
Chapter 5

Time and Space

Of course it is a good idea to write “e�cient” code. But “e�cient” can mean a number of di↵erent things,
such as time-e�cient (runs fast), RAM-e�cient (makes the most of limited RAM), flash-e�cient (makes
the most of limited flash), but perhaps most importantly, programmer-time-e�cient (minimizes the time
needed to write and debug the code, or for a future programmer to understand it). Often these interests are
in competition with each other. In fact, the XC32 compiler provides a number of compilation options, some
of which are not available in the free version of the compiler, that allow you to explicitly make space-time
tradeo↵s. As one example, the compiler could “unroll” loops. If a loop is known to be executed 20 times, for
example, instead of using a small piece of code, incrementing a counter, and checking to see if the count has
reached 20, the compiler could simply write the same block of code 20 times. This may save a little bit of
execution time (no counter increments, no conditional tests, no branches) at the expense of using more flash
to store the program.

The purpose of this chapter is to make you aware of some tools for understanding the time and space
consumed by your program. These will help you squeeze the most out of your PIC32, allowing you to do
more with a given PIC32 or to choose a cheaper PIC32.

5.1 Time and the Disassembly File

5.1.1 Timing Using a Stopwatch (or an Oscilloscope)

A direct way to time something is to toggle a digital output and look at that digital output using an
oscilloscope or stopwatch. For example:

... // digital output RA4 has been high for some time
LATACLR = 0x10; // clear RA4 to 0 (turn on NU32 LED1)

... // some code you want to time
LATASET = 0x10; // set RA4 to 1 (turn off LED1)

The time that RA4 is low (or the NU32’s LED1 is on) is approximately the duration of the code you want to
measure.

If the duration is too short to catch with your scope or stopwatch, you could modify the code to something
like

... // digital output RA4 has been high for some time
LATACLR = 0x10; // clear RA4 to 0 (turn on NU32 LED1)
for (i=0; i<1000000; i++) { // but modify 1,000,000 to something appropriate for you

... // some code you want to time
}
LATASET = 0x10; // set RA4 to 1 (turn off LED1)

Then you can divide the total time by 1,000,000. Keep in mind, however, that there is overhead to implement
the for loop (incrementing a counter, checking the inequality, etc.). We will see this in Section 5.1.3. If the
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code you want to time uses only a few assembly instructions, then the time you actually measure will be
dominated by the implementation of the for loop.

5.1.2 Timing Using the Core Timer

A more accurate time can be obtained using a timer onboard the PIC32. The NU32’s PIC32 has 6 timers: a
32-bit core timer, associated with the MIPS CPU, and five 16-bit peripheral timers. We can use the core
timer for pure timing operations, leaving the much more flexible peripheral timers available for other tasks
(see Chapter 8). The core timer increments once for every two ticks of SYSCLK. For a SYSCLK of 80 MHz,
the timer increments every 25 ns. Because the timer is 32 bits, it rolls over every 232 ⇥ 25 ns = 107 seconds.

If your program includes plib.h, you can use statements such as the following:

unsigned int elapsedticks, elapsedns;

WriteCoreTimer(0); // set the core timer counter to 0; in pic32-libs/peripheral/timer
... // some code you want to time

elapsedticks = ReadCoreTimer(); // read the core timer
elapsedns = elapsedticks * 25; // for 80 MHz SYSCLK

Writing to and reading from the core timer takes a few processor cycles, and the timer only counts every 2
ticks of SYSCLK. To minimize the uncertainty introduced by these, you can execute the code several times
(just copy and paste it) between the write and read of the core timer. Avoid the overhead of implementing a
loop.

We can actually do a bit better. Since we are concerned about timing, let’s reduce the overhead for writing
to and reading from the core timer to the bare minimum. Looking up the source for the WriteCoreTimer()
and ReadCoreTimer() functions in pic32-libs/peripheral/timer/source, we see that each is implemented
by a single assembly command instruction to the CPU.

unsigned int elapsed, start=0;

asm volatile("mtc0 %0, $9": "+r"(start)); // WriteCoreTimer(0);
... // some code you want to time

asm volatile("mfc0 %0, $9" : "=r"(elapsed)); // elapsed = ReadCoreTimer();

The asm command constructs a line of assembly code to be directly inserted by the compiler.
In the next section we look more systematically at the assembly code created by our C code. See also

Problem 3.

5.1.3 Disassembling Your Code

A convenient way to examine the time e�ciency of your code is to look at the assembly code produced by
the compiler. The fewer instructions, the faster your code will execute.

In Chapter 3.5, we claimed that the code

LATAINV = 0x30;

is more e�cient than

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;

Let’s examine that claim by looking at the assembly code of the following program. This program simply
delays by executing a for loop 50 million times, then toggles RA5 (LED2 on the NU32).

Code Sample 5.1. timing.c. RA5 toggles (LED2 on the NU32 flashes).
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//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define DELAYTIME 50000000 // 50 million

void delay(void);
void toggleLight(void);

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
while(1) {
delay();
toggleLight();

}
}

void delay(void) {
int i;
for (i=0; i<DELAYTIME; i++) {}

}

void toggleLight(void) {
LATAINV = 0x20;
// LATAbits.LATA5 = !LATAbits.LATA5;

}

After building it in the IDE, go to Window > Output > Disassembly Listing File.1 You will see
a listing showing your C code and, below each C line, the assembly code it generated. Each assembly line
has the actual virtual address where the assembly instruction was placed in memory, the 32-bit machine
instruction, and the equivalent human-readable (if you know assembly!) assembly code. Let’s look at the
segment of the listing corresponding to the command LATAINV = 0x20. You should see something like

22: LATAINV = 0x20;
9D003370 3C02BF88 LUI V0, -16504
9D003374 24030020 ADDIU V1, ZERO, 32
9D003378 AC43602C SW V1, 24620(V0)
23: //LATAbits.LATA5 = !LATAbits.LATA5;

We see that the LATAINV = 0x20 command has expanded to three assembly statements. Without going into
detail2, the ADDIU stores the value 0x20 (the sum of ZERO and 32 in decimal) into the 32-bit CPU register
V1, and the SW stores this word into the memory address corresponding to LATAINV.

If instead we comment out the LATAINV = 0x20 command and replace it with the bit manipulation
version, we get the following disassembly:

22: //LATAINV = 0x20;
23: LATAbits.LATA5 = !LATAbits.LATA5;
9D003370 3C02BF88 LUI V0, -16504
9D003374 8C426020 LW V0, 24608(V0)
9D003378 30420020 ANDI V0, V0, 32
9D00337C 2C420001 SLTIU V0, V0, 1
9D003380 304400FF ANDI A0, V0, 255
9D003384 3C03BF88 LUI V1, -16504
9D003388 8C626020 LW V0, 24608(V1)
9D00338C 7C822944 INS V0, A0, 5, 1
9D003390 AC626020 SW V0, 24608(V1)

1At the command line, you can instead use xc32-objdump -d -S filename.elf > filename.disasm and inspect the file
filename.disasm. The results may not be quite as easy to interpret, however.

2You can look up the MIPS32 assembly instruction set if you’re interested.
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The bit manipulation version requires nine assembly statements. Basically the value of LATA is being copied
to a CPU register, manipulated, then stored back in LATA. With the LATAINV syntax, this is done in
hardware.

Although one method of manipulating the SFR bit appears three times slower than the other, we don’t
yet know how many processor cycles each consumes. Assembly instructions are generally performed in a
single clock cycle, but there is still the question of whether the CPU is getting one instruction per cycle.
(Recall the issue of slow program flash.) We will look at this further with the prefetch cache module in
Section 5.1.4 below. For now, though, let’s time that delay loop that is executed 50 million times. Here is the
disassembly for delay(), with comments added to the right:

16: void delay(void) {
9D003314 27BDFFF0 ADDIU SP, SP, -16 // manipulate the stack pointer on ...
9D003318 AFBE000C SW S8, 12(SP) // ... entering the function (see text)
9D00331C 03A0F021 ADDU S8, SP, ZERO
17: int i;
18: for (i=0; i<DELAYTIME; i++) {}
9D003320 AFC00000 SW ZERO, 0(S8) // initialization of i in RAM to 0
9D003324 0B400CCE J 0x9D003338 // jump to 9D003338 (skip adding 1 to i)
9D003328 00000000 NOP // "no operation," let jump complete
9D00332C 8FC20000 LW V0, 0(S8) // start of the loop; load RAM i into register V0
9D003330 24420001 ADDIU V0, V0, 1 // add 1 to V0 ...
9D003334 AFC20000 SW V0, 0(S8) // ... and store it to i in RAM
9D003338 8FC30000 LW V1, 0(S8) // load i into V1
9D00333C 3C0202FA LUI V0, 762 // these two lines ...
9D003340 3442F080 ORI V0, V0, -3968 // ... load the constant 50,000,000 into V0
9D003344 0062102A SLT V0, V1, V0 // store "true" (1) in V0 if V1 < V0
9D003348 1440FFF8 BNE V0, ZERO, 0x9D00332C // if V0 does not equal 0, branch to top of loop
9D00334C 00000000 NOP // branch delay slot is executed before branch
19: }
9D003350 03C0E821 ADDU SP, S8, ZERO // manipulate the stack pointer on exiting
9D003354 8FBE000C LW S8, 12(SP)
9D003358 27BD0010 ADDIU SP, SP, 16
9D00335C 03E00008 JR RA // jump to return address RA stored by JAL
9D003360 00000000 NOP

There are nine instructions in the delay loop itself, starting with LW V0, 0(S8) and ending with the NOP.
When the LED comes on, these instructions are carried out 50 million times, and then the LED turns o↵.
(There are a few other instructions to set up the loop, but these are negligible compared to the 50 million
executions of the loop.) So if one instruction is executed per cycle, we would predict the light to stay on
for 50 million ⇥ 9 instructions ⇥ 12.5 ns/instruction = 5.625 seconds. When we timed by a stopwatch, we
got about 6.25 seconds, which implies 10 cycles per loop. So our cache module has the CPU executing one
assembly instruction almost every cycle.

You might notice a couple of ways you could have written the assembly code for the delay function
more time-e�ciently. This is certainly one of the advantages of coding directly in assembly: direct control
of the processor instructions. The disadvantage, of course, is that MIPS32 assembly is a much lower-level
language than C, requiring significantly more knowledge of MIPS32 from the programmer. Until you have
already invested a great deal of time learning the assembly language, programming in assembly fails the
“programmer-time-e�cient” criterion! Also, more e�cient assembly code can be generated from your C code
by employing certain compiler optimizations (Section 5.1.5). (Not to mention that delay was designed to
waste time, so no need to be e�cient!)

Another thing you may have noticed in the disassembly of delay() is the manipulation of the stack

pointer (SP) upon entering and exiting the function. The stack is an area of memory that holds function
local variables and parameters. When a function is called, its parameters and local variables are “pushed”
onto the stack. When the function exits, the local variables are “popped” o↵ of the stack by moving the stack
pointer back to its original position before the function was called. A stack overflow occurs if the stack is too
small for the local variables defined in currently-called functions. We will see the stack again in Section 5.2.
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The overhead due to manipulating the stack pointer on entering and exiting a function should not
discourage you from writing modular code. This should only be a concern when your code is fully debugged
and you are trying to squeeze a final few nanoseconds out of your program execution time.

5.1.4 The Prefetch Cache Module

In the previous section, we saw that our bootloaded timing.c program was executing an assembly instruction
nearly every clock cycle. This is because NU32 Startup() optimized performance by turning on the prefetch
cache module and choosing the minimum number of CPU wait cycles for instructions loading from flash. (See
Chapters 3.7 and 4.2.)

Let’s try turning o↵ the prefetch cache module to see the e↵ect on our program timing.c. The prefetch
cache module performs two primary tasks: it keeps recent instructions in the cache, ready if the CPU requests
the instruction at that address (allowing the cache to completely store small loops); and for linear code it
runs ahead so as to have the instruction ready to go when needed (prefetch). We can disable each of these
functions separately, or we can disable both.

Let’s start by disabling both. Modify timing.c in Code Sample 5.1 by adding

CHECONCLR = 0x30; // SFR in prefetch cache section of Reference Manual
CheKseg0CacheOff(); // defined in pic32-libs/peripheral/pcache/source/pcache.c

right after NU32 Startup() in main. Everything else stays the same. Consulting the section on the prefetch
cache module in the Reference Manual, we see that bits 4 and 5 of the SFR CHECON determine whether
instructions are prefetched, and that clearing both bits disables predictive prefetch. The second line is a
library function that uses MIPS32 assembly instructions to turn o↵ the cache.

Rerunning timing.c with these two commands, we find that the LED stays on for approximately
17 seconds, compared to approximately 6.25 seconds before. We are seeing the e↵ect of the flash wait
cycles—the CPU has to wait two cycles before receiving requested instructions from flash.

If we comment out the first line, so that the prefetch is enabled but the cache is o↵, and rerun, we find
that the LED stays on for about 7.5 seconds, or 12 SYSCLK cycles per loop, a small penalty compared to
our original performance of 10 cycles. The prefetch is able to run ahead to grab future instructions, but it
cannot run past the for loop conditional statement, since it does not know the outcome of the test.

Finally, if we comment out the second line but leave the first line, so that the prefetch is disabled but the
cache is on, we recover our original performance of approximately 6.25 seconds. The reason is that the entire
loop can be stored in the cache, so prefetch is not necessary.

5.1.5 Optimization

Compilers can sometimes recognize ways to increase the speed of execution (or decrease program size) by
trimming redundant code, eliminating code that doesn’t do anything, and many other ways.3 For example,
the function delay in timing.c accomplishes nothing but wasting time. In our case, that was the desired
e↵ect. If we chose a compiler option to optimize running time, however, we shouldn’t be surprised if that
code were to be optimized away. Depending on the compiler, something like this could happen even if we
didn’t choose to optimize for execution time. If you want to implement a delay with predictable behavior,
consider using the core timer.

5.1.6 Math

For real-time systems, it is often critical to perform mathematical operations as quickly as possible. Mathe-
matical expressions should be coded to minimize execution time. We will delve into the speed of various
math operations in the Exercises, but here are a few rules of thumb for e�cient math:

• There is no floating point unit on the PIC32MX, so all floating point math is carried out in software.
Integer math is much faster than floating point math. If speed is an issue, perform all math as integer

3See the Command Line chapter of the MPLAB XC32/XC32++ Compiler User’s Guide in your docs directory if you are
interested. Certain optimizations are not available in the free version of the XC32 compiler.
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math, scaling the variables as necessary to maintain precision, and only convert back to floating point
when needed.

• Floating point division is slower than multiplication. If you will be dividing by a fixed value many
times, consider taking the reciprocal of the value once and then using multiplication thereafter.

• Functions such as trigonometric functions, logarithms, square roots, etc. in the math library are generally
slower to evaluate than arithmetic functions. Their use should be minimized when speed is an issue.

• Partial results should be stored in variables for future use to avoid performing the same computation
multiple times.

5.2 Space and the Map File

The previous section focused on the time of execution. Now let’s look at how much program memory (flash)
and data memory (RAM) our programs use.

The linker allocates virtual addresses in program flash for all program instructions, and virtual addresses
in data RAM for all global variables. The rest of RAM is allocated to the heap and the stack. The heap
is memory set aside to hold dynamically allocated memory, as allocated by malloc and calloc. The stack
holds local variables used by functions. When a function is called, space on the stack is allocated for its local
variables. When the function exits, the local variables are thrown away and the space is made available again
by simply moving the stack pointer.

If you are building with the MPLAB IDE, the easiest way to keep track of the amount of flash and global
variable RAM used by your program is to look at Window > Dashboard after a build. If your program
attempts to put too many local variables on the stack (stack overflow), however, the error won’t show up
until run time. The linker does not catch this error because it does not explicitly set aside space for specific
local variables; it assumes they will be handled by the stack.

To dig a little deeper into how memory is allocated, we can ask the linker to create a “map” file when it
creates the .elf file. The map file indicates where instructions are placed in program memory and where
global variables are placed in data memory. For an executable created from two object code files file1.o
and file2.o, we can create a map file at the command line (Section 3.6) with a linker command of the form

xc32-gcc -mprocessor=32MX795F512L -o proj.elf file1.o file2.o -Wl,--script="NU32bootloaded.ld",-Map="proj.map"

If you are not getting a map file by default in the MPLAB X IDE, under Run > Set Project Configuration
> Customize > xc32-ld > Diagnostics you can set the name of the map file. The map file can be opened
with a text editor.

Let’s create a map file for timing.c as shown in Code Sample 5.1. There’s a lot in this file, but here’s an
edited portion of it:

Microchip PIC32 Memory-Usage Report

kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.text 0x9d001e00 0xacc 2764 App’s exec code
.rodata 0x9d0028cc 0x7d4 2004 Read-only const
.text 0x9d0030a0 0x168 360 App’s exec code
.text.general_exception 0x9d003208 0xdc 220
.text 0x9d0032e4 0xac 172 App’s exec code

[[[ ... snipping long kseg0_program_mem report ...]]]

.text 0x9d003580 0x44 68 App’s exec code

[[[ ... snipping long kseg0_program_mem report ...]]]
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.text.UARTSetLineContro 0x9d0038e8 0x28 40

.rodata 0x9d003910 0x1c 28 Read-only const

.text.INTRestoreInterru 0x9d00392c 0x1c 28

.text.CheKseg0CacheOff 0x9d003948 0x18 24

.text.CheKseg0CacheOn 0x9d003960 0x18 24

.rodata 0x9d003978 0x18 24 Read-only const

.text 0x9d003990 0x18 24 App’s exec code

.dinit 0x9d0039a8 0x10 16

.text.INTDisableInterru 0x9d0039b8 0x8 8

.text.INTEnableInterrup 0x9d0039c0 0x8 8

.text._on_reset 0x9d0039c8 0x8 8

.text._on_bootstrap 0x9d0039d0 0x8 8
Total kseg0_program_mem used : 0x1bd8 7128 1.4% of 0x7e200

kseg0 Boot-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------

Total kseg0_boot_mem used : 0 0 <1% of 0x970

Exception-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.app_excpt 0x9d000180 0x10 16 General-Exception
.vector_31 0x9d0005e0 0x8 8 Interrupt Vector 31

Total exception_mem used : 0x18 24 0.6% of 0x1000

kseg1 Boot-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.reset 0xbd001970 0x1e0 480 Reset handler
.bev_excpt 0xbd001cf0 0x10 16 BEV-Exception

Total kseg1_boot_mem used : 0x1f0 496 42.5% of 0x490
--------------------------------------------------------------------------
Total Program Memory used : 0x1de0 7648 1.5% of 0x80000

--------------------------------------------------------------------------

The kseg0 program memory usage report tells us that 7128 bytes are used for the main part of our program.
The first entry is denoted .text, which stands for program instructions. It is the largest single section, using
2764 bytes, described as App’s exec code, and installed starting at VA 0x9D001E00. Searching for this
address in the map file, we see that this is the code for NU32.o, the object code associated with the NU32
library.

Going down through the subsequent sections of kseg0 program memory, we see that the sections are
packed tightly and in order of decreasing section size. The next section is .rodata, standing for “read-only
data.” An example of read-only data is the string on the right-hand side of the following initialized char
array:

char str[] = "my initialized string";

Searching the map file for the memory address 0x9D0028CC, we see that the read-only data in question is
information about the interrupt table (Chapter 6).

Continuing down, we see other .text program instruction sections, including ones named for the specific
C functions that were compiled to make the object code in that section. Some of these are functions that are
called by NU32 Startup() in NU32.c; others are functions added automatically to the program by crt0.o.
The .text section that is 172 bytes long corresponds to timing.o, and searching the map file for the address
0x9D0032E4 reveals

.text 0x9d0032e4 0xac
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.text 0x9d0032e4 0xac build/default/production/timing.o
0x9d0032e4 main
0x9d003314 delay
0x9d003364 toggleLight

our functions main, delay, and toggleLight of timing.o are stored consecutively in memory. The addresses
agree with our disassembly file from Section 5.1.3.

Continuing, the kseg0 boot memory report indicates that no code is placed in this memory region. The
exception memory report indicates that instructions corresponding to interrupts occupy 24 bytes. Finally, the
kseg1 boot memory report indicates that crt0.o installs reset functions that occupy 480 bytes. The .reset
section is the first section that the bootloader jumps to.

In all, 7648 bytes of program memory are used.
Continuing further in the map file, we see

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.bss 0xa0000000 0x20 32 Uninitialized data

Total kseg1_data_mem used : 0x20 32 0.0% of 0x20000
--------------------------------------------------------------------------

Total Data Memory used : 0x20 32 0.0% of 0x20000
--------------------------------------------------------------------------

Dynamic Data-Memory Reservation
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
heap 0xa0000028 0 0 Reserved for heap
stack 0xa0000040 0x1ffb8 131000 Reserved for stack

The heap size is zero and all data memory is reserved for the stack. Only 32 bytes of kseg1 data memory are
set aside for global variables, beginning at the origin of data memory, 0xA0000000. This section is called
.bss, which is for uninitialized data. These 32 bytes are the 32 bytes reserved by NU32.c in the statement

char NU32_RS232OutBuffer[32];

Now let’s modify our program by adding some useless global variables, just to see what happens to the
map file. Let’s add the following lines just before main:

char my_cat_string[] = "2 cats!";
int my_int = 1;
char my_message_string[] = "Here’s a long message stored in a character array.";
char my_small_string[6], my_big_string[97];

Rebuilding and examining the new map file, we see the following for the data memory report:

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.sdata 0xa0000000 0xc 12 Small init data
.sbss 0xa000000c 0x6 6 Small uninit data
.bss 0xa0000014 0x84 132 Uninitialized data
.data 0xa0000098 0x34 52 Initialized data

Total kseg1_data_mem used : 0xca 202 0.2% of 0x20000
--------------------------------------------------------------------------

Total Data Memory used : 0xca 202 0.2% of 0x20000
--------------------------------------------------------------------------
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Our global variables now occupy 202 bytes of data memory. The global variables have been placed in four
di↵erent data memory sections, depending on whether the variable is small or large (according to a command
line option or xc32-gcc default) and whether or not it is initialized:

section name data type variables stored there
.sdata small initialized data my_cat_string, my_int
.sbss small uninitialized data my_small_string
.bss larger uninitialized data my_big_string

.data larger initialized data my_message_string

Searching for the .sdata section further in the map file, we see

.sdata 0xa0000000 0xc build/default/production/timing.o
0xa0000000 my_cat_string
0xa0000008 my_int
0xa000000c _sdata_end = .

Even though the string my_cat_string uses only 7 bytes, the variable my_int starts 8 bytes after the start
of my_cat_string. This is because variables must be aligned on four-byte boundaries. Similarly, the strings
my_message_string, my_small_string, and my_big_string occupy memory to the next four-byte boundary.
You are not saving memory by defining a string as 5 bytes instead of 8 bytes.

Apart from the addition of these sections to the data memory usage report, we see that the global variables
reduce the data memory available for the stack, and the .dinit (global data initialization) section of the
kseg0 program memory report has grown from 16 bytes to 128, meaning that our total program memory
used is now 7760 bytes compared to 7648 before.

Now let’s make one last change. Let’s move the definition

char my_cat_string[] = "2 cats!";

inside the main function, so that my cat string is now local to main. Building the program again, we find in
the data memory report that the initialized global variable section .sdata has shrunk by 8 bytes, as expected.

kseg1 Data-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.sdata 0xa0000000 0x4 4 Small init data
.sbss 0xa0000004 0x6 6 Small uninit data
.bss 0xa000000c 0x84 132 Uninitialized data
.data 0xa0000090 0x34 52 Initialized data

Total kseg1_data_mem used : 0xc2 194 0.1% of 0x20000
--------------------------------------------------------------------------

Total Data Memory used : 0xc2 194 0.1% of 0x20000
--------------------------------------------------------------------------

Now looking at the program memory report

kseg0 Program-Memory Usage
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
.text 0x9d001e00 0xacc 2764 App’s exec code
.rodata 0x9d0028cc 0x7d4 2004 Read-only const
.text 0x9d0030a0 0x168 360 App’s exec code
.text.general_exception 0x9d003208 0xdc 220
.text 0x9d0032e4 0xc4 196 App’s exec code

[[[ ... snipping long kseg0_program_mem report ...]]]

Total kseg0_program_mem used : 0x1c58 7256 1.4% of 0x7e200
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we see that our timing.o code is now 196 bytes as compared to 172 before. This is because the assignment
of my cat string is now taken care of by assembly commands in our code, not by the global variable
initialization in .dinit. Correspondingly, the global data initialization section .dinit shrinks from 128 bytes
to 112 bytes.

Finally, we might wish to reserve some RAM for dynamic memory allocation using malloc or calloc.
These functions allow you to declare a variable size array, for example, while the program is running, instead
of specifying a (possibly space-wasteful) fixed sized array in advance. By default, MPLAB assumes you will
not use dynamic memory allocation and sets the heap size to zero. To set a nonzero heap size, go to Run
> Set Project Configuration > Customize > xc32-ld > General. If we choose 4 KB, or 4096 bytes,
the map file after building shows

Dynamic Data-Memory Reservation
section address length [bytes] (dec) Description
------- ---------- ------------------------- -----------
heap 0xa00000c8 0x1000 4096 Reserved for heap
stack 0xa00010e0 0x1ef10 126736 Reserved for stack

A heap can also be allocated at the command line (Section 3.6) using a linker command of the form

xc32-gcc -mprocessor=32MX795F512L -o proj.elf file1.o file2.o
-Wl,--script="NU32bootloaded.ld",-Map="proj.map",--defsym=_min_heap_size=4096

The heap is allocated just after the global variables, starting in this case at address 0xA00000C8. The
stack grows “down” from the end of RAM—as local variables are added to the stack, the stack pointer address
decreases, and when local variables are discarded after exiting a function, the stack pointer address increases.

5.3 Chapter Summary

• The CPU’s core timer increments once every two ticks of the SYSCLK, or every 25 ns for an 80 MHz
SYSCLK. The commands WriteCoreTimer(0); and unsigned int dt = ReadCoreTimer(); can be
used to measure the execution time of the code in between to within a few SYSCLK cycles.

• In MPLAB, use Window > Output > Disassembly Listing File to see how your C code is
compiled to assembly code. At the command line, use xc32-objdump -d - S filename.elf >
filename.disasm.

• With the prefetch cache module fully enabled, your PIC32 should be able to execute an assembly
instruction nearly every cycle. The prefetch allows instructions to be fetched in advance for linear code,
but the prefetch cannot run past conditional statements. For small loops, the entire loop can be stored
in the cache.

• The linker assigns specific program flash VAs to all program instructions and data RAM VAs to all
global variables. The remainder of RAM is allocated to the heap, for dynamic memory allocation, and
to the stack, for function parameters and local variables. The heap is zero bytes by default.

• A summary of program flash and global variable data RAM usage can be found at Window >

Dashboard in MPLAB after a build.

• A map file provides a more detailed summary of memory usage. If a map file is not created by default,
you can create one during the build by choosing a map file name in the MPLAB X IDE under Run >

Set Project Configuration > Customize > xc32-ld > Diagnostics. At the command line, use
the -Map option:

xc32-gcc -mprocessor=32MX795F512L -o proj.elf file1.o file2.o -Wl,--script="NU32bootloaded.ld",-Map="proj.map"
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• Global variables can be initialized (assigned a value when they are defined) or uninitialized. Initialized
global variables are stored in RAM memory sections .data and .sdata and uninitialized globals are
stored in RAM memory sections .bss and .sbss. Sections beginning with .s mean that the variables
are “small.” When the program is executed, initialized global variables are assigned their values by
startup code, and uninitialized global variables are set to zero.

• Global variables are packed tightly at the beginning of data RAM, 0xA0000000. The heap comes
immediately after. The stack begins at the high end of RAM and grows “down” toward lower RAM
addresses.

5.4 Exercises

1. Describe two examples of how you can write code di↵erently to either make it execute faster or use less
program memory.

2. Compile and run timing.c, Code Sample 5.1. With a stopwatch, verify the time taken by the delay
loop. Do your results agree with Section 5.1.3?

3. When you look atWindow > Output > Disassembly Listing File, it shows you the disassembly
of your code, not Microchip object code that you may have linked with. You can try the command-line
command

xc32-objdump -d - S filename.elf > filename.disasm

to create a disassembly listing filename.disasm of your entire executable. (The listing will look
somewhat di↵erent than what you see in MPLAB.) Let’s do this for two di↵erent versions of some
timing code.

(a) Write a short program that uses WriteCoreTimer(0) and elapsed = ReadCoreTimer() to time
a few C statements. Disassemble your executable and look at it. If you assume that one assembly
instruction is executed per clock cycle, how many SYSCLK cycles does it take to complete
the WriteCoreTimer command? How many cycles does it take to complete the ReadCoreTimer
command? Approximately how much error will you have in your estimate of the timed code? (It’s
certainly not a sum of the two.)

(b) Now replace the WriteCoreTimer(0) and elapsed = ReadCoreTimer() with their assembly equiv-
alents, as in Section 5.1.2. Disassemble and look at the code, and answer the same questions.

4. To write time-e�cient code, it is important to understand that some mathematical operations are faster
than others. We will look at the disassembly of code that performs simple arithmetic operations on
di↵erent data types. Create a program with the following local variables in main:

char c1=5, c2=6, c3;
int i1=5, i2=6, i3;
long long int j1=5, j2=6, j3;
float f1=1.01, f2=2.02, f3;
long double d1=1.01, d2=2.02, d3;

Now write code that performs add, subtract, multiply, and divide for each of the five data types, i.e.,
for chars:

c3 = c1+c2;
c3 = c1-c2;
c3 = c1*c2;
c3 = c1/c2;
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Build the program and look at the disassembly. For each of the statements, you’ll notice that some
of the assembly code involves simply loading the variables from RAM into CPU registers and storing
the result (also in a register) back to RAM. Also, while some of the statements are completed by a
few assembly commands in sequence, others result in a jump to a software subroutine to complete
the calculation. (These subroutines are provided with our C installation and included in the linking
process.) Answer the following questions.

(a) Which combinations of data types and arithmetic functions result in a jump to a subroutine? From
your disassembly file, copy the C statement and the assembly commands it expands to (including
the jump) for one example.

(b) For those statements that do not result in a jump to a subroutine, which combination(s) of data
types and arithmetic functions result in the fewest assembly commands? From your disassembly,
copy the C statement and its assembly commands for one of these examples. Is the smallest data
type, char, involved in it? If not, what is the purpose of extra assembly command(s) for the char
data type vs. the int data type? (Hint: the assembly command ANDI takes the bitwise AND of the
second argument with the third argument, a constant, and stores the result in the first argument.
Or you may wish to look up a MIPS32 assembly instruction reference.)

(c) Fill in the following table. Each cell should have two numbers: the number of assembly commands
for the specified operation and data type, and the ratio of this number (greater than or equal to
1.0) to the smallest number of assembly commands in the table. For example, if addition of two
ints takes four assembly commands, and this is the fewest in the table, then the entry in that cell
would be 1.0 (4). This has been filled in below, but you should change it if you get a di↵erent
result. If a statement results in a jump to a subroutine, write J in that cell.

char int long long float long double

+ 1.0 (4)
�
⇤
/

(d) From the disassembly, find out the name of any math subroutine that has been added to your
assembly code. Now create a map file of the program. Where are the math subroutines installed in
virtual memory? Approximately how much program memory is used by each of the subroutines?
You can use evidence from the disassembly file and/or the map file. (Hint: You can search
backward from the end of your map file for the name of any math subroutines.)

5. Let’s look at the assembly code for bit manipulation. Create a program with the following local
variables:

unsigned int u1=33, u2=17, u3;

and look at the assembly commands for the following statements:

u3 = u1 & u2; // bitwise AND
u3 = u1 | u2; // bitwise OR
u3 = u2 << 4; // shift left 4 spaces, or multiply by 2^4 = 16
u3 = u1 >> 3; // shift right 3 spaces, or divide by 2^3 = 8

How many commands does each use? For unsigned integers, bit-shifting left and right make for
computationally e�cient multiplies and divides, respectively, by powers of 2.

6. Use the core timer to calculate a table similar to that in Problem 4, except with entries corresponding
to the actual execution time in terms of SYSCLK cycles. So if a calculation takes 15 cycles, and the
fastest calculation is 10 cycles, the entry would be 1.5 (15). This table should contain all 20 entries,
even for those that jump to subroutines. (Note: subroutines often have conditional statements, meaning

72 20:19 January 17, 2014



CHAPTER 5. TIME AND SPACE

that the calculation could terminate faster for some operands than for others. You can report the
results for the variable values given in Problem 4.)

To minimize uncertainty due to the setup and reading time of the core timer, and the fact that the
timer only increments once every two SYSCLK cycles, each math statement could be repeated ten or
more times (no loops) between setting the timer to zero and reading the timer. The average number of
cycles, rounded down, should be the number of cycles for each statement. Use the NU32 communication
routines, or any other communication routines, to report the answers back to your computer.

7. Certain math library functions can take quite a bit longer to execute than simple arithmetic functions.
Examples include trigonometric functions, logarithms, square roots, etc. Make a program with the
following local variables:

float f1=2.07, f2; // four bytes for each float
long double d1=2.07, d2; // eight bytes for each long double

Also be sure to put #include <math.h> at the top of your program to make the math function
prototypes available.

(a) Using methods similar to those in Problem 6, measure how long it takes to perform each of f2 =
cosf(f1), f2 = sqrtf(f1), d2 = cos(d1), and d2 = sqrt(d1).

(b) Copy and paste the disassembly from a f2 = cosf(f1) statement and a d2 = cos(d1) statement
into your solution set and compare them. Based on the comparison of the assembly codes,
comment on the advantages and disadvantages of using the eight-byte long double floating point
representation compared to the four-byte float representation when you compute a cosine with
the PIC32 compiler.

(c) Make a map file for this program, and search for the references to the math library libm.a in the
map file. There are several libm.a files in your C installation, but which one was used by the
linker when you built your program? Give the directory.

8. Explain what stack overflow is, and give a short code snippet (not a full program) that would result in
stack overflow on your PIC32.

9. In the map file of the original timing.c program, there are several App’s exec code, one corresponding
to timing.o. Explain briefly what each of the others are for. Provide evidence for your answer from
the map file.

10. Create a map file for simplePIC.c from Chapter 3. (a) How many bytes does simplePIC.o use? (b)
Where are the functions main and delay placed in virtual memory? Are instructions at these locations
cacheable? (c) Search the map file for the .reset section. Where is it in virtual memory? Is it
consistent with your NU32bootloaded.ld linker file? (d) Now augment the program by defining short
int, long int, long long int, float, double, and long double global variables. Provide evidence
from the map file indicating how much memory each data type uses.

11. Assume your program defines a global int array int glob[5000]. Now what is the maximum size of
an array of ints that you can define as a local variable for your particular PIC32?

12. Provide global variable definitions (not an entire program) so that the map file has data sections .sdata
of 16 bytes, .sbss of 24 bytes, .data of 0 bytes, and .bss of 200 bytes.

13. If you define a global variable and you want to set its initial value, is it “better” to initialize it when
the variable is defined or to initialize it in a function? Explain any pros and cons.
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