and
-Wl,--defsym=__MPLAB_BUILD=1,--script="NU32bootloaded.ld,-Map=out.map" tells the linker to put
the symbol __MPLAB_BUILD at address 1, to use the linker script NU32bootloaded.ld, and to create a “map”
file with information on where instructions and global variables are placed in memory. We will learn more
about map files in Chapter 5. The option -Wl is “-W ell” not “-W one.”

Note that in the first line, xc32-gcc compiles and assembles, based on the specified options, while in the
second line, xc32-gcc links because the input file is object code.

To summarize, here is what you need to know about the creation of your final .hex executable from your
simplePIC.c source file:

• IDE setting of the processor type. If you build your project using the IDE, you must choose
the processor type. This tells the IDE which -mprocessor to specify to the xc32-gcc command
which preprocesses, compiles, and assembles, and to the xc32-gcc command which links to create the
executable.

• Including the Microchip plib.h file. By including plib.h at the beginning of your program, we
get access to variables for all the SFRs, as well as a number of other constants, macros, and prototypes
for functions that Microchip provides. The simplePIC.c file, which contains references to these, will
now compile and assemble successfully, and these references will be resolved at the linking stage.

• Linking. The object code simplePIC.o is linked with (a) the crt0.o C run-time startup library,
which performs functions such as initializing global variables; (b) the processor.o object code with the

6You can see even more information about the build by specifying the --verbose option for the compiler and linker in the
IDE. Type --verbose under Additional Options at both Run > Set Project Configuration > Customize > xc32-gcc

and Run > Set Project Configuration > Customize > xc32-ld. At the command line, put --verbose at the end of the
compile command and ,--verbose immediately at the end of the linker -Wl options, with no space in front of the comma.
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SFR VAs; and (c) code from object code libraries such as libpic32.a, libmchp peripheral.a, and
libmchp peripheral 32MX795F512L.a. The linker script NU32bootloaded.ld, which is specific to the
bootloader and the PIC32MX795F512L, provides information to the linker on the allowable absolute
virtual addresses for the program instructions and data. The result of the linker is a fully self-contained
executable in .elf format, which is then converted to .hex format by xc32-bin2hex. The address of
the first instruction in the executable is the same address the bootloader jumps to.

• Installing the program. The last step is to use the NU32 bootloader and the host computer’s
bootloader communication utility to install the executable. By resetting the PIC32 while holding
the USER button, the bootloader enters a mode where it tries to communicate with the bootload
communication utility on the host computer. When it receives the executable from the host, it writes
the program instructions to the virtual memory addresses specified by the linker. Now every time the
PIC32 is reset without holding the USER button, the bootloader exits and jumps to the newly installed
program.

3.7 Building simplePIC standalone.c

In the case of the standalone version simplePIC standalone.c in Code Sample 1.2 in Chapter 1.5, the build
process is very similar to that of the bootloaded version in Section 3.6, with the following exceptions:

• Source code di↵erences. The source code has the following additions compared to the bootloaded
version:

1. Configuration bits. A number of lines beginning #pragma config define the configuration bits
of the Device Configuration Registers (Chapter 2.1.4). These bits define fundamental operating
behavior of the PIC32 that should not be changed during execution. Examples include bits that
control the conversion of the external oscillator frequency into the SYSCLK and PBCLK. These
XC32-specific preprocessor commands will cause the final .hex file to contain values to be written
to the Device Configuration Registers. The constants used in these #pragmas, like MUL_20, are
defined in the configuration.data file. You can learn more about the configuration bits in the
Special Features section of the Data Sheet.

When using a bootloader, the configuration bits are set by the bootloader, so the #pragmas are
not needed.

2. Configuring the cache and flash wait cycles. The other additions to the source code are the
preprocessor command

#define SYS_FREQ 80000000 // 80 million Hz

and the code statement

SYSTEMConfig(SYS_FREQ, SYS_CFG_ALL);

The preprocessor command simply defines the constant SYS_FREQ for use in SYSTEMConfig().
Defining SYS_FREQ does not actually a↵ect SYSCLK; SYSCLK is determined by the configuration
bits and the frequency of the external oscillator. We must make sure SYS_FREQ is consistent with
these.

The command SYSTEMConfig() is defined in pic32mx/include/peripheral/system.h. Its pur-
pose is to maximize performance by turning on the prefetch cache module and setting the smallest
possible number of flash wait cycles. The number of flash wait cycles is the number of cycles that
the CPU must stall while waiting for an instruction to load from flash. Based on the SYSCLK
frequency (80 MHz) and the maximum frequency of flash access (30 MHz), the number of flash
wait cycles is set to 2. This wait time is set in the CHECON SFR, described in the Prefetch Cache
Module chapter of the Reference Manual.

When using a bootloader, the bootloader configures the cache and flash wait cycles.
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• The linker script. The standalone version of the program uses the default linker script elf32pic32mx.x,
not NU32bootloaded.ld. Opening elf32pic32mx.x, we see the command INCLUDE procdefs.ld.
If there happens to be a procdefs.ld file in the same folder as simplePIC standalone.c, that
file will be included in the linker script. Otherwise, the linker will find the file in the directory
pic32mx/lib/proc/MX795F512L/. This file contains default definitions of the size of RAM and flash
memory. Since there is no bootloader, there is no concern of the new executable overwriting a boot-
loader. Your standalone executable will be installed beginning at the hardware-defined reset address,
0xBFC00000.

Since the linker script NU32bootloaded.ld is no longer needed, we do not have the --script option
to -Wl in the linker command:

xc32-gcc -mprocessor=32MX795F512L -o out.elf simplePIC.o \
-Wl,--defsym=__MPLAB_BUILD=1,-Map=out.map

3.8 Useful Command Line Utilities

The bin directory of the XC32 installation contains a number of useful command line utilities. These can be
used directly at the command line, and some of them are invoked by the MPLAB X IDE. We have already
seen the first two of these utilities, as described in Section 3.6:

xc32-gcc The XC32 version of the gcc compiler is used to compile, assemble, and link, creating the
executable .elf file.

xc32-bin2hex Converts a .elf file to a .hex file suitable for placing directly into PIC32 flash memory.

xc32-ar The archiver can be used to create an archive, list the contents of an archive, or extract object
files from an archive. Example uses include:

xc32-ar -t lib.a // list the object files in lib.a (in current directory)
xc32-ar -x lib.a code.o // extract code.o from lib.a to the current directory

xc32-as The assembler.

xc32-ld This is the actual linker called by xc32-gcc.

xc32-nm Prints the symbols (e.g., global variables) in an object file. Examples:

xc32-nm processor.o // list the symbols in alphabetical order
xc32-nm -n processor.o // list the symbols in numerical order

xc32-objdump Displays the assembly code corresponding to an object or .elf file. This process is
called disassembly. Examples:

xc32-objdump -D file.o
xc32-objdump -d -S file.elf // change -d to -D to see debugging info
xc32-objdump -d -S file.elf > file.disasm // send output to the file file.disasm

xc32-readelf Displays a lot of information about the .elf file. Example:

xc32-readelf -a filename.elf // output is dominated by SFR definitions

These utilities correspond to standard “GNU binary utilities” of the same name without the preceding
xc32-. You can search online for more information on these utilities. To learn the options available for a
command called xc32-cmdname, you can type xc32-cmdname ? at the command line.
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3.9 Chapter Summary

OK, that’s a lot to digest. Don’t worry, you can view much of this chapter as reference material; you don’t
have to memorize it to program the PIC32!

• Software refers almost exclusively to the virtual memory map. Virtual addresses map directly to
physical addresses by PA = VA & 0x1FFFFFFF.

• Building an executable .hex file from a source file consists of the following steps: preprocessing,
compiling, assembling, linking, and converting the .elf file to a .hex file.

• Including the file plib.h initiates a chain of included files that gives our program access to variables,
data types, constants, macros, and prototypes of functions that significantly simplify programming. C
source files can be found in pic32-libs/peripheral, header files in pic32mx/include, and compiled
libraries in pic32mx/lib.

• The included file pic32mx/include/proc/p32mx795f512l.h contains variable declarations, like TRISA,
that allow us to read from and write to the SFRs. We have several options for manipulating these
SFRs. For TRISA, for example, we can directly assign the bits with TRISA=0x30, or we can use bitwise
operations like & and |. Many SFRs have associated CLR, SET, and INV registers which can be used
to e�ciently clear, set, or invert certain bits. Finally, particular bits or groups of bits can be accessed
using bit fields. For example, we access bit 3 of TRISA using TRISAbits.TRISA3. The names of the
SFRs and bit fields follow the names in the Data Sheet (particularly the Memory Organization section)
and Reference Manual.

• All programs are linked with pic32mx/lib/crt0.o to produce the final .hex file. This C run-time
startup code executes first, doing things like initializing global variables in RAM, before jumping to the
main function. Other linked object code includes processor.o, with the VAs of the SFRs.

• Upon reset, the PIC32 jumps to the boot flash address 0xBFC00000. Standalone executables have their
first instruction (of the crt0 startup code) at this address. For a PIC32 with a bootloader, the crt0 of
the bootloader is installed at this address. When the bootloader completes, it jumps to an address
where the bootloader has previously installed a bootloaded executable.

• If the PIC32 has a bootloader, the bootloader sets the Device Configuration Registers, turns on the
prefetch cache module, and minimizes the number of CPU wait cycles for instructions to load from
flash. If a program is standalone, it must have code to perform these functions.

• A bootloaded program is linked with a custom linker script, like NU32bootloaded.ld, to make sure the
flash addresses for the instructions do not conflict with the bootloader’s, and to make sure that the
program is placed at the address where the bootloader jumps. A standalone program uses the default
elf32pic32mx.x linker script, which makes use of a default procdefs.ld for the particular processor.

• Command line utilities like xc32-ar, xc32-nm, xc32-objdump, and xc32-readelf allow us to learn
more about our compiled code, outside of the MPLAB X IDE.

3.10 Exercises

1. Convert the following virtual addresses to physical addresses, and indicate whether the address is
cacheable or not, and whether it resides in RAM, flash, SFRs, or boot flash. (a) 0x80000020. (b)
0xA0000020. (c) 0xBF800001. (d) 0x9FC00111. (e) 0x9D001000.

2. Explain the di↵erences between a standalone PIC32 program and a program that is meant to be loaded
with a bootloader. Which commands or functions must appear in a standalone program that are not
needed in a program loaded by a bootloader? What di↵erences are there in the linker scripts used by a
standalone program and a program loaded by a bootloader?
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3. Look at the linker script used with bootloaded programs for the NU32. Where does the bootloader
install your program in virtual memory? (Hint: look at the _RESET_ADDR.)

4. Refer to the Memory Organization section of the Data Sheet and Figure 2.1.

(a) Referring to the Data Sheet, indicate which bits, 0..31, can be used as input/outputs for each of
Ports A through G. For the PIC32MX795F512L in Figure 2.1, indicate which pin corresponds to
bit 0 of port E (this is referred to as RE0).

(b) The SFR INTCON refers to “interrupt control.” Which bits, 0..31, of this SFR are unimplemented?
Of the bits that are implemented, give the numbers of the bits and their names.

5. Modify simplePIC.c so that both lights are on or o↵ at the same time, instead of opposite each other.
Turn in only the code that changed.

6. Modify simplePIC.c so that the function delay takes an int cycles as an argument. The for loop
in delay executes cycles times, not a fixed value of 1,000,000. Then modify main so that the first
time it calls delay, it passes a value equal to MAXCYCLES. The next time it calls delay with a value
decreased by DELTACYCLES, and so on, until the value is less than zero, at which time it resets the
value to MAXCYCLES. Use #define to define the constants MAXCYCLES as 1,000,000 and DELTACYCLES as
100,000. Turn in your code.

7. Give the VAs and reset values of the following SFRs. (a) I2C2CON. (b) TRISC.

8. The processor.o file linked with your simplePIC project is much larger than your final .hex file.
Explain how that is possible.

9. The building of a typical PIC32 program makes use of a number of files in the XC32 compiler distribution.
Let’s look at a few of them.

(a) Look at the assembly startup code pic32-libs/libpic32/startup/crt0.S. Although we are not
studying assembly code, the comments help you understand what the startup code does. Based on
the comments, list four things that the startup code does.

(b) Copy the library file pic32mx/lib/libmchp peripheral 32MX795F512L.a to a directory where
you can experiment. Using the archiver command xc32-ar, find the object codes that belong to
the library by the command

xc32-ar -t libmchp_peripheral_32MX795F512L.a

You should see that one of the included object codes is pcache.o. Now extract this object file
using

xc32-ar -x libmchp_peripheral_32MX795F512L.a pcache.o

Finally we can disassemble the object code to see the corresponding assembly code using

xc32-objdump -D pcache.o

The two functions of interest are CheKseg0CacheOn and CheKseg0CacheOff, which are used
to turn on and o↵ the cache. Find the C source file corresponding to the object code under
pic32-libs/peripheral. For the function CheKseg0CacheOff, give the one line of C code in the
C source file that corresponds to the two lines of assembly code beginning with and (a bitwise
AND) and ori (a bitwise OR).

(c) Using the command xc32-nm -n processor.o, give the names and addresses of the five SFRs
with the highest addresses.

(d) Give five files included by pic32mx/include/plib.h.

(e) In pic32mx/include/peripheral/ports.h, explain how the macro mPORTAReadBits() works
and give an example call to this macro that reads bits 0 and 3.
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(f) Open the file p32mx795f512l.h and go to the declaration of the SFR SPI2STAT and its associated
bit field data type SPI2STATbits t. How many bit fields are defined? What are their names and
sizes? Do these coincide with the Data Sheet?

10. Give three C commands, using TRISASET, TRISACLR, and TRISAINV, that set bits 2 and 3 of
TRISA to 1, clear bits 1 and 5, and flip bits 0 and 4.
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