
The following is a slightly modified solution set from a student in the class. My comments

are in bold. I also created a table in problem 1.3(a) , so that students can better understand

how an array is laid out in memory. –NR

1.1

a)

b) Add two ints: 4

 Sub two long longs: 10

c)

d)

 Bit shifting by any number takes the same number of operations (confirmed by looking at

 the disassembly). If an int is bit shifted by 32, the result will be zero, as zeroes are

 shifted in from the left.

1.2

a) It takes 0 time.

 There is no assembly code for the arithmetical operations in the disassembly.

b) I get a value of 29. The value is what I expect.

1.3

a)

Refer to Table 1 for a mental picture of how an array is setup in RAM. The formula for

Char Short Int Long long Float Double

Add (+) 5 (1) 5 (1) 5 (1) 12 (2.4) 68 (13.6) 102 (20.4)

Sub (-) 5 (1) 5 (1) 5 (1) 10 (2) 79 (15.8) 123 (24.6)

Mul (*) 7 (1.4) 7 (1.4) 7 (1.4) 23 (4.6) 56 (11.2) 106 (21.2)

Div (/) 16 (3.2) 16 (3.2) 16 (3.2) 119 (23.8) 149 (29.8) 314 (62.8)

263 (52.6)

sin() 647 (129.4)

293 (58.6)

603 (120.6)

sinf()

sqrtf()

sqrt()

Int Long long

1 bit 5 (1) 17 (3.4)

10 bit 5 (1) 17 (3.4)

31 bit 5 (1) 17 (3.4)

calculating the address of the last element is:

last element address = start address + size of the array in bytes – size of data type in bytes.

Memory Address RAM Element in Array

0xAA0000238 Byte 0 Element 1

…
Byte 1

Byte 2

Byte 3

0xAA000023C Byte 4

0xAA000023D Byte 5

… Byte 6

Byte 7

0xAA0000240 Byte 0 Element 2

…
Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

0xAA0000247 Byte 7

Table 1: Memory layout of first two elements of an array of any 8-byte data type (i.e., double or long long).

A valid answer to 1.3(a):

 Bytes First element Last element

char 100 (0x64) 0xAA00001D0 0xAA0000233

short 200 (0xC8) 0xAA0000B98 0xAA0000C5E

int 400 (0x190) 0xAA0000558 0xAA00006E4

long long 800 (0x320) 0xAA0000878 0xAA0000B90

float 400 (0x190) 0xAA00006E8 0xAA0000874

double 800 (0x320) 0xAA0000238 0xAA0000550

b) double pointer array: 0x190 (400 bytes)

 int pointer array: 0x190 (400 bytes)

 The double pointer array is smaller than the double array because each entry in the double

 pointer array is an address, not an actual double precision variable. Therefore, all that

 needs to be allocated is enough space for the 32 bit address that indicates where a double

 variable will be.

c) A short data type was used.

memory: 0x3118 (= sizeof(short)*6284 elements = 12,568 bytes)

 Init code:

 short LookUpTable[6284];

 int ii;

 for (ii=0;ii<6284;ii++) {

 LookUpTable[ii] = (short)(10000*sin(ii/1000.0));

 }

 resolution: 0.001 radians

(The cast to a short inside the for-loop is one of the key parts to this problem!)

d) 647/9

