Appendix A

A Crash Course in C

This appendix gives a brief introduction to C for beginners who have some programming experience in a
high-level language such as MATLAB. It is not intended as a complete reference; there are lots of great C
resources and references out there for a more complete picture. This appendix is also not specific to the
Microchip PIC. In fact, I recommend that you start by programming your laptop or desktop so you can
experiment with C without needing extra equipment like a PIC32 board.

A.1 Quick Start in C

To get started with C, you need three things: a desktop or laptop, a text editor, and a C compiler. You
use the text editor to create your C program, which is a plain text file with a name ending with the postfix
.c, such as myprog.c. Then you use the C compiler to convert this program into machine code that your
computer can execute. There are many free C compilers available. I recommend the gcc C compiler, which
is part of the free GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is available for
Windows, Mac OS, and Linux. For Windows, you can download the GCC collection in MinGW.! (If the
installation asks you about what tools to install, make sure to include the make tools.) For Mac OS, you can
download the full Xcode environment from the Apple Developers site. This installation is multiple gigabytes,
however; you can instead opt to install only the “Command Line Tools for Xcode,” which is much smaller
and more than sufficient for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with text editor,
menus, graphical tools, and other things to assist you with your programming projects. Each IDE is different,
however, and the things we cover in this appendix do not require a sophisticated IDE. Therefore we will use
only command line tools, meaning that we initiate the compilation of the program, and run the program, by
typing at the command line. In Mac OS, the command line can be accessed from the Terminal program. In
Windows, you can access the command line (also known as MS-DOS or Disk Operating System) by searching
for cmd or command prompt.

To work from the command line, it is useful to learn a few command line instructions. The Mac operating
system is built on top of Unix, which is almost identical to Linux, so Mac/Unix/Linux use the same syntax.
Windows is similar but slightly different. See the table of a few useful commands below. You can find more
information online on how to use these commands as well as others.

1You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit different than
what you see in this appendix.

function Mac/Unix/Linux | Windows

show current directory pwd cd

list directory contents 1s dir

make subdirectory newdir mkdir newdir mkdir newdir
change to newdir cd newdir cd newdir

copy file to filenew cp file filenew copy file filenew
delete file file rm file del file

delete directory dir rmdir dir rmdir dir

help on using command cmd | man cmd cmd 7

Following the long-established programming tradition, your first C program will simply print “Hello
world!” to the screen. Use your text editor to create the file HelloWorld.c:

#include <stdio.h>

int main(void) {
printf ("Hello world!\n");
return(0);

}

Your text editor could be Notepad in Windows or TextEdit on the Mac. You could even use Microsoft Word
if you insisted. I personally prefer emacs, but it’s not easy to get started with! Text editors packaged with
IDEs help enforce a consistent look to your programs. Whichever editor you use, you should save your file as
plain text, not rich text or any other formatted text.

To compile your program, navigate from the command line to the directory where the program sits. Then,
assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This should create the executable file HelloWorld in the same directory. (The argument after the —o output
flag is the name of the executable file to be created from HelloWorld.c.) Now to execute the program, type

> HelloWorld

The response should be

Hello world!
>

If the response is instead command not found or similar, your computer didn’t know where to look for the
executable HelloWorld. On Mac/Unix/Linux, you can type

> ./HelloWorld

W

where the
HelloWorld.

If you’ve succeeded in getting this far, you have a working C installation and you are ready for the rest of
this appendix. If not, time to get help from friends or the web.

is shorthand for “current directory,” telling your computer to look in the current directory for

A.2 Overview

If you are familiar with a high-level language like MATLAB, you have some idea of loops, functions, program
modularity, etc. You’ll see that C syntax is different, but that’s not a big deal. Let’s start instead by focusing
on important concepts you must master in C which you don’t have to worry about in MATLAB:

e Memory, addresses, and pointers. A variable is stored at a particular address in memory as 0’s
and 1’s. In C, unlike MATLAB, it is often useful to have access to the memory address where a variable
is located. We will learn how to generate a pointer to a variable, which contains the address of the
variable, and how to access the contents of an address, i.e., the pointee.

e Data types. In MATLAB, you can simply typea = 1; b = [1.2 3.1416]; ¢ = [1 2; 3 4]; s =
’a string’. MATLAB figures out that a is a scalar, b is a vector with two elements, c is a 2 x 2 matrix,
and s is a string, and automatically keeps track of the type of the variable (e.g., a list of numbers for a
vector or a list of characters for a string) and sets aside, or allocates, enough memory to store them.
In C, on the other hand, you have to first define the variable before you ever use it. For a vector, for
example, you have to say what data type the elements of the vector will be—integers or numbers with a
decimal point (floating point)—and how long the vector will be. This allows the C compiler to allocate
enough memory to hold the vector, and to know that the binary representations (0’s and 1’s) at those
locations in memory should be interpreted as integers or floating point numbers.

e Compiling. MATLAB programs are typically run as interpreted programs—the commands are
interpreted, converted to machine-level code, and executed while the program is running. C programs,
on the other hand, are compiled in advance. This process consists of several steps, but the point is to
turn your C program into machine-executable code before the program is ever run. The compiler can
identify some errors and warn you about other questionable code. Compiled code typically runs faster
than interpreted code, since the translation to machine code is done in advance.

Each of these concepts is described in Section A.3 without going into detail on C syntax. In Section A.4

we will look at sample programs to introduce the syntax, then follow up with a more detailed explanation of
the syntax.

A.3 Important Concepts in C
We begin our discussion of C with this caveat:

Important! C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all implementations,
a number of details are left as implementation-dependent. For example, the number of bytes used for some
data types is not fully standard. C wonks like to point out when certain behavior is required and when it is
implementation-dependent. While it is good to know that differences may exist from one implementation to
another, in this appendix I will often blur the line between what is required and what is common. I prefer to
keep this introduction succinct instead of overly precise.

A.3.1 Data Types

Binary and hexadecimal. On a computer, programs and data are represented by sequences of 0’s and 1’s.
A 0 or 1 may be represented by two different voltage levels (low and high) held by a capacitor and controlled
by a transistor, for example. Each of these units of memory is called a bit.

A sequence of 0’s and 1’s may be interpreted as a base-2 or binary number, just as a sequence of digits
in the range 0 to 9 is commonly treated as a base-10 or decimal number. In the decimal numbering system,
a multi-digit number like 793 is interpreted as 7 x 10% + 9 % 10 + 3 * 10°; the rightmost column is the 10°
(or 1’s) column, the next column to the left is the 10* (or 10’s) column, the next column to the left is the
10% (or 100’s) column, and so on. Similarly, the rightmost column of a binary number is the 2° column,
the next column to the left is the 2! column, etc. Converting the binary number 00111011 to its decimal
representation, we get

027 +0%26 +152°+1%22 +1%22+0%22+1%21 +1%2°=324+16+8+2+1=59.

We can clarify that a sequence of digits is base-2 by writing it as 001110115 or 0b00111011, where the b
stands for “binary.”

To convert a base-10 number x to binary:

1. Initialize the binary result to all zeros and k to a large integer, such that 2* is known to be larger than
x.

2. If 2% < z, place a 1 in the 2 column of the binary number and set = to z — 2F.
3. If x =0 or k =0, we're finished. Else set k to k — 1 and go to line 2.

The leftmost digit in a multi-digit number is called the most significant digit, and the rightmost digit,
corresponding to the 1’s column, is called the least significant digit. For binary representations, these are
often called the most significant bit (msb) and least significant bit (Isb), respectively.

Compared to base-10, base-2 has a more obvious connection to the actual hardware representation. Binary
can be inconvenient for human reading and writing, however, due to the large number of digits. Therefore we
often use base-16, or hexadecimal (hex), representations. A single hex digit represents four binary digits
using the numbers 0..9 and the letters A..F:

base-2 base-16 base-10 base-2 base-16 base-10
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Thus we can write the eight-digit binary number 00111011, or 0011 1011, more succinctly in hex as 3B, or
3B or 0x3B to clarify that it is a hex number. The corresponding decimal number is 3 * 16* 4+ 11 * 16° = 59.

Bits, bytes, and data types. Bits of memory are grouped together in groups of eight called bytes. A
byte can be written equivalently in binary or hex (e.g., 00111011 or 3B), and can represent values between 0
and 28 — 1 = 255 in base-10. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes depends on the processor, but four-byte
words are common, as with the PIC32. A word 01001101 11111010 10000011 11000111 in binary can be
written in hex as 4DFA83C7. The msb is the leftmost bit of the leftmost byte, a 0 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a number
that represents where the byte is in memory. Suppose your computer has 4 gigabytes (GB)?, or 4 x 230 = 232
bytes, of RAM. Then to find the value stored in a particular byte, you need at least 32 binary digits (8 hex
digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is shown below.

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address

11001101| 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value

Now assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and 1’s
represent an integer, or part of an integer? A number with a fractional component? Something else?

The answer lies in the data type of the variable at that address. In C, before you use a variable, you
have to define it and its type. This tells the compiler how many bytes to set aside for the variable and how
to write or interpret 0’s and 1’s at the address(es) used by that variable. The most common data types come
in two flavors: integers and floating point numbers (numbers with a decimal point). Of the integers, the two
most common types are char?, often used to represent keyboard characters, and int. Of the floating point
numbers, the two most common types are float and double. As we will see shortly, a char uses 1 byte and
an int usually uses 4, so two possible interpretations of the data held in the eight memory addresses could be

2In common usage, a kilobyte (KB) is 210 = 1024 bytes, a megabyte (MB) is 220 = 1,048,576 bytes, a gigabyte is
230 = 1,073, 741,824 bytes, and a terabyte (TB) is 240 = 1,099, 511,627, 776 bytes. To remove confusion with the common SI
prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to instead as kibibyte, mebibyte, gibibyte, and
tebibyte, where the “bi” refers to “binary.”

3char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”), “care” (a
shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.” Up to you.

9

4

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address

11001101| 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value

int char

where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address
11001101 | 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value
char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we don’t usually
have to worry about how variables are packed into memory.

Below are descriptions of the common data types. While the number of bytes used for each type is not the
same for every processor, the numbers given are common. (Differences for the PIC32 are noted in Table A.1.)
Example syntax for defining variables is also given. Note that most C statements end with a semicolon.

char

Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest common data type, using
only one byte. They are often used to represent keyboard characters. You can do a web search for “ASCII
table” (pronounced “ask-key”) to find the American Standard Code for Information Interchange, which
maps the values 0 to 127 to keyboard characters and other things. (The values 128 to 255 may map to an
“extended” ASCII table.) For example, the values 48 to 57 map to the characters ’0’ to '9’, 65 to 90 map to
the uppercase letters A’ to 'Z’, and 97 to 122 map to the lowercase letters ’a’ to ’z’. The assignments

ch = ’a’;
and
ch = 97;

are equivalent, as C equates characters inside single quotes to their ASCII table numerical value.

Depending on the C implementation, char may be treated by default as unsigned, i.e., taking values
from 0 to 255, or signed, taking values from —128 to 127. If you plan to use the char to represent a standard
ASCII character, you don’t need to worry about this. If you plan to use the char data type for integer
math on small integers, however, you may want to use the specifier signed or unsigned, as appropriate. For
example, we could use the following definitions, where everything after // is a comment:

unsigned char chl; // chl can take values O to 255
signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)

Example definition:
int 1i,j;

signed int k;
signed n;

ints are typically four bytes (32 bits) long, taking values from —(231) to 23! — 1 (approximately +2 billion).
In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply unsigned, a
four-byte integer taking nonnegative values from 0 to 232 — 1; short int, short, signed short, or signed

bytes on | # bytes on
type my laptop PIC32
char 1 1

short int 2 2
int 4 4
long int 8 4
long long int 8 8
float 4 4
double 8 4
long double 16 8

Table A.1: Data type sizes on two different machines.

short int, a two-byte integer taking values from —(2%°) to 215 —1 (i.e., —32, 768 to 32,767); unsigned short
int or unsigned short, a two-byte integer taking nonnegative values from 0 to 216 — 1 (i.e., 0 to 65, 535);
long int, long, signed long, or signed long int, often consisting of eight bytes and representing values
from —(25%) to 253 —1; and unsigned long int or unsigned long, an eight-byte integer taking nonnegative
values from 0 to 264 — 1. A long long int data type may also be available.

float

Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double

Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point number. The data
type long double (quadruple precision) may also be available, using 16 bytes (128 bits). These types allow
the representation of larger numbers, to more decimal places, than single-precision floats.

The sizes of the data types, both on my laptop and the PIC32, are summarized in Table A.1. Note the
differences; C does not enforce a strict standard.

Using the data types. If your program calls for floating point calculations, you can choose between float,
double, and long double data types. The advantages of smaller types are that they use less memory and
computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage of the larger
types is the greater precision in the representation (e.g., smaller roundoff error).

If your program calls for integer calculations, you are better off using integer data types than floating
point data types due to the higher speed of integer math and the ability to represent a larger range of
integers for the same number of bytes.* You can decide whether to use signed or unsigned chars, or
{signed/unsigned} {short/long} ints. The considerations are memory usage, possibly the time of the
computations, and whether or not the type can represent a sufficient range of integer values. For example, if
you decide to use unsigned chars for integer math to save on memory, and you add two of them with values
100 and 240 and assign to a third unsigned char, you will get a result of 84 due to integer overflow. This
example is illustrated in the program overflow.c in Section A.4.

As we will see shortly, functions have data types, just like variables. For example, a function that calculates
the sum of two doubles and returns a double should be defined as type double. Functions that don’t return

4Just as a four-byte float can represent fractional values that a four-byte int cannot, a four-byte int can represent more
integers than a four-byte float can. See the type conversion example program typecast.c in Section A.4 for an example.

6

a value are defined of type void.

Representations of data types. A simple representation for integers is the sign and magnitude represen-
tation. In this representation, the msb represents the sign of the number (0 = positive, 1 = negative), and
the remaining bits represent the magnitude of the number. The sign and magnitude method represents zero
twice (positive and negative zero) and is not often used.

A much more common representation for integers is called two’s complement. This method also uses the
msb as a sign bit, but it only has a single representation of zero. The two’s complement representation of an
8-bit char is given below:

binary signed char, base-10 | unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3
01111111 127 127
10000000 —128 128
10000001 —127 129
11111111 -1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of the binary
number also increments, until it “wraps around” to the most negative value when the msb becomes 1 and all
other bits are 0. The signed value then resumes incrementing until it reaches —1 when all bits are 1.

Another representation choice is endianness. The little-endian representation of an int stores the least
significant byte at ADDRESS and the most significant byte at ADDRESS+3, while the big-endian convention is
the opposite.® The convention used depends on the processor. For definiteness in this appendix, we will use
the little-endian representation, which is also used by the PIC32.

floats, doubles, and long doubles are commonly represented in the IEEE 754 floating point format
(—1)® % b * 2°, where one bit is used to represent the sign (s = 0 or 1); m = 23/52/112 bits are used to
represent the significand b in the range 1 to 2 —27"™; and n = 8/11/15 bits are used to represent the exponent
¢ in the range —(2") + 2 to 2" — 1, where n and m depend on whether the type uses 4/8/16 bytes. Certain
exponent and significand combinations are reserved for representing zero, positive and negative infinity, and
“not a number” (NaN).

It is rare that you need to worry about the specific bit-level representation of the different data types:
endianness, two’s complement, IEEE 754, etc. You tell the compiler to store values and retrieve values, and
it takes care of implementing the representations.

A.3.2 Memory, Addresses, and Pointers

Consider the following C syntax:

int i;
int *ip;

or equivalently

int i, *ip;

5These phrases come from Gulliver’s Travels, where Lilliputians fanatically divide themselves according to which end of a
soft-boiled egg they crack open.

These definitions appear to define the variables i and *ip of type int. The character * is not allowed as part
of a variable name, however. The variable name is actually ip, and the special character * means that ip is a
pointer to something of type int. The purpose of a pointer is to hold the address of a variable it “points”
to. I often use the words “address” and “pointer” interchangeably.

When the compiler sees the definition int i, it allocates four bytes of memory to hold the integer i.
When the compiler sees the definition int *ip, it creates the variable ip and allocates to it whatever amount
of memory is needed to hold an address. The compiler also remembers the data type that ip points to, int in
this case, so if later you use ip in a context that requires a pointer to a different variable type, the compiler
will generate a warning or an error. Technically, the type of ip is “pointer to type int.”

Important! Defining a pointer only allocates memory to hold the pointer. It does not allocate memory for
a pointee variable to be pointed at. Also, simply defining a pointer does not initialize it to point to anything
valid.

When we have a variable and we want the address of it, we apply the reference operator to the variable,
which returns a “reference” (i.e., a pointer to the variable, or the address). In C, the reference operator is
written & Thus the following command makes sense:

ip = &i; // ip now holds the address of i

The reference operator always returns the lowest address of a multi-byte type. For example, if the four-byte
int i occupies addresses 0x0004 to 0x0007 in memory, &i will return 0x0004.6

If we have a pointer (an address) and we want the contents at that address, we apply the dereference
operator to the pointer. In C, the dereference operator is written *. Thus the following command makes
sense:

i = *ip; // i now holds the contents at the address ip

However, you should never dereference a pointer until it has been initialized to point at something using a
statement such as ip = &i.

As an analogy, consider the pages of a book. A page number can be considered a pointer, while the
text on the page can be considered the contents of a variable. So the notation &text would return the page
number (pointer or address) of the text, while *page_number would return the text on that page (but only
after page_number is initialized to point at a page of text).

Even though we are focusing on the concept of pointers, and not C syntax, let’s go ahead and look at
some sample C code, remembering that everything after // on the same line is a comment:

int i,j,*ip; // define i, j as type int, as well as ip as type "pointer to type int"

ip = &i; // set ip to the address of i (& references i)

i = 100; // put the value 100 in the location allocated by the compiler for i

j = *ip; // set j to the contents of the address ip (* dereferences ip), i.e., 100

j o= j+2; // add 2 to j, making j equal to 102

i = *(&j); // & references j to get the address, then * gets contents; i is set to 102

*(&j) = 200; // content of the address of j (j itself) is set to 200; i is unchanged

The use of pointers can be powerful, but also dangerous. For example, you may accidentally try to access
an illegal memory location. The compiler is unlikely to recognize this during compilation, and you may end
up with a “segmentation fault” when you execute the code.” This kind of bug can be difficult to track down,
and dealing with it is a C rite of passage. More on pointers in Section A.4.8.

A.3.3 Compiling

The process loosely referred to as “compilation” actually consists of four steps:

6This is the right way to think about it conceptually, but in fact the computer may automatically translate the value of &i to
an actual physical address.
7A good name for a program like this is coredumper.c.

1. Preprocessing. The preprocessor takes the program.c source code and produces an equivalent .c
source code, performing operations such as stripping out comments. The preprocessor is discussed in
more detail in Section A.4.3.

2. Compiling. The compiler turns the preprocessed code into assembly code for the specific processor.
This process converts the code from standard C syntax into a set of commands that can be understood
natively by the processor. The compiler can be configured with a number of options that impact the
assembly code generated. For example, the compiler can be instructed to generate assembly code
that trades off time of execution with the amount of memory needed to store the code. Assembly
code generated by a compiler can be inspected with a standard text editor. In fact, coding directly in
assembly is still a popular, if painful, way to program microcontrollers.

3. Assembling. The assembler takes the assembly code and produces processor-dependent machine-level
binary object code. This code cannot be examined using a text editor. Object code is called relocatable,
in that the exact memory addresses for the data and program statements are not specified.

4. Linking. The linker takes one or more object codes and produces a single executable file. For example,
if your code includes pre-compiled libraries, such as printout functions in the stdio library (described
in Sections A.4.3 and A.4.15), this code is included in the final executable. The data and program
statements in the various object codes are assigned to specific memory locations.

In our HelloWorld.c program, this entire process is initiated by the single command line statement
> gcc HelloWorld.c -o HelloWorld

If our HelloWorld.c program used any mathematical functions in Section A.4.7, the compilation would be
initiated by

> gcc HelloWorld.c -o HelloWorld -1m

where the -1m flag tells the linker to link the math library, which may not be linked by default like other
libraries are.

If you want to see the intermediate results of the preprocessing, compiling, and assembling steps, Problem 40
gives an example.

For more complex projects requiring compilation of several files into a single executable or specifying
various options to the compiler, it is common to create a makefile that specifies how the compilation is
to be done, and to then use the command make to actually create the executable. The use of makefiles is
beyond the scope of this appendix. Section A.4.16 gives a simple example of compiling multiple C files to
make a single executable program.

A.4 C Syntax

So far we have seen only glimpses of C syntax. Let’s begin our study of C syntax with a few simple programs.
We will then jump to a more complex program, invest.c, that demonstrates most of the major elements of
C structure and syntax. If you can understand invest.c and can create programs using similar elements,
you are well on your way to mastering C. We will defer the more detailed descriptions of the syntax until
after introducing invest.c.

Printing to screen. Because it is the simplest way to see the results of a program, as well as the most
useful tool for debugging, let’s start with the function printf for printing to the screen. We have already
seen it in HelloWorld.c. Here’s a slightly more interesting example. Let’s call this program file printout.c.

#include <stdio.h>

int main(void) {

int i; float f; double d; char c;

i =232; f=4.278; d = 4.278; c = ’k’; // or, by ASCII table, c = 107;
printf ("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);

printf(" £ = %19.17f\n",f);
printf(" d = %19.171f\n",d);
return(0);

}

The 171f in the last printf statement is “seventeen ell eff.”
The first line of the program

#include <stdio.h>

tells the preprocessor that the program will use functions from the “standard input and output” library,
one of many code libraries provided in standard C installations that extend the power of the language. The
stdio.h function used in printout.c is printf, covered in more detail in Section A.4.15.

The next line

int main(void) {

starts the block of code that defines the main function. The main code block is closed by the final closing
brace }. Each C program has exactly one main function. The type of main is int, meaning that the function
should end by returning a value of type int. In our case, it returns a 0, which indicates that the program
has terminated successfully.

The next line defines and allocates memory for four variables of four different types, while the line after
assigns values to those variables. The printf lines will be discussed after we look at the output.

Now that you have created printout.c, you can create the executable file printout and run it from the
command line. Make sure you are in the directory containing printout.c, then type the following:

> gcc printout.c -o printout
> printout

(Again, you may have to use ./printout to tell your computer to look in the current directory.) On my
laptop, here is the output:

Formatted output:
i= 32 c="k’
f = 4.27799987792968750
d = 4.27799999999999958

The main point of this program is to demonstrate formatted output from the code

printf ("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,c);
printf(" f = %19.17f\n",£);
printf(" d = %19.171f\n",d);

Inside a printf statement, everything inside the double quotes is printed to the screen, but some character
sequences have special meaning. The \n sequence creates a newline (carriage return). The % is a special
character, indicating that some data will be printed, and for each % in the double quotes, there must be a
variable or other expression in the comma-separated list at the end of the printf statement. The %4d means
that an int type variable is expected, and it will be displayed right-justified using 4 spaces. (If the number is
more than 4 digits, it will take as much space as is needed.) The %c means that a char is expected. The
%19.17f means that a float will be printed right-justified over 19 spaces with 17 spaces after the decimal
point. The %19.171f means that a double (or “long float”) will be printed right-justified over 19 spaces,
with 17 after the decimal point. More details on printf can be found in Section A.4.15.

The output of the program also shows that neither the float f nor the double d can represent 4.278
exactly, though the double-precision representation comes closer.

10

Data sizes. Since we have focused on data types, our next program measures how much memory is used
by different data types. Create a file called datasizes.c that looks like the following:

#include <stdio.h>
int main(void) {

char a, *bp; short c; int d; long e;
float f; double g; long double h, *ip;

printf("Size of char: %21d bytes\n",sizeof(a));// "% 2 ell 4"
printf("Size of char pointer: %21d bytes\n",sizeof (bp));

printf("Size of short int: %21d bytes\n",sizeof (c));

printf("Size of int: %21d bytes\n",sizeof(d));

printf("Size of long int: %21d bytes\n",sizeof (e));

printf ("Size of float: %21d bytes\n",sizeof (f));

printf("Size of double: %21d bytes\n",sizeof(g));

printf("Size of long double: %21d bytes\n",sizeof (h));

printf("Size of long double pointer: %21d bytes\n",sizeof (ip));

return(0);

The first two lines in the main function define nine variables, telling the compiler to allocate space for these
variables. Two of these variables are pointers. The sizeof () operator returns the number of bytes allocated
in memory for its argument.

Here is the output of the program:

Size of char: 1 bytes
Size of char pointer: 8 bytes
Size of short int: 2 bytes
Size of int: 4 bytes
Size of long int: 8 bytes
Size of float: 4 bytes
Size of double: 8 bytes
Size of long double: 16 bytes
Size of long double pointer: 8 bytes

We see that, on my laptop, ints and floats use 4 bytes, short ints 2 bytes, long ints and doubles 8
bytes, and long doubles 16 bytes. Regardless of whether it points to a char or a long double, a pointer
(address) uses 8 bytes, meaning we can address a maximum of (28)% = 256° bytes of memory. Considering
that corresponds to almost 18 quintillion bytes, or 18 billion gigabytes, we should have enough available
addresses for a laptop!

Overflow. Now let’s try the program overflow.c, which demonstrates the issue of integer overflow
mentioned in Section A.3.1.

#include <stdio.h>

int main(void) {
char i = 100, j = 240, sum;
unsigned char iu = 100, ju = 240, sumu;
signed char is = 100, js = 240, sums;

sum = i+j; sumu = iut+ju; sums = is+js;

printf ("char: %d + %d = %3d or ASCII %c\n",i,j,sum,sum);
printf ("unsigned char: ¥%d + %d = %3d or ASCII Yc\n",iu,ju,sumu,sumu);
printf("signed char: %d + %d = %3d or ASCII %c\n",is,js,sums,sums);
return(0) ;

11

In this program we initialize the values of some of the variables when they are defined. You might also notice
that we are assigning a signed char a value of 240, even though the range for that data type is —128 to 127.
So something fishy is going on. When I compile and run the program, I get the output

char: 100 + -16 = 84 or ASCII T
unsigned char: 100 + 240 = 84 or ASCII T
signed char: 100 + -16 = 84 or ASCII T

One thing we notice is that, with my C compiler at least, chars are the same as signed chars. Another thing
is that even though we assigned the value of 240 to js and j, they contain the value —16. This is because
the binary representation of 240 has a 1 in the 27 column, but for the two’s complement representation of a
signed char, this column indicates whether the value is positive or negative. Finally, we notice that the
unsigned char ju is successfully assigned the value 240 (since its range is 0 to 255), but the addition of iu
and ju leads to an overflow. The correct sum, 340, has a 1 in the 28 (or 256) column, but this column is not
included in the 8 bits of the unsigned char. Therefore we see only the remainder of the number, 84. The
number 84 is assigned the character T in the standard ASCII table.

Type conversion. Continuing our focus on the importance of understanding data types, we try one more
simple program that illustrates what can happen when you mix data types in a mathematical expression.
This is also our first program that uses a helper function beyond the main function. Call this program
typecast.c.

#include <stdio.h>

void printRatio(int numer, int denom) {
double ratio;

ratio = numer/denom;

printf("Ratio, %1d/%1d: %5.2f\n" ,numer ,denom,ratio) ;
ratio = numer/((double) denom);
printf ("Ratio, %1d/((double) %1d): %5.2f\n" ,numer ,denom,ratio) ;

ratio = ((double) numer)/((double) denom);
printf ("Ratio, ((double) %1d)/((double) %1d): %5.2f\n",numer,denom,ratio);
}

int main(void) {
int num = 5, den = 2;

printRatio(num,den);
return(0) ;

}

The helper function printRatio is of type void since it does not return a value. It takes two ints as input
arguments and calculates their ratio in three different ways. In the first, the two ints are divided and the
result is assigned to a double. In the second, the integer denom is typecast or cast as a double before the
division occurs, so an int is divided by a double and the result is assigned to a double.® In the third, both
the numerator and denominator are cast as doubles before the division, so two doubles are divided and the
result is assigned to a double.

The main function simply defines two variables, num and den, and passes their values to printRatio,
where those values are copied to numer and denom, respectively. The variables num and den are only available
to main, and the variables numer and denom are only available to printRatio, since they are defined inside
those functions.

Execution of any C program always begins with the main function, regardless of where it appears in the
file.

After compiling and running, we get the output

8The typecasting does not change the variable denom itself; it simply creates a temporary double version of denom which is
lost as soon as the division is complete.

12

Ratio, 5/2: 2.00
Ratio, 5/((double) 2): 2.50
Ratio, ((double) 5)/((double) 2): 2.50

The first answer is “wrong,” while the other two answers are correct. Why?

The first division, numer/denom, is an integer division. When the compiler sees that there are ints on
either side of the divide sign, it assumes you want integer math and produces a result that is an int by
simply truncating any remainder (rounding toward zero). This value, 2, is then converted to the floating
point number 2.0 to be assigned to the variable ratio. On the other hand, the expression numer/ ((double)
denom), by virtue of the parentheses, first produces a double version of denom before performing the division.
The compiler recognizes that you are dividing two different data types, so it temporarily coerces the int to
a double so it can perform a floating point division. This is equivalent to the third and final division, except
that the typecast of the numerator to double is explicit in the code for the third division.

Thus we have two kinds of type conversions:

e Implicit type conversion, or coercion. This occurs, for example, when a type has to be converted to
carry out a variable assignment or to allow a mathematical operation. For example, dividing an int by
a double will cause the compiler to treat the int as a double before carrying out the division.

e Explicit type conversion. An explicit type conversion is coded using a casting operator, e.g., (double)
<expression> or (char) <expression>, where <expression> may be a variable or mathematical
expression.

Certain type conversions may result in a change of value. For example, assigning the value of a float to
an int results in truncation of the fractional portion; assigning a double to a float may result in roundoff
error; and assigning an int to a char may result in overflow. Here’s a less obvious example:

float f;
int i = 16777217;
f =i // £ now has the value 16,777,216, not 16,777,217!

It turns out that 16,777,217 = 224 + 1 is the smallest positive integer that cannot be represented by a 32-bit
float. On the other hand, a 32-bit int can represent all integers in the range —23! to 23! — 1.

Some type conversions, called promotions, never result in a change of value because the new type can
represent all possible values of the original type. Examples include converting a char to an int or a float
to a long double.

We will see more on use of parentheses (Section A.4.1), the scope of variables (Section A.4.5), and defining
and calling helper functions (Section A.4.6).

A more complete example: invest.c. Until now we have been dipping our toes in the C pool. Now
let’s dive in headfirst.

Our next program is called invest.c, which takes an initial investment amount, an expected annual
return rate, and a number of years, and returns the growth of the investment over the years. After performing
one set of calculations, it prompts the user for another scenario, and continues this way until the data entered
is invalid. The data is invalid if, for example, the initial investment is negative or the number of years to
track is outside the allowed range.

The real purpose of invest.c, however, is to demonstrate the syntax and a number of useful features of
C.

Here’s an example of compiling and running the program. The only data entered by the user are the
three numbers corresponding to the initial investment, the growth rate, and the number of years.

> gcc invest.c -o invest
> invest

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 5
Valid input? 1

RESULTS:

13

© ® N o o A W N =

11

12

13

14

Year
Year
Year
Year
Year
Year

100.00
105.00
110.25
115.76
121.55
127.63

g W N~ O

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 200
Valid input? O
Invalid input; exiting.

>

Before we look at the full invest.c program, let’s review two principles that should be adhered to when
writing a longer program: modularity and readability.

e Modularity. You should break your program into a set of functions that perform specific, well-defined

tasks, with a small number of inputs and outputs. As a rule of thumb, no function should be longer than
about 20 lines. (Experienced programmers often break this rule of thumb, but if you are a novice and
are regularly breaking this rule, you’re likely not thinking modularly.) Almost all variables you define
should be “local” to (i.e., only recognizable by) their particular function. Global variables, which can
be accessed by all functions, should be minimized or avoided altogether, since they break modularity,
allowing one function to affect the operation of another without the information passing through the
well-defined “pipes” (input arguments to a function or its returned results). If you find yourself typing
the same (or similar) code more than once, that’s a good sign you should figure out how to write a
single function and just call that function from multiple places. Modularity makes it much easier to
develop large programs and track down the inevitable bugs.

Readability. You should use comments to help other programmers, and even yourself, understand the
purpose of the code you have written. Variable and function names should be chosen to indicate their
purpose. Be consistent in how you name variables and functions. Any “magic number” (constant)
used in your code should be given a name and defined at the beginning of the program, so if you ever
want to change this number, you can just change it at one place in the program instead of every place
it is used. Global variables and constants should be written in a way that easily distinguishes them
from more common local variables; for example, you could WRITE CONSTANTS IN UPPERCASE
and Capitalize Globals. You should use whitespace (blank lines, spaces, tabbing, etc.) consistently to
make it easy to read the program. Use a fixed-width font (e.g., Courier) so that the spacing/tabbing
is consistent. Modularity (above) also improves readability.

The program invest.c demonstrates readable modular code using the structure and syntax of a typical
C program. The line numbers to the left are not part of the program; they are there for reference. In the
program’s comments, you will see references of the form ==SecA.4.3== that indicate where you can find
more information in the review of syntax that follows the program.

/3K 3Kk ok ok ok sk o ok ok ok K ok ok ok K K ok ok ok K K 3 ok oK K K 3 ok ok K K ok ok ok K ok ok ok K K ok ok ok K K 3k ok oK K K 3 ok oK K K 3 ok ok ok K ok ok ok K ok ok ok Kk K ok

* PROGRAM COMMENTS (PURPOSE, HISTORY)
stk s ok s o o sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok ko sk koo sk ok sk sk sk sk sk sk sk ok k ok sk ok sk ok ok ok ok /

/*
* invest.c
*
* This program takes an initial investment amount, an expected annual
* return rate, and the number of years, and calculates the growth of
* the investment. The main point of this program, though, is to
* demonstrate some C syntax.
*
* References to further reading are indicated by ==SecA.B.C==
*

14

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

70

71

72

73

* HISTORY:

* Dec 20, 2011 Created by Kevin Lynch

* Jan 4, 2012 Modified by Kevin Lynch (small changes, altered comments)
*/

/**

* PREPROCESSOR COMMANDS ==SecA.4.3==
ok oK K K o oK oK oK K oK oK oK K oK ok ok K oK ok ok 3 K oK ok oK 3K K o oK oK K K ok ok oK K ok ok ok K ok ok ok 3 K oK ok oK 3 K K ok ok K K ok sk ok ok sk ok kK ok ok ok k ok /

#include <stdio.h> // input/output library
#define MAX_YEARS 100 // Constant indicating max number of years to track

/**

* DATA TYPE DEFINITIONS (HERE, A STRUCT) ==SecA.4.4==
stk koo s ok o sk sk sk sk sk sk sk sk ok sk ok sk ok sk ok sk sk sk sk sk kst sk ok sk sk ok sk kot ko sk ok sk sk sk sk sk sk sk ok k ok sk ok sk ok sk ok ok /

typedef struct {

double invO0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment array ==SecA.4.9==
} Investment; // the new data type is called Investment

/**

* GLOBAL VARIABLES ==SecA.4.2, A.4.5==
stk ke o o ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok sk sk sk sk ok ok ok ok ks o ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok sk ok ok ok sk ok sk sk sk sk ok sk sk ok k ok sk ok sk ok sk ok ok /

// no global variables in this program

/**

* HELPER FUNCTION PROTOTYPES ==SecA.4.2==
stk ke o o ok ok ok ok ok sk ok sk sk sk ok sk ok ok ok sk ok sk sk sk ok sk ke ks s ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ko sk ok ok sk ok sk ok sk sk sk sk ok sk sk ok k ok sk ok sk ok sk ok ok /

int getUserInput(Investment *invp); // invp is a pointer to type
void calculateGrowth(Investment *invp); // ... Investment ==SecA.4.6, A.4.8==
void sendOutput(double *arr, int years);

/**

* MAIN FUNCTION ==SecA.4.2==
ok oK K K o ok oK oK K o ok oK oK K ok ok oK K ok oK oK K K 3k ok oK K K 3 ok oK K K 3 ok ok oK K ok ok oK K ok ok oK K ok ok oK K K K ok oK K K ok ok ok K ok koK ok ok ok ko /

int main(void) {
Investment inv; // variable definition, ==SecA.4.5==

while(getUserInput (&inv)) { // while loop ==SecA.4.14==
inv.invarray[0] = inv.inv0; // struct access ==SecA.4.4==

calculateGrowth(&inv) ; // & referencing (pointers) ==SecA.4.6, A.4.8==
sendOutput (inv.invarray, // passing a pointer to an array ==SecA.4.9==
inv.years); // passing a value, not a pointer ==SecA.4.6==
}
return(0) ; // return value of main ==SecA.4.6==

} // **x%xx END main *%k*x
/3 sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok sk ok ok sk sk sk ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk skt sk ok ke ok ko ko ko sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok okokokok ok ok ok ok
* HELPER FUNCTIONS ==SecA.4.2==

**/

/* calculateGrowth

15

74 *

75 * This optimistically-named function fills the array with the investment
76 * value over the years, given the parameters in *invp.

77 */

7s void calculateGrowth(Investment *invp) {

79

80 int i;

81

82 // for loop ==SecA.4.14==

83 for (i=1; i <= invp->years; i=i+1) { // relational operators ==SecA.4.10==
84 // struct access ==SecA.4.4==

85 invp->invarray[i] = invp->growth * invp->invarray[i-1];

86 }

87} // ***%x*x END calculateGrowth x*x**

88

89

90 /* getUserInput

91 *

92 * This reads the user’s input into the struct pointed at by invp,
93 * and returns TRUE (1) if the input is valid, FALSE (0) if not.
9 */

o5 int getUserInput(Investment *invp) {

96

o7 int valid; // int used as a boolean ==SecA.4.10==

98

9 // 1/0 functions in stdio.h ==SecA.4.15==

100 printf ("Enter investment, growth rate, number of yrs (up to %d): ",MAX_YEARS);
101 scanf ("%41f %1f %d", &(invp->inv0), &(invp->growth), &(invp->years));
102

103 // logical operators ==SecA.4.1ll==

104 valid = (invp->inv0O > 0) && (invp->growth > 0) &&

105 (invp->years > 0) && (invp->years <= MAX_YEARS);

106 printf("Valid input? %d\n",valid);

107

108 // if-else ==SecA.4.13==

109 if (!valid) { // ! is logical NOT ==SecA.4.11==

110 printf("Invalid input; exiting.\n");
111 }
112 return(valid);

13} // ***xxx END getUserInput *kx*x*
114

115

16 /* sendOutput

117
118 This function takes the array of investment values (a pointer to the first
element, which is a double) and the number of years (an int). We could
have just passed a pointer to the entire investment record, but we decided

to demonstrate some different syntax.

119

120

* X X X ¥

121
122 */

123 void sendOutput(double *arr, int yrs) {

124

125 int i;

126 char outstring[100]; // defining a string ==SecA.4.9==
127

128 printf ("\nRESULTS:\n\n") ;

129 for (i=0; i<=yrs; i++) { // ++, +=, math in ==SecA.4.7==
130 sprintf (outstring,"Year %3d: %10.2f\n",i,arr[i]);

131 printf ("%s",outstring);

132 }

16

133

134

printf("\n");
} // #x*xxx END sendOutput *x***x*

A.4.1 Basic Syntax

Comments. Everything after a /* and before the next */ is a comment. Comments are stripped out in
the preprocessing step of compilation. They are only there to make the purpose of the program, function,
loop, or statement clear to yourself or other programmers. Keep the comments neat and concise for program
readability. Some programmers use extra asterisks or other characters to make the comments pretty (see the
examples in invest.c), but all that matters is that /* starts the comment and the next */ ends it.

If your comment is short, you can use // instead. Everything after // and before the next carriage return
will be ignored.

Semicolons. A code statement must be completed by a semicolon. Some exceptions to this rule include
preprocessor commands (see PREPROCESSOR COMMANDS in the program and Section A.4.3) and statements
that end with blocks of code enclosed by braces { }. A single code statement may extend over multiple lines
of the program listing until it is terminated by a semicolon (see, for example, the assignment to valid in the
function getUserInput).

Braces and blocks of code. Blocks of code are enclosed in braces { }. Examples include entire functions
(see the definition of the main function and the helper functions), blocks of code executed inside of a while
loop (in the main function) or for loop (in the calculateGrowth and sendOutput functions), as well as
other examples. In invest.c, braces are placed as shown here

while (<expression>) {
/* block of code */
}

but this style is equivalent

while (<expression>)

{
/* block of code */
}

as is this
while (<expression>) { /* block of code */ }

Which brings us to...

Whitespace. Whitespace, such as spaces, tabs, and carriage returns, is only required where it is needed
to recognize keywords and other syntax. The whole program invest.c could be written without carriage
returns after the semicolons, for example. Indentations and carriage returns should be used consistently,
however, to make the program readable. Carriage returns should be used after each semicolon, statements
within the same code block should be left-justified with each other, and statements in a code block nested
within another code block should be indented with respect to the parent code block. Text editors should
use a fixed-width font so that alignment is clear. Most IDE editors provide fixed-width fonts and automatic
indentation to enhance readability.

17

Parentheses. C has a set of rules defining the order in which operations in an expression are evaluated,
much like standard math rules that say 3 + 5 x 2 evaluates to 3 4+ (10) = 13, not (8) * 2 = 16. If you are
uncertain of the default order of evaluation, use parentheses () to enclose sub-expressions to enforce the
evaluation order you want. More deeply nested parenthetical expressions will be evaluated first. For example,
3+ (40/(4 % (3+2))) evaluates to 3+ (40/(4 x5)) = 3+ (40/20) = 3+ 2 = 5. Parentheses can be used to
control the order of evaluation for non-mathematical statements, too. An example is shown in getUserInput
of invest.c:

valid = (invp->inv0 > 0) && (invp->growth > 0) &&
(invp->years > 0) && (invp->years <= MAX_YEARS);

Each relational expression using > and <= (Section A.4.10) is evaluated before applying the logical AND
operators && (Section A.4.11).

A.4.2 Program Structure

invest.c demonstrates a typical structure for a program written in one .c file. When you write larger
programs, you may wish to break your program into multiple files. In this case, exactly one of these files
must contain a main function, and you have some choices as to which variables and functions in one file are
visible to other files. In this appendix we will focus on programs that consist of a single file (apart from any
C libraries you may include, as we will discuss in Section A.4.3). Section A.4.16 gives a simple example of a
program broken up into multiple C files.

Let’s consider the seven major sections of the program in order of appearance. PROGRAM COMMENTS
describe the purpose of the program and its revision history. PREPROCESSOR COMMANDS define constants and
“header” files that should be included, giving the program access to library functions that extend the power of
the C language. This is described in more detail in Section A.4.3. In some programs, it may be helpful to
define a new data type, as shown in DATA TYPE DEFINITIONS. In invest.c, several variables are packaged
together in a single record or struct data type, as described in Section A.4.4. Any GLOBAL VARIABLES are
then defined. These are variables that are available for use by all functions in the program. Because of this
special status, the names of global variables could be Capitalized or otherwise written in a way to remind the
programmer that they are not local variables (Section A.4.5).

The next section of the program contains the HELPER FUNCTION PROTOTYPES of the various helper
functions. A prototype of a function declares the name of the function that will be defined later, its data
type, and the data types of the arguments passed to the function. As an example, the function printRatio
is of type void, since it does not return a value, and takes two arguments, each of type int. The function
getUserInput takes a single argument which is a pointer to a variable of type Investment, a data type
which is defined a few lines above, and returns an int.

The next section of the program, MAIN FUNCTION, is where the main function is defined. Every program
has exactly one main function, and it is where the program starts execution. The main function is of type
int, and by convention it returns a 0 if it executes successfully, and otherwise returns a nonzero value.
In invest.c, main takes no arguments, hence the void in the argument list. On the other hand, when a
program is run from the command line, it is possible to specify arguments to main. For example, we could
have written invest.c to be run with a command such as this:

> invest 100.0 1.05 5
To allow this, main would have been defined with the following syntax:
int main(int argc, char *xargv) {

Then when the program is invoked as above, the integer argc would be set to 4, the number of whitespace-
separated strings on the command line, and argv would point to a vector of 4 strings, where the string
argv[0] is ’invest’, argv[1] is '100.0’, etc. You can learn more about arrays and strings in Section A.4.9.
Finally, the last section of the program is the definition of the HELPER FUNCTIONS whose prototypes were
given earlier. It is not strictly necessary that the helper functions have prototypes, but if not, every function
should be defined before it is used by any other function. For example, none of the helper functions uses

18

another helper function, so they could have all been defined before the main function, in any order, and
their function prototypes eliminated. The names of the variables in a function prototype and in the actual
definition of the function need not be the same; for example, the prototype of sendOutput uses variables
named arr and years, whereas the actual function definition uses arr and yrs. What matters is that the
prototype and actual function definition have the same number of arguments, of the same types, and in the
same order. In fact, in the arguments of the function prototypes, you can leave out variable names altogether,
and just keep the comma separated list of argument data types.

A.4.3 Preprocessor Commands

In the preprocessing stage of compilation, all comments are stripped out of the program. In addition, the
preprocessor encounters the following preprocessor commands, recognizable by the # character:

#include <stdio.h> // input/output library
#define MAX_YEARS 100 // Constant indicating max number of years to track

Constants. The second line defines the constant MAX_YEARS to be equal to 100. The preprocessor searches
for each instance of MAX_YEARS in the program and replaces it with 100. If we later decide that the maximum
number of years to track investments should be 200, we can simply change the definition of this constant, in
one place, instead of in several places. Since MAX_YEARS is a constant, not a variable, it can never be assigned
another value somewhere else in the program. To indicate that it not a variable, a common convention is to
write constants in UPPERCASE. This is not required by C, however.

Included libraries. The first line of the preprocessor commands in invest.c indicates that the program
will use the standard C input/output library. The file stdio.h is called a header file for the library. This
file is readable by a text editor and contains a number of constants that are made available to the program,
as well as a set of function prototypes for input and output functions. The preprocessor replacea the
#include <stdio.h> command with the header file stdio.h.® Examples of function prototypes that are
included are

int printf(const char *Format, ...);
int sprintf(char *Buffer, const char *Format, ...);
int scanf(const char *Format, ...);

Each of these three functions is used in invest.c. If the program were compiled without including stdio.h,
the compiler would generate a warning or an error due to the lack of function prototypes. See Section A.4.15
for more information on using the stdio input and output functions.

During the linking stage, the object code of invest.c is linked with the object code for printf, sprintf,
and scanf in your C installation. Libraries like stdio provide access to functions beyond the basic C syntax.
Other useful libraries are briefly described in Section A.4.15.

Macros. One more use of the preprocessor is to define simple function-like macros that you may use in
more than one place in your program. Here’s an example that converts radians to degrees:

#define RAD_TO_DEG(x) ((x) * 57.29578)

The preprocessor will search for any instance of RAD_TO_DEG(x) in the program, where x can be any expression,
and replace it with ((x) * 57.29578). For example, the initial code

angle_deg = RAD_TO_DEG(angle_rad);

is replaced by

9This assumes that our preprocessor can find the header file somewhere in the “include path” of directories to search for
header files. If the header file header.h sits in the same directory as invest.c, we would write #include "header.h" instead of
#include <header.h>.

19

angle_deg = ((angle_rad) * 57.29578);

Note the importance of the outer parentheses in the macro definition. If we had instead used the preprocessor
command

#define RAD_TO_DEG(x) (x) * 57.29578 // don’t do this!
then the code

answer = 1.0 / RAD_TO_DEG(3.14);

would be replaced by

answer = 1.0 / (3.14) * 57.29578;

which is very different from

answer = 1.0 / ((3.14) * 57.29578);

Moral: if the expression you are defining is anything other than a single constant, enclose it in parentheses,
to tell the compiler to evaluate the expression first. You can even enclose a single constant in parentheses; it
doesn’t cost you anything.

As a second example, the macro

#define MAX(A,B) () > (B 7 (A):(B))
returns the maximum of two arguments. The ? is the ternary operator in C, which has the form
<test> 7 return_value_if_test_is_true : return_value_if_test_is_false

The preprocessor replaces

maxval = MAX(13+7,val2);
with
maxval = ((13+7) > (val2) ? (13+7):(val2));

Why define a macro instead of just writing a function? One reason is that the macro may execute slightly
faster, since no passing of control to another function and no passing of variables is needed.

A.4.4 Defining Structs and Data Types

In most programs you write, you will do just fine with the data types int, char, float, double, and
variations. Occasionally, though, you will find it useful to define a new data type. You can do this with the
following command:

typedef <type> newtype;

where <type> is a standard C data type and newtype is the name of your new data type, which will be the
same as <type>. Then you can define a new variable x of type newtype by

newtype X;
For example, you could write

typedef int days_of_the_month;
days_of_the_month day;

20

You might find it satisfying that your variable day (taking values 1 to 31) is of type days_of_the month, but
the compiler will still treat it as an int.

A more useful example is when you have several variables that are always used together. You might like to
package these variables together into a single record, as we do with the investment information in invest.c.
This packaging can be done with a struct. The invest.c code

typedef struct {

double invO0; // initial investment
double growth; // growth rate, where 1.0 = zero growth
int years; // number of years to track
double invarray[MAX_YEARS+1]; // investment values
} Investment; // the new data type is called Investment

replaces the data type int in our previous typedef example with struct {...}. This syntax creates a new
data type Investment with a record structure, with fields named inv0 and growth of type double, years of
type int, and invarray, an array of doubles. (Arrays are discussed in Section A.4.9.) With this new type
definition, we can define a variable named inv of type Investment:

Investment inv;

This definition allocates sufficient memory to hold the two doubles, the int, and the array of doubles. We
can access the contents of the struct using the “.” operator:

int yrs;
yrs = inv.years;
inv.growth = 1.1;

An example of this kind of usage is seen in main.
Referring to the discussion of pointers in Sections A.3.2 and A.4.8, if we are working with a pointer invp
that points to inv, we can use the “->” operator to access the contents of the record inv:

Investment inv; // allocate memory for inv, an investment record
Investment *invp; // invp will point to something of type Investment
int yrs;

invp = &inv; // invp points to inv

inv.years = 5; // setting one of the fields of inv

yrs = invp->years; // inv.years, (*invp).years, and invp->years are all identical
invp->growth = 1.1;

Examples of this usage are seen in calculateGrowth() and getUserInput().

A.4.5 Defining Variables

Variable names. Variable names can consist of uppercase and lowercase letters, numbers, and underscore
characters '_’. You should generally use a letter as the first character; var, Var2, and Global Var are all valid
names, but 2var is not. C is case sensitive, so the variable names var and VAR are different. A variable name
cannot conflict with a reserved keyword in C, like int or for. Names should be succinct but descriptive. The
variable names i, j, and k are often used for integers, and pointers often begin with ptr_, such as ptr_var,
or end with p, such as varp, to remind you that they are pointers. These are all to personal taste, however.

Scope. The scope of a variable refers to where it can be used in the program. A variable may be global,
i.e., usable by any function, or local to a specific function. A global variable is one that is defined in the
GLOBAL VARIABLES section, outside of and before any function definition. Such variables can be referred to
or altered in any function.!® Because of this special status, global variables are often Capitalized. Global
variable usage should be minimized for program modularity and readability.

10You could also define a variable outside of any function definition but after some of the function definitions. This quasi-global
variable would be available to all functions defined after the variable is defined, but not those before. This practice is discouraged,
as it makes the code harder to read.

21

A local variable is one that is defined in a function. Such a variable is only usable inside that function. If
you choose a local variable name var that is also the name of a global variable, inside that function var will
refer to the local variable, and the global variable will not be available. It is not good practice to choose local
variable names to be the same as global variable names, as it makes the program confusing to understand.

A local variable can be defined in the argument list of a function definition, as in sendOutput at the end
of invest.c:

void sendOutput(double *arr, int yrs) { /] ...

Otherwise, local variables are defined at the beginning of the function code block by syntax similar to that
shown in the function main.

int main(void) {
Investment inv; // Investment is a variable type we defined
// ... rest of the main function ...

Since this definition appears within the function, inv is local to main. Had this definition appeared before
any function definition, inv would be a global variable.

Definition and initialization. When a variable is defined, memory for the variable is allocated. In general,
you cannot assume anything about the contents of the variable until you have initialized it. For example, if
you want to define a float x with value 0.0, the command

float x;

is insufficient. The memory allocated may have random 0’s and 1’s already in it, and the allocation of memory
does not generally change the current contents of the memory. Instead, you can use

float x = 0.0;
to initialize the value of x when you define it. Equivalently, you could use

float x;
x = 0.0;

Static local variables. Each time a function is called, its local variables are allocated space in memory.
When the function completes, its local variables are thrown away, freeing memory. If you want to keep the
results of some calculation by the function after the function completes, you could either return the results
from the function or store them in a global variable. An alternative is to use the static modifier in the local
variable definition, as in the following program:

#include <stdio.h>

void myFunc(void) {
static char ch=’d’; // this local variable is static, allocated and initialized
// only once during the entire program
printf("ch value is %d, ASCII character %c\n",ch,ch);
ch = ch+1;
}

int main(void) {
myFunc() ;
myFunc() ;
myFunc() ;
return O;

}

22

The static modifier in the definition of ch in myFunc means that ch is only allocated, and initialized to ’d’,
the first time myFunc is called during the execution of the program. This allocation persists after the function
is exited, and the value of ch is remembered. The output of this program is

ch value is 100, ASCII character d
ch value is 101, ASCII character e
ch value is 102, ASCII character f

Numerical values. Just as you can assign an integer a base-10 value using commands like ch=100, you
can assign a number written in hexadecimal notation by putting “0x” at the beginning of the digit sequence,

e.g.,

unsigned char ch = 0x4D;

This form may be convenient when you want to directly control bit values. This is often useful in microcontroller
applications.

A.4.6 Defining and Calling Functions

A function definition consists of the function’s data type, the function name, a list of arguments that the
function takes as input, and a block of code. Allowable function names follow the same rules as variables.
The function name should make clear the purpose of the function, such as getUserInput in invest.c.

If the function does not return a value, it is defined as type void, as with calculateGrowth. If it does
return a value, such as getUserInput which returns an int, the function should end with the command

return(val);
or
return val;

where val is a variable of the same type as the function. The main function is of type int and should return
0 upon successful completion.
The function definition

void sendOutput(double *arr, int yrs) { // ...

indicates that sendOutput returns nothing and takes two arguments, a pointer to type double and an int.
When the function is called with the statement

sendOutput (inv.invarray, inv.years);

the invarray and years fields of the inv structure in main are copied to sendOutput, which now has its
own local copies of these variables, stored in arr and yrs. The difference is that yrs is simply data, while
arr is a pointer, specifically the address of the first element of invarray, i.e., &(inv.invarray[0]). (Arrays
will be discussed in more detail in Section A.4.9.) Since sendOutput now has the memory address of the
beginning of this array, it can directly access, and potentially change, the original array seen by main. On the
other hand, sendOutput cannot by itself change the value of inv.years in main, since it only has a copy of
that value, not the actual memory address of main’s inv.years. sendOutput takes advantage of its direct
access to the inv.invarray to print out all the values stored there, eliminating the need to copy all the
values of the array from main to sendOutput.

The function calculateGrowth, which is called with a pointer to main’s inv data structure, takes
advantage of its direct access to the invarray field to change the values stored there.

When a function is called with a pointer argument, it is sometimes called a call by reference; the call sends
a reference (address, or pointer) to data. When a function is called with non-pointer data, it is sometimes
called a call by value; data is copied over, but not an address.

If a function takes no arguments and returns no value, we can define it as void myFunc(void) or
void myFunc(). The function is called using

myFunc () ;

23

A.4.7 Math

Standard binary math operators (operators on two operands) include +, -, *, and /. These operators take
two operands and return a result, as in

ratio = a/b;

If the operands are the same type, then the CPU carries out a division (or add, subtract, multiply) specific
for that type and produces a result of the same type. In particular, if the operands are integers, the result
will be an integer, even for division (fractions are rounded toward zero). If one operand is an integer type
and the other is a floating point type, the integer type will generally be coerced to a floating point to allow
the operation (see the typecast.c program description of Section A.4).

The modulo operator % takes two integers and returns the remainder of their division, i.e.,

int i;
i = 16%7; // i is now equal to 2

C also provides +=, -=, *=, /=, %= to simplify some expressions, as shown below:

X=X *2; y=y+7; // this line of code is equivalent...
X *= 2; y+=7; // ...to this one

Since adding one to an integer or subtracting one from an integer are common operations in loops, these have
a further simplification. For an integer i, we can write

i++; // adds 1 to i, equivalent to i = i+l;
i--; // equivalent to i = i-1;

In fact we also have the syntax ++i and --i. If the ++ or -- come in front of the variable, the variable is
modified before it is used in the rest of the expression. If they come after, the variable is modified after the
expression has been evaluated. So

int i=5,j;
j = (++i)*2; // after this line, i is 6 and j is 12

but

int i=5,j;
j = (i++)*2; // after this line, i is 6 and j is 10

But your code would be much more readable if you just wrote i++ before or after the j=i*2 line.
If your program includes the C math library with the preprocessor command #include <math.h>, you
have access to a much larger set of mathematical operations, some of which are listed here:

int abs (int x); // integer absolute value

double fabs (double x); // floating point absolute value
double cos (double x); // all trig functions work in radians, not degrees
double sin (double x);

double tan (double x);

double acos (double x); // inverse cosine

double asin (double x);

double atan (double x);

double atan2 (double y, double x); // two-argument arctangent
double exp (double x); // base e exponential

double log (double x); // natural logarithm

double log2 (double x); // base 2 logarithm

double 1loglO (double x); // base 10 logarithm

double pow (double x, double y); // raise x to the power of y
double sqgrt (double x); // square root of x

24

These functions also have versions for floats. The names of those functions are identical, except with an ’f’
appended to the end, e.g., cosft.
When compiling programs using math.h, remember to include the linker flag -1m, e.g.,

gcc myprog.c —o myprog -1lm

The math library is not linked by default like most other libraries.

A.4.8 Pointers

It’s a good idea to review the introduction to pointers in Section A.3.2 and the discussion of call by reference
in Section A.4.6. In summary, the operator & references a variable, returning a pointer to (the address of)
that variable, and the operator * dereferences a pointer, returning the contents of the address.

These statements define a variable x of type float and a pointer ptr to a variable of type float:

float x;
float *ptr;

At this point, the assignment
*ptr = 10.3;

would result in an error, because the pointer ptr does not currently point to anything. The following code
would be valid:

ptr = &x; // assign ptr to the address of x; x is the "pointee" of ptr
*ptr = 10.3; // set the contents at address ptr to 10.3; now x is equal to 10.3
*x(&x) = 4 + *ptr; // the * and & on the left cancel each other; x is set to 14.3

Since ptr is an address, it is an integer (technically the type is “pointer to type float”), and we can add
and subtract integers from it. For example, say that ptr contains the value n, and then we execute the
statement

ptr = ptr + 1; // equivalent to ptr++;

If we now examined ptr, we would find that it has the value n + 4. Why? Because the compiler knows that
ptr points to the type float, so when we add 1 to ptr, the assumption is that we want to increment one
float in memory, not one byte. Since a float occupies four bytes, the address ptr must increase by 4 to
point to the next float. The ability to increment a pointer in this way can be useful when dealing with
arrays, next.

A.4.9 Arrays and Strings

One-dimensional arrays. An array of five floats can be defined by
float arr[5];

We could also initialize the array at the time we define it:

float arr[6] = {0.0, 10.0, 20.0, 30.0, 40.0};

Each of these definitions allocates five floats in memory, accessed by arr[0] (initialized to 0.0 above)
through arr[4] (initialized to 40.0). The assignment

arr[5] = 3.2;

25

is a mistake, since only arr [0..4] have been allocated. This statement would likely compile just fine, because
compilers typically do not check for indexing arrays out of bounds. The best result at this point would be
for your program to crash, to alert you to the fact that you are overwriting memory that may be allocated
for another purpose. More insidiously, the program could seem to run just fine, but with difficult-to-debug
erratic behavior. Bottom line: never access arrays out of bounds!

In the expression arr[i], i is an integer called the inder, and arr[i] is of type float. The variable arr
by itself is actually a pointer to the first element of the array, equivalent to & (arr [0]). The address &(arr[i])
is located at the address arr plus i*4 bytes, since the elements of the array are stored consecutively, and
a float uses four bytes. Both arr[i] and *(arr+i) are correct syntax to access the i’th element of the
array. Since the compiler knows that arr is a pointer to the four-byte type float, the address represented by
(arr+i) is i*4 bytes higher than the address arr.

Consider the following code snippet:

float arr[5] = {0.0, 10.0, 20.0, 30.0, 40.0};

float *ptr;

ptr = arr + 3;

// arr[0] contains 0.0 and ptr[0] = arr[3] = 30.0

// arr[0] is equivalent to *arr; ptr[0] is equivalent to *ptr and *(arr+3);
// ptr is equivalent to &(arr[3])

If we’d like to pass the array arr to a function that initializes each element of the array, we could call

arrayInit(arr,5);
or
arrayInit(&(arr[0]),5);
The function definition for arrayInit might look like
void arrayInit(float #*vals, int length) {

int i;

for (i=0; i<length; i++) vals[i] = i%*10.0;

// equivalently, we could substitute the line below for the line above

// for (i=0; i<length; i++) {xvals = i*10.0; vals++;}
}

The pointer vals in arrayInit is set to point to the same location as arr in the calling function. Therefore
vals[i] refers to the same memory contents that arr[i] does.

Note that arr does not carry any information on the length of the array. This is why we have to separately
send the length of the array to arrayInit.

Strings. A string is an array of chars. The definition

char s[100];

allocates memory for 100 chars, s[0] to s[99]. We could initialize the array with
char s[100] = "cat"; // note the double quotes

This places a ’c’ (integer value 99) in s[0], an ’a’ (integer value 97) in s[1], a 't’ (integer value 116) in
s[2], and a value of 0 in s[3], corresponding to the NULL character and indicating the end of the string.
(You could also do this, less elegantly, by initializing just those four elements using braces as we did with the
float array above.)

You notice that we allocated more memory than was needed to hold “cat.” Perhaps we will append
something to the string in future, so we might want to allocate that extra space just in case. But if not, we
could have initialized the string using

26

char s[] = "cat";

and the compiler would only assign the minimum memory needed.

The function sendOutput in invest.c shows an example of constructing a string using sprintf, a
function provided by stdio.h. Other functions for manipulating strings are provided in string.h. Both of
these libraries are described briefly in Section A.4.15.

Multi-dimensional arrays. The definition
int mat[2][3];

allocates memory for 6 ints, mat [0] [0] to mat[1] [2], which can be thought of as a two-dimensional array,
or matrix. These occupy a contiguous region of memory, with mat [0] [0] at the lowest memory location,
followed by mat [0] [1], mat [0] [2], mat[1] [0], mat[1] [1], and mat [1] [2]. This matrix can be initialized
using nested braces,

int mat[2][3] = {{0, 1, 2}, {3, 4, 5}};

Higher-dimensional arrays can be created by simply adding more indexes. In memory, a “row” of the
rightmost index is completed before incrementing the next index to the left.

Static vs. dynamic memory allocation. A command of the form float arr[5] is called static memory
allocation. This means that the size of the array is known at compile time. Another option is dynamic
memory allocation, where the size of the array can be chosen at run time.!! With the C library stdlib.h
included using the preprocessor command #include <stdlib.h>, the syntax

float #*arr; // arr is a pointer to float, but no memory has been allocated for the array
int i=5;
arr = (float *) malloc(i * sizeof(float)); // allocate the memory

allocates arr[0..4], and
free(arr);

releases the memory when it is no longer needed.!? If malloc cannot allocate the requested memory, perhaps
because the computer is out of memory, it returns a NULL pointer (i.e., arr will have value 0).

A.4.10 Relational Operators and TRUE/FALSE Expressions

== equal

1= not equal
>, >= greater than, greater than or equal to
, <= less than, less than or equal to

Relational operators operate on two values and evaluate to 0 or 1. A 0 indicates that the expression is FALSE
and a 1 indicates that the expression is TRUE. For example, the expression (3>=2) is TRUE, so it evaluates
to 1, while (3<2) evaluates to 0, or FALSE.

The most common mistake is using = to test for equality instead of ==. For example, using the if
conditional syntax (Section A.4.13), the test

int i=2;
if (i=3) printf("Test is true.");

M1 Dynamic memory is allocated from the heap, a portion of memory set aside for dynamic allocation (and therefore is not
available for statically allocated variables and program code). You may have to adjust linker options setting the size of the heap.

12Bookkeeping has kept track of the size of the block associated with the address arr, so you don’t need to tell free how
much memory to release.

27

will always evaluate to TRUE, because the expression (i=3) assigns the value of 3 to i, and the expression
evaluates to 3. Any nonzero value is treated as logical TRUE. If the condition is written (i==3), it will
operate as intended, evaluating to 0 (FALSE).

Be aware of potential pitfalls in checking equality of floating point numbers. Cconsider the following
program:

#include <stdio.h>

#define VALUE 3.1

int main(void) {
float x = VALUE;
double y = VALUE;
if (x==VALUE) printf("x is equal to %1f.\n",VALUE);
else printf("x is not equal to %1f!\n",VALUE);
if (y==VALUE) printf("y is equal to %1f.\n",VALUE);
else printf("y is not equal to %1f!\n",VALUE);
return O;

}

You might be surprised to see that your program says that x is not equal while y is! In fact, neither x nor y
are exactly 3.1 due to roundoff error in the floating point representation. However, by default, the constant
3.1 is treated as a double, so the double y carries the identical (wrong) value. If you want a constant to be
treated explicitly as a float, you can write it as 3.1F, and if you want it to be treated as a long double,
you can write it as 3.1L.

A.4.11 Logical Operators

Logical operators include AND, OR, and NOT, written as &&, | |, and !, respectively. Here are some examples:

(3>2) && (4!=0) // (TRUE) AND (TRUE) evaluates to TRUE
(3>2) || (4==0) // (TRUE) OR (FALSE) evaluates to TRUE
1(3>2) || (4==0) // NOT(TRUE) OR (FALSE) evaluates to FALSE

Another example is given in getUserInput, where four expressions are AND’ed. As always, if you are unsure
of the order of evaluating a string of logical expressions, use parentheses to enforce the order you want.

A.4.12 Bitwise Operators

bitwise NOT

bitwise AND

bitwise OR

bitwise XOR

shift bits to the right (shifting in 0’s from the left)
shift bits to the left (shifting in 0’s from the right)

AY>—w2

Bitwise operators act directly on the bits of the operand(s), as in the following example:

unsigned char a=0xC, b=0x6, c; // in binary, a is 0b00001100 and b is 0b00000110

c = Ta; // NOT; c is OxF3 or 0Ob11110011

c=a&b; // AND; c is 0x04 or 0b00000100

c=al| b; // 0OR; c is O0xOE or 0b00001110

c=a "~ b; // XO0R; c is 0x0A or 0b00001010

c =a > 3; // SHIFT RT 3; c is 0x01 or ObO0000001, one 1 is shifted off the right end

c = a << 3; // SHIFT LT 3; c is 0x60 or 0b01100000, 1’s shifted to more significant digits

Much like the math operators, we also have the assignment expressions &=, |=, "=, >>= and <<=,so0a &= b

is equivalent to a = a&b.

28

A.4.13 Conditional Statements
If-Else. The basic if-else construct takes this form:

if (<expression>) {
// execute this code block if <expression> is TRUE, then exit

}
else {
// execute this code block if <expression> is FALSE

}

If the code block is a single statement, the braces are not necessary. The else and the block after it can be
eliminated if no action needs to be taken when <expression> is FALSE.
if-else statements can be made into arbitrarily long chains:

if (<expressionl>) {

// execute this code block if <expressionl> is TRUE, then exit this if-else chain
}
else if (<expression2>) {

// execute this code block if <expression2> is TRUE, then exit this if-else chain

}
else {
// execute this code block if both expressions above are FALSE

}

An example if statement is in getUserInput.

Switch. If you would like to check if the value of a single expression is one of several possibilities, a switch
may be simpler than a chain of if-else statements. Here is an example:

char ch;
// ... omitting code that sets the value of ch ...
switch (ch) {
case ’a’: // execute these statements if ch has value ’a’
<statement>;
<statement>;
break; // exit the switch statement
case ’b’:
// ... some statements
break;
case ’c’:
// ... some statements
break;
default: // execute this code if none of the previous cases applied
// ... some statements
}

A.4.14 Loops
for loop. A for loop has the following syntax:

for (<initialization>; <test>; <update>) {
// code block
}

If the code block consists of only one statement, the surrounding braces can be eliminated.

The sequence is as follows: at the beginning of the loop, the <initialization> statement is executed.
Then the <test> is evaluated. If it is TRUE, then the code block is executed, the <update> is performed,
and we return to the <test>. If it is FALSE, the for loop is exited.

The following for loop is in calculateGrowth:

29

for (i=1; i <= invp->years; i=i+1) {
invp->invarray[i] = invp->growth*invp->invarray[i-1];

}

The <initialization> step sets i=1. The <test> is TRUE if i is less than or equal to the number of years
we will calculate growth in the investment. If it is TRUE, the value of the investment in year i is calculated
from the value in year i-1 and the growth rate. The <update> adds 1 to i. In this example, the code block
is executed for i values of 1 to invp->years.

It is possible to perform more than one statement in the <initialization> and <update> steps by
separating the statements by commas. For example, we could write

for (i=1,j=10; i <= 10; i++, j—=) { /* code */ };

if we want i to count up and j to count down.

while loop. A while loop has the following syntax:

while (<test>) {
// code block
}

First, the <test> is evaluated, and if it is FALSE, the while loop is exited. If it is TRUE, the code block is
executed and we return to the <test>.

In main of invest.c, the while loop executes until the function getUserInput returns 0, i.e., FALSE.
getUserInput collects the user’s input and returns an int that is 0 if the user’s input is invalid and 1 if it is
valid.

do-while loop. This is similar to a while loop, except the <test> is executed at the end of the code block.

do {
// code block
} while (<test>);

break and continue. If anywhere in the loop’s code block the command break is encountered, the program
will exit the loop. If the command continue is encountered, the rest of the commands in the code block will
be skipped, and control will return to the <update> in a for loop or the <test> in a while or do-while
loop. Examples:

while (<test1>) {
if (<test2>) break; // jump out of the while loop
/...

}

while (<test1>) {
if (<test2>) continue; // skip the rest of the loop and go back to <testil>
x = x+3;

}

A.4.15 Some Useful Libraries

Libraries can be used in your C program if you include the .h header file that defines the library function
prototypes.'® We have already seen examples of functions in header files such as stdio.h, which contains
input/output functions; math.h in Section A.4.7; and stdlib.h in Section A.4.9.

It is well beyond our scope to provide details on the standard libraries in C. If you are interested, try a
web search on “standard libraries in C.” Here we highlight a few particularly useful functions in stdio.h,
string.h, and stdlib.h.

I3Reminder: if you include <math.h>, you should also compile your program with the -1m flag, so the math library is linked
during the linking stage.

30

Input and Qutput: stdio.h
int printf(const char *Format, ...);

The function printf is used to print to the “standard output,” which, for a PC, is typically the screen.
It takes a formatting string Format and a variable number of extra arguments, determined by the formatting
string, as indicated by the ... notation. The keyword const means that printf cannot change the string
Format.

An example comes from our program printout.c:

int i; float f; double d; char c;

i=232; f=4.278; d = 4.278; ¢c = ’k’;

printf ("Formatted string: i = %4d c¢ = ’%c’\n",i,c);
printf("f = %25.23f d = %25.231f\n",f,d);

which produces the output

Formatted string: i = 32 c¢ = 'k’
£ = 4.27799987792968750000000 d = 4.27799999999999958077979

The formatting strings consist of plain text, the special character \n that prints a newline, and directives of
the form %4d and %25.23f. Each directive indicates that printf will be looking for a corresponding variable
in the argument list to insert into the output. A non-exhaustive list of directives is given here:
%4 Print an integer. Corresponding argument should be an integer data type.
%1d Print a long integer. Corresponding argument should be a long.
%f Print a float.
%1f Print a double, or “long float.”
%c Print a character according to the ASCII table. Argument should be char.
%s Print a string. Argument should be a pointer to a char (first element of a string).
%x Print an integer as a hex number.

The directive %d can be written instead as %4d, for example, meaning that four spaces are allocated to write
the integer, which will be right-justified in that space with unused spaces blank. The directive %f can be
written instead as %6.3f, indicating that six spaces are reserved to write out the variable, with one of those
spaces being the decimal point and three of the spaces after the decimal point.

int sprintf(char *str, const char *Format, ...);
Instead of printing to the screen, sprintf prints to the string str. An example of this is in sendOutput.
int scanf(const char *Format, ...);

The function scanf is a formatted read from the “standard input,” which is typically the keyboard.
Arguments to scanf consist of a formatting string and pointers to variables where the input should be stored.
Typically the formatting string consists of directives like %d, %f, etc., separated by whitespace. The directives
are similar to those for printf, except they don’t accept spacing modifiers (like the 5 in %5d).

For each directive, scanf expects to see a pointer to a variable of that type in the argument list. A very
common mistake is the following:

int i;
scanf ("%d",i); // WRONG! We need a pointer to the variable.
scanf ("%d",&i); // RIGHT.

The pointer allows scanf to put the input into the right place in memory.
getUserInput uses the statement

scanf ("%1f %1f %d", &(invp->inv0), &(invp->growth), &(invp->years));

31

to read in two doubles and an integer and place them into the appropriate spots in the investment data
structure. scanf ignores the whitespace (tabs, newlines, spaces, etc.) between the inputs.

int sscanf(char *str, const char *Format, ...);
Instead of scanning from the keyboard, scanf scans the string pointed to by str.

FILE* fopen(const char *Path, const char *Mode);
int fclose(FILE *Stream);

int fscanf(FILE *Stream, const char *Format, ...);
int fprintf(FILE *Stream, const char *Format, ...);

These commands are for reading from and writing to files. Say you’ve got a file named inputfile, sitting
in the same directory as the program, with information your program needs. The following code would read
from it and then write to the file outputfile.

int i;

double x;

FILE *input, *output;

input = fopen("inputfile","r"); // "r" means you will read from this file
output = fopen("outputfile","w"); // "w" means you will write to this file
fscanf (input,"%d %1f",&i,&x);

fprintf (output,"I read in an integer ’d and a double %1f.\n",i,x);
fclose(input); // these streams should be closed ...
fclose(output) ; // ... at the end of the program

int fputc(int character, FILE *stream);

int fputs(const char *str, FILE *stream);

int fgetc(FILE *stream);

char*x fgets(char *str, int num, FILE *stream);
int puts(const char *str) ;

char* gets(char *str);

These commands get a character or string from a file, write (put) a character or string to a file, put a
string to the screen, or get a string from the keyboard.

String Manipulation: string.h

char* strcpy(char *destination, const char *source);

Given two strings, char destination[100],source[100], we cannot simply copy one to the other using
the assignment destination = source. Instead we use strcpy(destination,source), which copies the
string source (until reaching the string terminator character, integer value 0) to destination. The string
destination must have enough memory allocated to hold the source string.

char* strcat(char *destination, const char *source);
Appends the string in source to the end of the string destination.
int strcmp(const char *sl, const char *s2);

Returns 0 if the two strings are identical, a positive integer if the first unequal character in s1 is greater
than s2, and a negative integer if the first unequal character in s1 is less than s2.

size_t strlen(const char *s);

The type size_t is an unsigned integer type. strlen returns the length of the string s, where the end of

32

the string is indicated by the string terminator character (value 0).
void* memset(void *s, int c, size_t len);

memset (writes len bytes of the value c (converted to an unsigned char) starting at the beginning of
the string s. So

char s[10];
memset(s,’c’,5);

would fill the first five characters of the string s with the character >c’ (or integer value 99). This can be a
convenient way to initialize a string.

General Purpose Functions in stdlib.h

void* malloc(size_t objectSize)

malloc is used for dynamic memory allocation. An example use is in Section A.4.9.
void free(void *objptr)

free is used to release memory allocated by malloc. An example use is in Section A.4.9.
int rand()

It is sometimes useful to generate random numbers, particularly for games. The code

int i;
i = rand();

places in i a pseudo-random number between 0 and RAND_MAX, a constant which is defined in stdlib.h
(2,147,483,647 on my laptop). To convert this to an integer between 1 and 10, you could follow with

i =1+ (int) ((10.0%*i)/(RAND_MAX+1.0));

One drawback of the code above is that calling rand multiple times will lead to the same sequence of
random numbers every time the program is run. The usual solution is to “seed” the random number algorithm
with a different number each time, and this different number is often taken from a system clock. The srand
function is used to seed rand, as in the example below:

#include <stdio.h> // allows use of printf()
#include <stdlib.h> // allows use of rand() and srand()
#include <time.h> // allows use of time()

int main(void) {
int i;
srand(time (NULL)); // seed the random number generator with the current time
for (i=0; i<10; i++) printf("Random number: %d\n",rand());
return O;

}

If we take out the line with srand, this program produces the same ten “random” numbers every time we
run it. Note that this program includes the time.h library to allow the use of the time function.

void exit(int status)

When exit is invoked, the program exits with the exit code status. stdlib.h defines EXIT_SUCCESS
with value 0 and EXIT_FAILURE with value —1, so that a typical call to exit might look like

exit (EXIT_SUCCESS) ;

33

A.4.16 Breaking a Program into Multiple Files

Often the same set of functions is useful for a number of different programs. For example, you could have
helper files for mathematical calculations, graphics functions, user interfaces, etc., and use these over and over
again in different programs. In this case, it would make sense to put these functions in their own “helper” C
file, without a main function. When these functions are needed for a particular program with a main function,
you just compile the main file and its helper files and link them into a single executable using a command
such as

gcc main.c helperl.c helper2.c -o myprog

Each of the C files is compiled individually, and then their object codes are linked to make the final executable.
Since the main.c file does not contain the helper functions, it at least needs prototypes of these functions so
that the main object code can be created.' These prototypes are provided by header files associated with
the helper C files. (Header files we have referred to previously include stdio.h and math.h, associated with
the stdio and math libraries.) Typically each helper C file will have its own header file consisting of function
prototypes and constants or macros that should be available to other files. These header files are #included
at the beginning of the main.c file. The preprocessor replaces the #include commands with the text of the
helperl.h and helper2.h header files, providing the function prototypes that main.c needs.

Below is an example consisting of a main.c file, a helper.c file, and a helper.h file. helper.c has
three functions, one of which is purely for internal use and two of which are meant to be used in other files.
Therefore the header file helper.h provides prototypes for those two functions. helper.h also provides a
definition of the constant PI. The final file is main.c which needs access to the helper functions and the
constant PI. To get this access, it includes helper.h in its preprocessor commands. The file helper.c also
includes helper.h, since it needs the constant PI.

// ***x* helper.h ***x*

#ifndef HELPER_H // "include guard"; don’t include again if included already
#define HELPER_H // second line of the "include guard"

#define PI 3.1415926

double radius2Volume(double r); // function prototype
double radius2Surface(double r); // function prototype
#endif // third line, and end, of the "include guard"

// **%x* helper.c ***x*

#include <math.h>
#include "helper.h" // if the file is in the same directory, enclose in "quotes"

double cuber(double x) { // this function is not available externally
return(pow(x,3.0));
}

double radius2Volume(double rad) {
return((4.0/3.0)*PI*xcuber(rad));
}

double radius2Surface(double rad) {
return(4.0*PI*rad*rad) ;

}

141f, after compilation, the linker cannot find the required helper functions in the object code of any of the C files, the linker
will report an error.

34

// *%%x* main.c kkkkx

#include <stdio.h>
#include "helper.h"

int main(void) {
double radius = 3.0;
printf ("Pi is approximated as %25.231f.\n",PI);
printf ("The surface area of the sphere is %8.4f.\n",radius2Surface(radius));
printf ("The volume of the sphere is %8.4f.\n",radius2Volume(radius));
return O;

}

Note the three lines making up the include guard in helper.h. During preprocessing of a C file, if helper.h
is included, the flag (macro) HELPER H is defined. If the same C file tries to include helper.h again, the
include guard will recognize that HELPER_H already exists and therefore skip the prototypes and constant
definition. Without include guards, if we wrote a .c file including both headerl.h and header2.h, not
knowing that header2.h already includes header1.h, we would get a compilation error due to duplicate
declarations.

When we compile our source files (using gcc helper.c main.c -o main) and run, we get the output

Pi is approximated as 3.14159260000000006840537.
The surface area of the sphere is 113.0973.
The volume of the sphere is 113.0973.

Much more can be said about breaking a program into multiple files, the use of makefiles, etc., but we
will stop here.

35

A.5 Exercises

10.

11.

12.

13.

14.

15.

. Install C, create the HelloWorld.c program, and compile and run it.

Explain what a pointer variable is, and how it is different from a non-pointer variable.
Explain the difference between interpreted and compiled code.

Write the following hexadecimal (base-16) numbers in eight-digit binary (base-2) and three-digit decimal
(base-10). Also, for each of the eight-digit binary representations, give the value of the most significant
bit. (a) 0x1E. (b) 0x32. (c¢) 0xFE. (d) 0xC4.

What is 33319 in binary and 10111101115 in hexadecimal? What is the maximum value, in decimal,
that a 12-bit number can hold?

Assume that each byte of memory can be addressed by a 16-bit address, and every 16-bit address has a
corresponding byte in memory. How many total bits of memory do you have?

(Consult an ASCII table.) Let ch be of type char. (a) The assignment ch = ’k’ can be written
equivalently using a number on the right side. What is that number? (b) The number for ’5°? (c) For
’=>7 (d) For ’7°7

What is the range of values for an unsigned char, short, and double data type?
How many bits are used to store a char, short, int, float, and double?
Explain the difference between unsigned and signed integers.

(a) For integer math, give the pros and cons of using chars vs. ints. (b) For floating point math, give
the pros and cons of using floats vs. doubles. (c) For integer math, give the pros and cons of using
chars vs. floats.

The following signed short ints, written in decimal, are stored in two bytes of memory using the
two’s complement representation. For each, give the four-digit hexadecimal representation of those two
bytes. (a) 13. (b) 27. (c) —10. (d) —17.

The smallest positive integer that cannot be exactly represented by a four-byte IEEE 754 float is
224 11, or 16,777,217. Explain why.

Technically the data type of a pointer to a double is “pointer to type double.” Of the common integer
and floating point data types discussed in this chapter, which is the most similar to this pointer type?
Assume pointers occupy eight bytes.

To keep things simple, let’s assume we have a microcontroller with only 28 = 256 bytes of RAM, so
each address is given by a single byte. Now consider the following code defining four local variables:

unsigned int i, j, *kp, *np;

Let’s assume that the linker places i in addresses 0xB0..0xB3, j in 0xB4..0xB7, kp in 0xBS8, and np in
0xB9. The code continues as follows:

// (a) the initial conditions, all memory contents unknown

kp = &i; // (o)
j = *kp; // ()
i = OxAE; // (@)
np = kp; // (e)
*np = 0x12; // (£)
j = *kp; /7 ()

36

16.

17.
18.

19.

20.

21.

22.

23.
24.
25.

For each of the comments (a)-(g) above, give the contents (in hexadecimal) at the address ranges
0xB0..0xB3 (the unsigned int i), 0xB4..0xB7 (the unsigned int j), 0xB8 (the pointer kp), and
0xB9 (the pointer np), at that point in the program, after executing the line containing the comment.
The contents of all memory addresses are initially unknown or random, so your answer to (a) is
“unknown” for all memory locations. If it matters, assume little-endian representation.

Invoking the gcc compiler with a command like gcc myprog.c -o myprog actually initiates four steps.
What are the four steps called, and what is the output of each step?

What is main’s data type, and what is the meaning of its return value?

Give the printf statement that will print out a double d with 8 digits to the right of the decimal
point and four spaces to the left.

Consider three unsigned chars, i, j, and k, with values 60, 80, and 200, respectively. Let sum also be
an unsigned char. For each of the following, give the value of sum after performing the addition. (a)
sum = i+j; (b) sum = i+k; (¢) sum = j+k;

For the variables defined as

int a=2, b=3, c;
float d=1.0, e=3.5, f;

a/b; (b) £ = ((float) a)/b; (c) £ = (float)
((int) e)/d;

give the values of the following expressions. (a) f
(a/b); (d) ¢ = e/d; (d) ¢ = (int) (e/d); (f) £

In each snippet of code in (a)-(d), there is an arithmetic error in the final assignment of ans. What is
the final value of ans in each case?

(a) char c = 17;
float ans = (1 / 2) * c;

(b) unsigned int ans = -4294967295;

(c) double d = pow(2, 16);
short ans = (short) d;

(d) double ans = ((double) -15 * 7) / (16 / 17) + 2.0;

Truncation isn’t always bad. Say you wanted to store a list of percentages rounded down to the nearest
percent, but you were tight on memory and cleverly used an array of chars to store the values. For
example, pretend you already had the following snippet of code:

char percent(int a, int b) {
// assume a <= b
char c;
c = 777,

return c;

You can’t simply write ¢ = a / b. If =0.77426 or 7 = 0.778, then the correct return value is ¢ =

77. Finish the function definition by writing a one-line statement to replace ¢ = 777.
Explain why global variables work against modularity.
What are the seven sections of a typical C program?

You've written a large program with a number of functions. Your program compiles without errors,
but when you run the program with input for which you know the correct output, you discover that
your program returns a wrong result. What do you do next? Describe your systematic strategy for
debugging.

37

26. Erase all the comments in invest.c, recompile, and run the program to make sure it still functions
correctly. You should be able to recognize what is a comment and what is not. Turn in your modified
invest.c code.

27. The following problems refer to the program invest.c. For all problems, you should modify the original
code (or the code without comments from the previous problem) and run it to make sure you get the
expected behavior. For each problem, turn in the modified portion of the code only.

(a) Using if, break and exit. Include the header file std1ib.h so we have access to the exit function
(Section A.4.15). Change the while loop in main to be an infinite loop by inserting an expression
<expr> in while(<expr>) that always evaluates to 1 (TRUE). (What is the simplest expression
that evaluates to 17) Now the first command inside the while loop gets the user’s input. if the
input is not valid, exit the program; otherwise continue. Next, change the exit command to a
break command, and see the different behavior.

(b) Accessing fields of a struct. Alter main and getUserInput to set inv.invarray[0] in getUserInput,
not main.

(¢) Using printf. In main, before sendOutput, echo the user’s input to the screen. For example, the
program could print out You entered 100.00, 1.05, and 5.

(d) Altering a string. After the sprintf command of sendOutput, try setting an element of outstring
to 0 before the printf command. For example, try setting the third element of outstring to 0.
What happens to the output when you run the program? Now try setting it to 0’ instead and
see the behavior.

(e) Relational operators. In calculateGrowth, eliminate the use of <= in favor of an equivalent
expression that uses !=.

(f) Math. In calculateGrowth, replace i=i+1 with an equivalent statement using +=.

(g) Data types. Change the fields inv0, growth, and invarray[] to be float instead of double in
the definition of the Investment data type. Make sure you make the correct changes everywhere
else in the program.

(h) Pointers. Change sendOutput so that the second argument is of type int *, i.e., a pointer to an
integer, instead of an integer. Make sure you make the correct changes everywhere else in the
program.

(i) Conditional statements. Use an else statement in getUserInput to print Input is valid if the
input is valid.

(j) Loops. Change the for loop in sendOutput to an equivalent while loop.

(k) Logical operators. Change the assignment of valid to an equivalent statement using || and !,
and no &&.

28. Consider this array definition and initialization:
int x[4] = {4, 3, 2, 1};
For each of the following, give the value or write “error/unknown” if the compiler will generate an error

or the value is unknown. (a) x[1] (b) *x (¢) *(x+2) (d) (*x)+2 (e) *x[3] (f) x[4] (g) *(&(x[1]) +
1)

29. For the (strange) code below, what is the final value of i? Explain why.

int i,k=6;
i = 3%(5>1) + (k=2) + (k==6);

30. As the code below is executed, give the value of ¢ in hex at the seven break points indicated, (a)-(g).

38

31.

32.

33.

unsigned char a=0x0D, b=0x03, c;
= Ta; // (a)
& b; // (©)
| b; // ()
“b; // (D
> 3; // (e)
< 3; // (£)
// (g)

O o0 o0 o0 o0 o0 o0
Vv

2 |
]
o’

In your C installation, or by searching on the web, find a listing of the header file stdio.h. Find the
function prototype for one function provided by the library, but not mentioned in this appendix, and
describe what that function does.

Write a program to generate the ASCII table for values 33 to 127. The output should be two columns:
the left side with the number and the right side with the corresponding character. Turn in your code
and the output of the program.

We will write a simple bubble sort program to sort a string of text in ascending order according to the
ASCII table values of the characters. A bubble sort works as follows. Given an array of n elements
with indexes 0 to n — 1, we start by comparing elements 0 and 1. If element 0 is greater than element 1,
we swap them. If not, leave them where they are. Then we move on to elements 1 and 2 and do the
same thing, etc., until finally we compare elements n — 2 and n — 1. After this, the largest value in the
array has “bubbled” to the last position. We now go back and do the whole thing again, but this time
only comparing elements 0 up to n — 2. The next time, elements 0 to n — 3, etc., until the last time
through we only compare elements 0 and 1.

Although this simple program bubble.c could be written in one function (main), we are going to break
it into some helper functions to get used to using them. The function getString will get the input
from the user; the function printResult will print the sorted result; the function greaterThan will
check if one element is greater than another; and the function swap will swap two elements in the array.
With these choices, we start with an outline of the program that looks like this.

#include <stdio.h>
#include <string.h>
#define MAXLENGTH 100 // max length of string input

void getString(char *str); // helper prototypes
void printResult(char *str);

int greaterThan(char chl, char ch2);

void swap(char *str, int indexl, int index2);

int main(void) {
int len; // length of the entered string
char str[MAXLENGTH] ; // input should be no longer than MAXLENGTH
// here, any other variables you need

getString(str);

len = strlen(str);

// put nested loops here to put the string in sorted order
printResult(str);

return(0) ;

}

// helper functions go here
Here’s an example of the program running. Everything after the first colon is entered by the user.

Blank spaces are written using an underscore character, since scanf assumes that the string ends at
the first whitespace.

39

34.

35.

36.

37.

Enter the string you would like to sort: This_is_a_cool_program!
Here is the sorted string: !'T____aacghiilmoooprrss

Complete the following steps in order. Do not move to the next step until the current step is successful.

a) Write the helper function getString to ask the user for a string and place it in the array passed
g g
to getString. You can use scanf to read in the string. Write a simple call in main to verify that
getString works as you expect before moving on.

(b
(c
(d
(e

) Write the helper function printResult and verify that it works correctly.

) Write the helper function greaterThan and verify that it works correctly.

) Write the helper function swap and verify that it works correctly.

) Now define the other variables you need in main and write the nested loops to perform the sort.
Verify that the whole program works as it should.

Turn in your final documented code and an example of the output of the program.

A more useful sorting program would take a series of names (e.g., Doe_John) and scores associated with
them (e.g., 98) and then list the names and scores in two columns in descending order. Modify your
bubble sort program to do this. The user enters a name string and a number at each prompt. The user
indicates that there are no more names by entering 0 0.

Your program should define a constant MAXRECORDS which contains the maximum number of records
allowable. You should define an array, MAXRECORDS long, of struct variables, where each struct has
two fields: the name string and the score. Write your program modularly so that there is at least a
sort function and a readInput function of type int that returns the number of records entered.

Turn in your code and example output.

Modify the previous program to read the data in from a file using fscanf and write the results out to
another file using fprintf. Turn in your code and example output.

Consider the following lines of code:

int i, tmp, *ptr, arr[7] = {10, 20, 30, 40, 50, 60, 70};

ptr = &arr[6];
for(i = 0; i < 4; i++) {

tmp = arr([il;
arr[i] = *ptr;
*ptr = tmp;
ptr——;

(a) How many elements does the array arr have?

(b) How would you access the middle element of arr and assign its value to the variable tmp? Do this
two ways, once indexing into the array using [] and the other with the dereferencing operator and
some pointer arithmetic. Your answer should only be in terms of the variables arr and tmp.

(c) What are the contents of the array arr before and after the loop?

The following questions pertain to the code below. For your responses, you only need to write down
the changes you would make using valid C code. You should verify that your modifications actually
compile and run correctly. Do not submit a full C program for this question. Only write the changes
you would make using legitimate C syntax.

40

#include <stdio.h>
#tdefine MAX 10

void MyFen(int max);

int main(void) {
MyFen(5);
return(0);

}

void MyFcn(int max) {
int i;
double arr[MAX];

}

if (max > MAX) {

}

printf ("The range requested is too large. Max is %d.\n", MAX);
return;

for(i = 0; i < max; i++) {

}

(a)
(b)

(c)

arr[i] = 0.5 * i;
printf ("The value of i is %d and %d/2 is %f.\n", i, i, arr[il]);

while loops and for loops are essentially the same thing. How would you write an equivalent
while loop that replicates the behavior of the for loop?

How would you modify the main function so that it reads in an integer value from the keyboard
and then passes the result to MyFen? (This replaces the statement MyFen(5) ;.) If you need to use
extra variables, make sure to define them before you use them in your snippet of code.

Change main so that if the input value from the keyboard is between —MAX and MAX, you call
MyFcn with the absolute value of the input. If the input is outside this range, then you simply call
MyFcn with the value MAX. How would you make these changes using conditional statements?

In C, you will often find yourself writing nested loops (a loop inside a loop) to accomplish a task.
Modify the for loop to use nested loops to set the i*" element in the array arr to half the sum of

i—1
the first ¢ — 1 integers, i.e., arr[i] = % >~ 4. (You can easily find a formula for this that doesn’t
j=0

require the inner loop, but you should use nested loops for this problem.) The same loops should
print the value of each arr[i] to 2 decimal places using the %f formatting directive.

38. If there are n people in a room, what is the chance that two of them have the same birthday? If n =1,
the chance is zero, of course. If n > 366, the chance is 100%. Under the assumption that births are
distributed uniformly over the days of the year, write a program that calculates the chances for values
of n =2 to 100. What is the lowest value n* such that the chance is greater than 50%? (The surprising
result is sometimes called the “birthday paradox.”) If the distribution of births on days of the year is
not uniform, will n* increase or decrease? Turn in your answer to the questions as well as your C code
and the output.

39.

In this problem you will write a C program that solves a “puzzler” that was presented on NPR’s
CarTalk radio program. In a direct quote of their radio transcript, found here http://www.cartalk.
com/content/hall-lights?question, the problem is described as follows:

RAY: This puzzler is from my “ceiling light” series. Imagine, if you will, that you have a
long, long corridor that stretches out as far as the eye can see. In that corridor, attached to
the ceiling are lights that are operated with a pull cord.

There are gazillions of them, as far as the eye can see. Let’s say there are 20,000 lights in a
row.

41

They’re all off. Somebody comes along and pulls on each of the chains, turning on each one
of the lights. Another person comes right behind, and pulls the chain on every second light.

TOM: Thereby turning off lights 2, 4, 6, 8 and so on.

RAY: Right. Now, a third person comes along and pulls the cord on every third light. That
is, lights number 3, 6, 9, 12, 15, etc. Another person comes along and pulls the cord on lights
number 4, 8, 12, 16 and so on. Of course, each person is turning on some lights and turning
other lights off.

If there are 20,000 lights, at some point someone is going to come skipping along and pull
every 20,000th chain.

When that happens, some lights will be on, and some will be off. Can you predict which
lights will be on?

You will write a C program that asks the user the number of lights n and then prints out which of the
lights are on, and the total number of lights on, after the last (nth) person goes by. Here’s an example
of what the output might look like if the user enters 200:

How many lights are there? 200

You said 200 lights.

Here are the results:
Light number 1 is on.
Light number 4 is on.

Light number 196 is on.
There are 14 total lights on!

Your program lights.c should follow the template outlined below. Turn in your code and example
output.

[k ok sk ok ok sk sk ok sk ok sk ok ok sk sk ok ok sk sk ok ok sk sk sk ok sk sk ok ok sk ks sk ok sk ks ok sk sk sk ok sk sk sk ok sk ok sk ok ok sk sk sk ok sk ok ok ok
* lights.c

This program solves the light puzzler. It uses one main function
and two helper functions: one that calculates which lights are on,
and one that prints the results.

* X ¥ X ¥

sk stk o ok sk o ok s o ok ok sk o ok sk o sk s o sk o sk sk o s ok ok ok sk ok ok s o ok sk ok o sk s sk s sk sk o sk sk ok sk ok e ok /
#include <stdio.h>
#include <stdlib.h> // allows the use of the "exit()" function

#define MAX_LIGHTS 1000000 // maximum number of lights allowed

// here’s a prototype for the light toggling function
// here’s a prototype for the results printing function

int main(void) {
// Define any variables you need, including for the lights’ states
// Get the user’s input.
// If it is not valid, say so and use "exit()" (stdlib.h, Sec 1.2.16).

// If it is valid, echo the entry to the user.

// Call the function that toggles the lights.
// Call the function that prints the results.

42

40.

return(0) ;

}

// definition of the light toggling function
// definition of the results printing function

We have been preprocessing, compiling, assembling, and linking programs with commands like

gcc HelloWorld.c -o HelloWorld

The gcc command recognizes the first argument, HelloWorld.c, is a C file based on its .c extension.
It knows you want to create an output file called HelloWorld because of the —o option. And since you
didn’t specify any other options, it knows you want that output to be an executable. So it performs all
four of the steps to take the C file to an executable.

We could have used options to stop after each step if we wanted to see the intermediate files produced.
Below is a sequence of commands you could try, starting with your HelloWorld.c code. Don’t type
the “comments” to the right of the commands!

> gcc HelloWorld.c -E > HW.i // stop after preprocessing, dump into file HW.i

> gcc HW.i -S -o HW.s // compile HW.i to assembly file HW.s and stop
> gcc HW.s -c -o HW.o // assemble HW.o to object code HW.o and stop
> gcc HW.o -o HW // link with stdio printf code, make executable HW

At the end of this process you have HW. i, the C code after preprocessing (.1 is a standard extension
for C code that should not be preprocessed); HW. s, the assembly code corresponding to HelloWorld.c;
HW.o, the unreadable object code; and finally the executable code HW. The executable is created from
linking your HW.o object code with object code from the stdio (standard input and output) library,
specifically object code for printf.

Try this and verify that you see all the intermediate files, and that the final executable works as
expected.

If our program used any math functions, the final linker command would be
> gcc HW.o -o HW -1m // link with stdio printf code, make executable HW

Most libraries, like stdio, are linked automatically, but often the math library is not, requiring the
extra —1m option.

The HW.1i and HW.s files can be inspected with a text editor, but the object code HW.o and executable
HW cannot. We can try the following commands to make viewable versions:

> xxd HW.o vil.txt // can’t read obj code; this makes viewable vl.txt
> xxd HW v2.txt // can’t read executable; make viewable v2.txt

The utility xxd just turns the first file’s string of 0’s and 1’s into a string of hex characters, represented
as text-editor-readable ASCII characters 0..9, A..F. It also has an ASCII sidebar: when a byte (two
consecutive hex characters) has a value corresponding to a printable ASCII character, that character is
printed. You can even see your message “Hello world!” buried there!

Take a quick look at the HW.i, HW.s, and v1.txt and v2.txt files. No need to understand these
intermediate files any further. If you don’t have the xxd utility, you could create your own program
hexdump. ¢ instead:

43

#include <stdio.h>
#tdefine BYTES_PER_LINE 16

int main(void) {

FILE *inputp, *outputp;
int c, count = O;
char asc[BYTES_PER_LINE+1], infile[100];

printf("What binary file do you want the hex rep

scanf ("%s",infile) ;
inputp = fopen(infile,"r");
outputp = fopen("hexdump.txt","w");

asc[BYTES_PER_LINE] = 0;
while ((c=fgetc(inputp)) != EOF) {

fprintf (outputp,"hx%x ",(c >> 4),(c & 0xf));
if ((c>=32) && (c<=126)) asc[count] = c;

>

else asc[count] = ’.7;

count++;
if (count==BYTES_PER_LINE) {
fprintf (outputp," %s\n",asc);

count = 0;
}
}
if (count!=0) {
for (c=0; c<BYTES_PER_LINE-count; c++)
fprintf (outputp," ");
asc[count]=0;
fprintf (outputp,"
}
fclose(inputp) ;
fclose(outputp);
printf ("Printed hexdump.txt.\n");
return(0) ;

%s\n",asc) ;

44

// ptrs to in and out files

of? ");

// get name of input file
// open file as "read"

// output file is "write"

// last char is end-string

// get byte; end of file?

// print hex rep of byte

// put printable chars in asc
// otherwise put a dot

// if BYTES_PER_LINE reached
// print ASCII rep, newline

// print last (short) line
// print extra spaces

// add end-string char to asc
// print ASCII rep, newline

// close files

