
ME 333: Introduction to Mechatronics

Assignment 2: Getting to know the PIC32

Electronic submission due before 12:30 p.m. on January 25th

Any non-programming question asked in this problem set must be typed and submitted via
Blackboard. For the questions in Section 1: Converting between different numbering systems,
you only need to show your work for parts (a) of each question.

1 Converting between different numbering systems

The following questions will walk you through converting between binary (or base-2), decimal
(base-10), and hexadecimal (base-16) numbers. In order to keep track of the three numberings
systems, a number with a subscript 2, e.g., 1011012, refers to a number in binary, a subscript
10, like 5510, is a number written in base-10, and a subscript 16, as in 7F16, refers to a number
in hexadecimal (or hex for short).

The following recipe will convert from base-10 to binary:

1. Divide the number, n, by 2, keeping track of the quotient and the remainder

2. Repeat step 1, using the quotient in step 1) as your new number, n, until the quotient is
zero

3. To get the binary number, simply write the remainders in reverse order

Example: Convert 5510 to binary.

Divide n by 2 Quotient Remainder
55/2 27 1 (this is the last bit written)
27/2 13 1
13/2 6 1
6/2 3 0
3/2 1 1
1/2 0 1 (this is the first bit written)
0/2 0 0

Hence, 5510 in base-10 is 1101112 in base-2 (we can ignore leading zeros).

Questions

(a) What is 7910 in binary?

(b) What is 1810 in binary?

1



The conversion from binary to decimal is a little simpler, but first we introduce a commonly
used convention. A generic n-bit binary number is often written as: bn−1bn−2...bi...b2b1b0, where
i is the position (or index) of the bit and bi is its value (this is the same convention used with
arrays in C). We refer to bn−1 as the most significant bit (MSB)1 and b0 as the least significant
bit (LSB). To convert from binary to decimal, you compute the following sum:

d =

n−1∑
i=0

2i × bi = (bn−1 × 2n−1) + ... + (b1 × 21) + (b0 × 20)

where d is the final number in base-10 and bi is the value of the (i + 1)-st bit in the binary
number.

Example: Convert 1011012 to base-10.

1011012 = (1× 25) + (0× 24) + (1× 23) + (1× 22) + (0× 21) + (1× 20) = 4510

Questions

(a) What is 101101012 in decimal?

(b) What is the maximum number in decimal that a 10-bit number can hold?

As the previous two examples have shown, converting between binary and decimal numbers
isn’t always the quickest operation and dealing with long binary numbers can get cumbersome.
This is where hexadecimal or base-16 numbers come in. The following table shows the relationship
between the three bases.

decimal binary hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Similar rules can be developed to convert from binary to hexadecimal, but here is a simple
and quick shortcut.

1. Starting with the LSB partition the binary number into groups of 4 (remember leading
zeros do not affect the number, so every bit should be in a group of 4)

1In certain contexts, MSB can also refer to the most significant byte. It should be clear from context whether
bit or byte is assumed.

2



2. Replace each group of 4 with its corresponding hexadecimal number

Example: Convert 1011012 to hexadecimal.

1011012 = (0010)(1101)2 = 2D16

Questions

(a) What is 10110112 in hexadecimal?

(b) What is 8010 in hexadecimal?

By default all numbers are in base-10 in C. If you want to write a number in base-16, prepend
“0x” to a valid hex number. For example, 0xFF (or 0xff, case doesn’t matter) is how we would
type 25510 in C using hex. To write a number in binary, prepend the binary number with “0b”,
as in 0b101. The syntax for writing numbers in binary is particular to the MPLAB C compiler,
so you should only use the syntax when compiling a PIC program.

2 The C bitwise operators

Questions

After reading Essential C, Bitwise Operators (pp. 9-10),

(a) What are the four bitwise operators?

(b) Write the truth table for each bitwise operator

The C programming language does not have a bit data type, but, with its bitwise operators,
we can modify the bits within any integral data type (int, short, long, signed, unsigned, and
char). The bitwise operators are applied to each individual bit and the result is stored in a data
type of the same size.

Example: In the lines below, what is the final value of z?

char x = 0xC4;
char y = 0xAA;
char z = x | y;

variable b7 b6 b5 b4 b3 b2 b1 b0
x 1 1 0 0 0 1 0 0
y 1 0 1 0 1 0 1 0
z 1 1 1 0 1 1 1 0

Hence, z = 0xEE.

Questions

(a) What is 0x55 & 0x17?

(b) What is 0x55 ˆ 0x17?

(c) What is (∼0x55) | 0x17?

(d) Given a = 0x3F, c = 0x5E, what is b in c = a & b?

3



3 The PIC32 Hardware

The following questions are based on the wiki page, NU32v2: Introduction to the PIC32. You
may also have to consult the PIC32 data sheet (DS) and reference manual(RM).

Questions

(a) What does “peripheral” mean for the PIC?

(b) Go to the Microchip homepage, check out the Parametric Table of PIC32s, and find a PIC
with the following specs: 80 MHz max clock speed, 512 K flash (program memory), 32 K
RAM (data memory), 4 channels of DMA, 16 A/D converters with 10-bit resolution, USB
capabilities, 2 comparators, 5 16-bit timers and 1 32-bit timer, 5 PWM channels and 5 input
compare channels, 2 UARTs, 2 SPI, and 2 I2C pins, no CAN modules, no Ethernet, and
100 pins. What is the part number? What types of packages does it come in (e.g., DIP,
or different kinds of surface mount packages, etc.)? How much does it cost in quantity 1?
What is the difference in price and features from our PIC, the PIC32MX795F512L?

(c) Refer to the “Block diagram of the PIC32MX7XX” under “PIC32 Hardware Overview” or
p. 31 “Device Overview” in the DS. In one sentence each, without going into detail, explain
the basic function of the following items shown in the block diagram: Timing Generation,
MCLR, SYSCLK, PBCLK, USBCLK, PORTA...G (and indicate which of these can be used
for analog input on our PIC), Timer 1-5, 10-bit ADC, Comparators, Ethernet, UART 1-6,
I2C 1-5, SPI 1-4, IC 1-5, PWM OC 1-5, CN1-22, Data RAM, Program Flash Memory, and
Pre-Fetch Module.

(d) Describe the four functions that pin 23 of our PIC32 can have. Is it 5V tolerant?

(e) How many pins from the PIC32 are available on the NU32v2 board?

(f) What is the absolute maximum amount of current that the NU32v2 board can provide from
the 9V wall plug? What are some limiting factors in drawing the full amount of current from
the plug?

(g) How wide is PORTG on our PIC32 (i.e., how many pins does it have)? You should use Table
1-1 in the DS, don’t search and count for the pins in a diagram.

4 Putting it all together

You’ve been introduced to different number systems, new C syntax, and the PIC32 hardware.
In the following programming excercise, you will use what you’ve just learned to interact with
the LATG register in C to modify the blinking pattern of the LEDs on the NU32v2 board. The
LATG register is a 32-bit special function register (SFR) that sets or reads the state of the
physical PORTG I/O pins. When a pin is configured as output, writing a “1” will set the pin
to digital high and when a “0” is written, the pin outputs a digital low signal. You should refer
to Table 4-31 in the DS to see the register layout of LATG. Note that not all of the bits in the
register are used.

Deeply buried in the Microchip header files (which you indirectly include through <plib.h>),
LATG is defined as an unsigned int. Unfortunately, the problem with using a C data type is that
we can’t directly manipulate the bits. We could access the bits one by one using the predefined
structs in <plib.h>, but, more often than not, you want the outputs to change at the same time.

4

http://hades.mech.northwestern.edu/index.php/NU32v2:_Introduction_to_the_PIC32


This is where the bitwise operators come in, especially bitwise-and (&) and bitwise-or (|). The
following are useful rules to remember:

• To set the i-th bit(s) to 1 (or “on”) use bitwise-or (|), to leave the bit(s) unchanged use 0

• To clear the i-th bit(s) to 0 (or “off”) use bitwise-and (&), to leave the bit(s) unchanged
use 1

For example, say that the current state of LATG = 0x9F35, if we wanted to only change
the output of pin G12 to low while preserving the state of the other pins, then we would turn
the LATG bit position 12 to “off” using bitwise-and. To pose the problem differently, given a =
0x9F35, c = 0x8F35, what is b in c = a & b?

Bit G15 G14 G13 G12 G11 G10 G9 G8
a = LATG< 15 : 8 > (initially) 1 0 0 1 1 1 1 1
b = MASK< 15 : 8 > ? ? ? ? ? ? ? ?
c = LATG< 15 : 8 > (desired) 1 0 0 0 1 1 1 1

Bit G7 G6 G5 G4 G3 G2 G1 G0
a = LATG< 7 : 0 > (initially) 0 0 1 1 0 1 0 1
b = MASK< 7 : 0 > ? ? ? ? ? ? ? ?
c = LATG< 7 : 0 > (desired) 0 0 1 1 0 1 0 1

The value for b (aka MASK) has to be 0xEFFF, you can verify this for yourself. This will
clear bit G12 and preserve the previous state of the other pins. The corresponding C code is:

LATG = LATG & 0xEFFF;

We would actually define 0xEFFF as a constant. This type of constant is known as a bit
mask or mask for short. If later on we change our minds and we want to set G12 back to high,
then we would do:

LATG = LATG | 0x1000;

You can work this out to verify that G12 is now set to high and that we’ve left all other pins
unmodified.

Programming Assignment

For any credit, you must use the LATG register and the bitwise operators in your solution.
There should be no reference to the constants LED 1 or LED 2 in your code.

Starting with the HelloWorld Code, modify only the while loop in main, so that the LEDs
blink in the following sequence:

1. Both LED 1 and LED 2 are off for WAIT LOOPS amount of time

2. Only LED 1 is on for WAIT LOOPS amount of time

3. Only LED 2 is on for WAIT LOOPS amount of time

4. Both LED 1 and LED 2 are on for WAIT LOOPS amount of time

5. Repeat

5

http://hades.mech.northwestern.edu/index.php/NU32v2:_Starting_a_New_Project_and_Putting_it_on_the_NU32v2#HelloWorld_Code


5 What to turn in

For the non-programming questions, you must submit typed responses. Place your responses
and your .c file from the programming assignment in a zip file and submit the zip file through
Blackboard before class on the date the assignment is due. The name of the zip file you submit
will be lastname a2.zip. For example, the TA would submit his homework as Rosa a2.zip

In addition to submitting your assignment via Blackboard, you will also demonstrate your
program to the teaching staff at the beginning of class on the date the assignment is due. For
this assignment you will demo the blinking sequence of lights.

For full credit you must follow these instructions exactly.

6


	Converting between different numbering systems
	The C bitwise operators
	The PIC32 Hardware
	Putting it all together
	What to turn in

