Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions

Chap 4
Chap 5
Chap 6
Chap 8
Chap 9
Chap 11
Chap 13
3.2.1 Rotation Matrices
3.2.2 Angular Velocities
3.2.3 Exponential Coordinate Representation of Rotation

Forward Kinematics
Velocity Kinematics and Statics
Inverse Kinematics
Dynamics of Open Chains
Trajectory Generation
Robot Control
Wheeled Mobile Robots

Important concepts, symbols, and equations

- $S O(3)$ is a curved 3-dimensional space, but the feasible velocities at any point of $S O(3)$ form a flat 3-dimensional vector space (the "tangent space").

Another example: the tangent space at a point of S^{2}.

- Any rotational velocity can be expressed as an angular velocity $\omega \in \mathbb{R}^{3}$, which can be considered the product of a unit axis (in S^{2}) and a speed (a scalar).

Important concepts, symbols, and equations (cont.)

- Given $p \in \mathbb{R}^{3}$ and ω defined in the same reference frame, $\dot{p}=\omega \times p$.
- Linear algebra notation: $\dot{p}=\omega \times p=[\omega] p$, where

$$
[x]=\left[\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right] \in \operatorname{so(3),} \begin{aligned}
& \text { the } 3 \times 3 \text { real skew-symmetric } \\
& \text { matrices }\left(\text { satisfying }[x]=-[x]^{\mathrm{T}}\right) .
\end{aligned}
$$

so(3) describes the possible \dot{R} when $R=I$, and it is called the Lie algebra of the Lie group $S O$ (3).

Important concepts, symbols, and equations (cont.)

- If $R_{s b}=\left[\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right]$, then $\dot{R}_{s b}=\left[\left[\begin{array}{lll}\left.\omega_{s}\right] p_{1} & {\left[\omega_{s}\right] p_{2}} & {\left[\omega_{s}\right] p_{3}}\end{array}\right]=[\omega] R_{s b}\right.$.
- Expressing the angular velocity in a different frame:

$$
\omega_{b}=R_{b y} \omega_{\dot{p}}=R_{s b}^{-1} \omega_{s}=R_{s b}^{\mathrm{T}} \omega_{s} \quad \omega_{s}=R_{s b} \omega_{b}
$$

- The $s o(3)$ representations:

$$
\left[\omega_{b}\right]=R_{s b}^{-1} \dot{R}=R_{s b}^{\mathrm{T}} \dot{R} \quad\left[\omega_{s}\right]=\dot{R} R_{s b}^{-1}=\dot{R} R_{s b}^{\mathrm{T}}
$$

- Exponential coordinate (axis-angle) representation of orientation: $\hat{\omega} \theta$

Important concepts, symbols, and equations (cont.)

- Scalar first-order linear diffeq:

$$
\begin{aligned}
\dot{x}(t)=a x(t) \Longrightarrow x(t)= & e^{a t} x_{0} \\
& e^{a t}=1+a t+\frac{(a t)^{2}}{2!}+\frac{(a t)^{3}}{3!}+\cdots
\end{aligned}
$$

- Vector first-order linear diffeq:

$$
\dot{x}(t)=A x(t) \Longleftrightarrow x(t)=e^{A t} x_{0}
$$

$$
e^{A t}=I+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
$$

matrix exponential

Important concepts, symbols, and equations (cont.)

- Integrating an angular velocity

$$
\begin{aligned}
& \dot{p}=\hat{\omega} \times p=[\hat{\omega}] p \longrightarrow p(t)=e^{[\hat{\omega}] t} p(0) \\
& p(\theta)=e^{[\hat{\omega}] \theta} p(0) \\
& \operatorname{Rot}(\hat{\omega}, \theta)=e^{[\hat{\omega}] \theta}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2} \in S O(3) \\
& \text { Rodrigues' formula }
\end{aligned}
$$

- Matrix exponential and matrix log:

$$
\begin{gathered}
\exp :[\hat{\omega}] \theta \in \operatorname{so}(3) \rightarrow R \in S O(3) \\
\log : R \in S O(3) \rightarrow[\hat{\omega}] \theta \in \operatorname{so}(3)
\end{gathered}
$$

