
ME 333: Introduction to Mechatronics

Assignment 3: Investigating the PIC C32 Tool Suite

Electronic submission due before 11:00 AM on Thursday February 2nd

All questions asked in this problem set must be typed and submitted via Blackboard. See the ME333
homepage for more details. To make it easier to find the questions in this document, questions are in

bold.

1 Understanding the Compiler and the Includes

The questions in this section are about “Simple pic.c”, which we discussed in class. This program can
be found on the Mechatronics wiki at http://hades.mech.northwestern.edu/index.php/Image:Simple_
pic.c. Before answering the problems in this section, you should create an MPLAB X project with this file
and compile it.

As mentioned in the Crash Course in C document, there are several steps in the C compilation process
that takes a piece of source code in C all of the way to a .hex file that you can put on your PIC. As with
any C compilation process, the main components in the mplabc32 compiler suite utilized by MPLAB X are
the compiler the assembler, and the linker. In this section, we are going to look at each of components in
more detail.

1.1 The C compilation process

The job of the C compiler1 is to translate your C source code to the assembly language of the target device.
The compiler has the freedom to do this in several ways and compiler options can produce significantly
different assembly-level code. The assembler performs the task of taking the assembly language files (*.s file)
created by the compiler and outputs object files (*.o file). The object files are the machine code equivalent
of your C source files2. In the final step, the linker takes all of the object files and outputs the executable file
(*.elf file). The role of the linker is to put all of the object files into one file and assign memory addresses to
each function and global variable defined in your C program according to a set of rules in a linker script (*.ld
file, such as procdefs.ld). The process up to this point is very similar to what happens when we compile C
code for the computer. When compiling code for the PIC there is an additional step that involves converting
the *.elf executable into a *.hex file that we then load onto the PIC.

Questions

(a) What files were generated after you compiled the “Simple pic.c” project? This includes any
*.o, *.o.d, *.elf, and *.hex files. This does not include any Makefiles, *.mk, *.bash, *.xml or *.properties
files.

1Technically the Microchip compiler is a cross-compiler, because the “host” machine (e.g., your PC or laptop) has a differ-
ent hardware architecture (Intel, AMD, ARM, and MIPS are examples of companies that sell computer chips with different
architectures) than the “target” machine (the PIC32).

2In fact, an object file can stand in as a replacement for the corresponding source code. If I wanted to compile my program
with your proprietary functions, you can send me your object files and I would be able to compile my program without your
source code.

1

http://hades.mech.northwestern.edu/index.php/Image:Simple_pic.c
http://hades.mech.northwestern.edu/index.php/Image:Simple_pic.c

(b) In MPLAB X, click Help→Help Contents to bring up the documentation for both MPLAB X and the
compiler. In the “Contents” tab you will find a topic titled “C32 Toolchain” under the “Language Tools”
heading. After reading the first couple of pages3, what are the names of tools used for compiling,
assembling and linking? These are the executables that the IDE is ultimately calling when building
your program.

(c) In class you explored <plib.h>, which turned out to be a convenient way to include all of the Microchip
PIC32 definitions. Go to the top-level Microchip directory on your computer (on my PC it’s C:\Program
Files\Microchip) and search for files named <plib.h> in that directory. How many files named
<plib.h> do you find? If you open them, you’ll notice that they each have subtle differences. How
does the C compiler know which file to use? How can you even tell what the compiler is doing? A handy
compiler switch is --verbose, which tells the gcc compiler to tell you everything it is doing. To enable
this switch, go to Run→Set Project Configuration→Customize.... In the left window pane, select pic32-
gcc. This changes the right window pane where you should see a textbox labeled “Additional options:”.
In this box type in --verbose. Press OK and recompile your project. After compiling your project look
through the output window and you’ll find the #include search path. Using this information, which
plib.h file is the compiler using? Write down enough of the file’s path name to distinguish it from
the other file locations. If in doubt, give the absolute path.

(d) Eventually everything should map down to the hardware. Open up the p32mx795f512l.h file and go to
line 5,924. You’ll see the definition for PORTA. Judging from the attribute tag, where is the header
file telling the compiler to place PORTA? When all of the source code has been compiled into object
files it becomes the job of the linker to make sure that PORTA resides at the correct address in memory.
All of the SFRs, including PORTA, are defined in a special object file, processor.o, that contains all of
the SFR addresses. Our PIC’s processor.o file is in pic32mx\lib\proc\32MX795F512L. What else is
in this folder that might be useful to the linker? If you have some experience with the command
line you can inspect this object file with a utility called objdump:

./pic32-objdump -t processor.o

Some sample output from executing this command is shown below:

bf886000 g O *ABS* 00000000 TRISA

bf886004 g O *ABS* 00000000 TRISACLR

bf886008 g O *ABS* 00000000 TRISASET

bf88600c g O *ABS* 00000000 TRISAINV

bf886010 g O *ABS* 00000000 PORTA

bf886014 g O *ABS* 00000000 PORTACLR

bf886018 g O *ABS* 00000000 PORTASET

bf88601c g O *ABS* 00000000 PORTAINV

bf886020 g O *ABS* 00000000 LATA

bf886024 g O *ABS* 00000000 LATACLR

bf886028 g O *ABS* 00000000 LATASET

bf88602c g O *ABS* 00000000 LATAINV

At what address (the first column) is processor.o telling the linker to place PORTA? Is the
address a virtual or physical address? This address should line up with the address given in the
PIC32 data sheet. You can verify this by looking at Table 4-24 in the data sheet. A useful piece of
information to know is the default value of PORTA at startup. Refer to Table 4-24, what is the reset
value of PORTA?

3Documentation is also available in *.pdf form. It is available on Microchip’s website or from within the directories where
MPLAB X and your C32 compiler are installed.

2

(e) We will sparingly use the functions and macros defined in the Microchip library, but you should still
be aware of what it offers. In your PIC32 C tool suite directory, you’ll find a header file for each
important peripheral on the PIC32 in the peripheral/ folder. Open the file ports.h in the peripheral
directory and go to line 1,171. Here you’ll find macros for manipulating PORTA. How would you use
mPORTAReadBits(...) to read the values on pins A0 and A9? Your answer should involve calling
the macro function with the proper input.

1.2 The Linker

Recall that it is the job of the linker to stitch the object files into a .elf file. Passing the option “-M” to
the linker tells the linker to generate a “map” file. A *.map file is a simple text file that contains a report
on the output of the linking process. It details how much memory was used as well as the address assigned
to your program’s global variables, functions, and object files. To tell MPLAB X to generate this file, click
File→Project Properties and then select the pic32-ld section of the options. From the Option categories
dropdown menu, select Diagnostics; then in the box to the right of “Generate map file” enter a name for
the map file to be saved as. For example, “simple pic memory.map”.

Note that the *.map file is organized following a standard convention. Briefly, the .text section is where
the machine instructions get grouped together. The other sections like .sbss and .data, and .bss are where
constants and global data is stored.

Questions

(a) By searching the generated *.map file, determine the following: what memory addresses (in hex)
did the linker place the main() and delay() functions in the output .elf file? (Use a text editor
with searching capabilities, you shouldn’t read the whole *.map file.)

(b) Add a global variable and a global constant to your file by adding the following line just below the
#include <plib.h> line:

int glob = 21;

Now clean and rebuild the project and open the *.map file again. Find the reference to “glob” in the
*.map file. It should be in a section called “.sdata”. How many bytes does this variable use (in
hex)? Change the data type to a char. How many bytes does it use now (in hex)? Look at the
“Microchip PIC32 Memory-Usage Report” towards the top of the *.map file, and find the .sdata section.
Where in the PIC’s memory does char glob get placed (in hex)?

(c) How large is the total .o (in hex bytes) produced by this simple C file? This will be found in
a .text section. The 32 bit hex number is the address in the virtual memory map where the object file
will be placed. The shorter hex number in the third column is the total memory usage of that object
file.

(d) The procdefs.ld file is used by the linker to determine where in memory the object files go. Is the loca-
tion of the “Simple pic.c” consistent with procdefs.ld, in other words, does the location of
the .o get placed within kseg0 program memory as we would expect? Are the instructions
here cacheable?

(e) Temporarily move procdefs.ld out of the directory that contains the source code. Clean and build the
project to re-compile everything. Look at the new map file. Where does “Simple pic.o” get placed
now (in hex)? Has it changed? Note that the NU32 bootloader also has code in this region and it
won’t erase itself. Knowing this, will the newly compiled version (that is missing procdefs.ld)4

4In the absence of a local procdefs.ld file, the linker automatically uses a default one that is included with the installation
of the C32 toolsuite.

3

run on the NU32? Having control of where programs are placed in memory according to a linker file
is a powerful tool that allows different programs, like a bootloader and your code to be placed in flash
without interfering with each other.

1.3 The Disassembler

It is very easy to go from an object file to the original assembly file because a computer’s assembly language
is a direct one-to-one mapping to the computer’s machine code. Going from a .o file to a .s file requires
a disassembler –the MPLAB toolsuite uses pic32-objdump. If we have access to the source code, the
disassembly will show C code followed by the assembly language it generated. The format of each line
that contains assembly is a memory address in hex, machine code in hex, followed by the code in assembly
language. To see the disassembly in MPLAB X, click Window→Output→Disassembly listing window. Note
that a file containing the disassembly can also be generated by passing command-line arguments to the
compiler, or calling pic32-objdump manually.

Questions

(a) In the delay() function there is the following line:

LATAbits.LATA5 = !LATAbits.LATA5; LATAbits.LATA4 = !LATAbits.LATA4;

How many assembly instructions does this line generate when we view the disassembly? Just
below this line is a different version of the same thing that uses the “fast bit manipulation” INV register
for Latch A. Change your code to use this line instead, recompile, and analyze the new disassembly.
How many instructions are produced now?

(b) Assume that you have the value 0xF0CA in LATA. You are trying to get the latch to contain the value
0xAAAA. What are the two lines of C code that write to the LATASET and LATACLR
addresses to accomplish this? What value do you write to the LATAINV address to ac-
complish the same thing?

(c) MPLAB X has some very useful tools for exploring the files that your project includes. Clicking
Window→Classes from the top menu will bring up a listing of all classes, functions, structs, macros, and
constants that are available for your use. As described in detail at http://hades.mech.northwestern.
edu/index.php/NU32:_A_Detailed_Look_at_Programming_the_PIC32_on_the_NU32 the inclusion of
plib.h at the top of this simple file actually includes many .c, .h, and .o files written by Microchip that
define all of the SFRs, the addresses of the SFRs, the macros to interface with the PIC, and much more.
The Classes window provides a convenient interface to all of these files. Using this window, what file
defines the struct we are using when we type LATAbits.LATA5?

(d) We can roughly estimate the time that a given function or chunk of code will take to run by analyzing
the assembly code. The architecture of the PIC32 is such that most instructions can be executed in a
single clock cycle. Modify the for loop in the delay function, so that it stops after 10,000 iterations.
Looking at the disassembly for the delay() function, find the line that looks something like:

9D0080B0 AFC00000 SW ZERO, 0(S8)

located just below the C line for (j=0;j<10000;j++). Now find the line

9D0080D0 00000000 NOP

just above the “}” that closes the for loop. How many lines of assembly code are there between
these two lines? Each of these assembly lines gets executed once for a single pass through the for

loop. Knowing that our CPU runs at 80MHz, how long does a single pass through the for loop
take? Using this number, at approximately what frequency should the lights be toggling?
Looking at the running program, does your estimate seem reasonable?

4

http://hades.mech.northwestern.edu/index.php/NU32:_A_Detailed_Look_at_Programming_the_PIC32_on_the_NU32
http://hades.mech.northwestern.edu/index.php/NU32:_A_Detailed_Look_at_Programming_the_PIC32_on_the_NU32

(e) Modify the C code in this simple program to make pin A0 a digital output. Then add lines above
and below the call to delay() that allow you to toggle the logic level that pin A0 has. If you haven’t
yet, modify the for loop in the delay function, so that it stops after 10,000 iterations. Now with your
NUScope, calculate the time that the delay loop takes. This is a useful trick to time how long your
functions are taking. How long is delay? How far off was your estimate?

1.4 The Bootloader

When the PIC32 is reset it automatically starts executing whatever it finds at memory address 0xBFC00000.
For us this happens to be the start of the NU32 bootloader program. Downlod the bootloader source code
from http://hades.mech.northwestern.edu/index.php/Image:NU32_boot.zip. In MPLAB X load the
project in the PIC32 UART Bootloader BootFlash Explorer16.X project folder. The code in this project is
complicated, but BootLoader.c is simple enough to follow along at a high level. For example, you can
tell that lines 49-54 are where the configuration bits are set. The main program calls two functions,
ValidAppPresent() and JumpToApp(). Take a look at these functions and answer the questions below.

Questions

(a) In the function JumpToApp(), what address is the application expected to begin at? You should
use the tools built into the IDE to quickly find the definition of USER APP RESET ADDRESS. For example,
Navigate→Go To Declaration.

(b) How does the bootloader know in ValidAppPresent() that there is a valid application at
USER APP RESET ADDRESS? Because the PIC32 uses NAND flash memory, a long string of this value
represents unused space on a NAND-based flash device, like the memory card found in cameras or USB
sticks. Note: If you are unsure of what a DWORD is, use the IDE to help you find its definition.

2 What to turn in

For the questions, you must submit typed responses. Place your typed responses (the TAs prefer a PDF file)
in a zip file and submit the zip file through Blackboard before class on the date the assignment is due. The
name of the zip file you submit will be of the form lastname firstname a3.zip.

5

http://hades.mech.northwestern.edu/index.php/Image:NU32_boot.zip

	Understanding the Compiler and the Includes
	The C compilation process
	The Linker
	The Disassembler
	The Bootloader

	What to turn in

