
ME 333 Introduction to Mechatronics
Winter 2011

Final Project Starter Code

Note: This project uses a new procdefs.ld file, different from the one you’ve used through most of the course.
This is because the previous procdefs.ld file was written to work with PICs that have 32K RAM or more. In this
project, we want access to our complete 128K RAM.

1 Quickstart
Make sure your encoder, H-bridge, and current sensing circuits are working properly, as tested by the milestone sample
code. Now download the MPLAB code and Processing GUI for the final project. Compile the MPLAB code, load it
onto your PIC, and then fire up the Processing app and connect to the PIC. In the GUI, enter the following in the text
boxes (don’t touch the “Message” box):

Motion Vector: -0.01 0.02 -0.01

Time Vector: 350 500

I Control Params: 0.065

Motion Control Params: 10

User Input: 0

Make sure not to include any extra spaces after the last digits. Now click the button Test Trajectory. You
should see the trajectory that your motor will attempt to execute. At the top and bottom of the screen, you will see the
maximum and minimum y values (motor angle in encoder counts), and at the left and the right of the screen, you will
see the maximum and minimum x values (time in seconds).

Now make sure that your 6 V battery pack is connected and the motor is mounted and ready to run. Click Execute
Control. The motor should execute a 7.5 s trajectory. At the end, you will see the actual trajectory plotted against
the reference trajectory, similar to Figure 1. (You can also click the Plot Motion button to ensure that you are
seeing this.) If your motor seems to spin “out of control,” you can switch the power leads of your motor. If you now
see that you get some reasonable tracking behavior, you know everything is hooked up properly, and you are ready to
begin experimenting with your own control code. You can try clicking the Plot Error button to zoom in on the
error between the reference and desired positions (Figure 2).

2 What Just Happened (Using the GUI)
Conceptually, the GUI serves two major purposes:

1. Accept user input and send it to the PIC. You are sending the following to the PIC:

• Motion Vector: This consists of n angular accelerations, each separated by a space and written in
encoder counts per sample time squared. Our sample time is ∆t = 0.005 s, corresponding to a motion
control frequency of 200 Hz. Thus an acceleration of 0.02 means that if we start at rest and execute this
acceleration for 100 ∆t (half a second), we will be at a velocity of 0.02 × 100 = 2 encoder counts per
∆t. Since we have 99 lines per revolution on our encoder, at 4x decoding we have 396 counts/rev, and a
velocity of 2 encoder counts per ∆t is equal to (2 counts/∆t) ×(200∆t/s) / (396 counts/rev) = 1.01 rev/s.

• Time Vector: This consists of n− 1 time durations, written as integers of sample times ∆t. There are
only n − 1 entries so that the final duration can be calculated to be the duration that brings the motor to
rest at the end of the trajectory. You should always click Test Trajectory before trying Execute
Control so you can see if the trajectory is actually feasible. For example, if you enter only positive
accelerations in Motion Vector, the motor can never come to a stop, and the GUI will indicate an
error. Similarly, if the trajectory takes too long to execute, the GUI will indicate an error. The maximum
duration of a trajectory is 3500 sample times (or 3500 × 0.005 s = 17.5 s).

1



Figure 1: Reference and actual trajectory.

Figure 2: The position error from Figure 1.

For the quickstart example above, you see that the motor will have a velocity of 350 × (−0.01) + 500 ×
0.02 = 6.5 counts/∆t after the first two acceleration segments. Since the last acceleration is −0.01, the
last duration must be 650∆t, giving a total duration of 350+500+650 = 1500 ∆t = 7.5 s.
The Motion Vector and Time Vector data are for use by a trajectory generator routine that we
have written and are giving to you. You should not modify that routine.

• I Control Params: The inputs you type here will be sent as an array of floats to the PIC, and are
intended for your current controller. You can do whatever you want with these in the PIC code. For
example, you could type in a proportional current gain, an integral gain, or whatever. It is up to you to
determine how many values you would like to send over, and how to interpret them on the PIC. This array
should have no more than 25 elements.

• Motion Control Params: These inputs will be sent as an array of floats to the PIC. They are in-
tended for use in your motion controller; for example, they can be proportional gains, an inertia estimate,
etc. It is up to you to determine how many values you would like to send over, and how to interpret them

2



Figure 3: An example showing the performance of the current controller, tested with Execute I Tuning.

on the PIC. This array should have no more than 25 elements.

• User Input: You may wish to send other information to the PIC, for example for a custom calibration
routine. You can use this text box to do so. These inputs will be sent as an array of floats to the PIC. This
array should have no more than 25 elements.

2. Receive results from the PIC and plot them. The PIC will send back the following for plotting on the GUI:

• Arrays of the reference position trajectory and the actual position trajectory, collected at 200 Hz.

• Arrays of the commanded current and the actual current as a function of time, collected at 200 Hz.

• Arrays of the commanded current and actual current, collected at 10 kHz. This array only keeps the most
recent data. This data is mostly useful when you are tuning your current controller. (See Execute I
Tuning, below.)

• User-defined arrays to carry whatever information you want. For example, you might want to send back
filtered velocity data or PWM duty cycles. Or you may choose to send nothing else back. Regardless, this
array is limited to length 3500; don’t try to access it out of bounds.

• A score, indicating how well your motor tracked the trajectory.

• A message, if you wish, from the PIC to the user to be displayed in the Message text box.

The buttons included on the GUI are the following:

• Test Trajectory. This shows you the trajectory you just entered and tells you if it’s valid.

• Execute User Code. This sends over the GUI entries and calls a user-defined function written on the PIC
(optional).

• Execute I Tuning. This sends over the GUI entries and performs a current control test. The commanded
current is a 100 Hz square wave with values ±0.1 Amps. You can tune your current controller parameters (feed-
forward parameters or feedback gains) to achieve good current tracking. Your motor will not move appreciably
due to the high frequency and short duration of the test. The reference and measured current, collected at 10 kHz
for a few cycles, will be sent back for plotting. See Figure 3 as an example.

• Execute Control. This sends over the GUI entries and tells the PIC to follow the specified trajectory. It
plots the position data when the PIC finishes control.

• Save & Print. This saves the data from the previous run to a file, for further examination in other programs
(e.g., Matlab or Excel).

3



• Plot User. This plots any data you may have saved in the user1 and user2 arrays, like PWM duty cycles,
velocity estimates, etc.

• Plot 200Hz I. This plots the desired and actual current (in ADC counts) collected at 200 Hz.

• Plot 10kHz I. This plots the desired and actual current collected at 10 kHz. This only keeps the last 300
samples, and is mostly useful for the current tuning loop.

• Plot Motion. This plots the desired and actual position (in encoder counts) collected at 200 Hz.

• Plot Error. This plots the error between the desired and actual position at 200 Hz.

3 Modifying Your PIC Control Code
The PIC32 code is broken into three files: NU32v2 final.h, NU32v2 final.c, and MotorController.c. You will have no
need to modify NU32v2 final.c. Your changes will be limited to NU32v2 final.h and MotorController.c.

We have done a lot of testing of the code. However, if you run into any bugs that is in code we provided,
please let us know immediately.

3.1 What You Must Modify
3.1.1 NU32v2 final.h

This file is broken into three sections: (1) functions and variables you should modify, (2) functions and variables that
you can safely call and use, and (3) functions and variables you should never need to invoke, nor should you alter.

In (1), you should set the constants ADC COUNTS ZERO AMPS to be the ADC reading when your motor has zero
amps through it, and ADC COUNTS PER AMP to be the change in the ADC reading for each amp flowing through the
motor. MAX VOLTS should be the maximum voltage the H-bridge outputs at 100% duty cycle (likely around 4 V for a
6 V battery pack). You can leave everything else in this section unchanged; the function prototypes refer to functions
in MotorController.c, which we will come to later.

In (2), you see some function, constant, and variable definitions that you shouldn’t change. As an example,
Pref(dt) will return the motor reference position at time step dt. This could be useful in your controller (see the
sample motion controller in MotorController.c).

3.1.2 MotorController.c

In this file you should modify the functions MotionControl, CurrentControl, MotionControlParameters,
and CurrentControlParameters, and optionally UserPlot and UserFunction. Sample proportional con-
trollers have been given to you for the default MotionControl and CurrentControl routines. You should try to
improve these. At the end of the MotionControl function, however, you must set desired current in amps
so that CurrentControl has a reference value. At the end of the CurrentControl function, you must set the
PWM duty cycle and the H-bridge direction pin.

The functions MotionControlParameters and CurrentControlParameters take the array of values
sent by the Processing GUI and put them into the proper variables representing your control gains, model parameters,
etc. When you use the GUI, you need to know the order in which the PIC code is expecting to receive these values.
These functions are called with the number of values the user sent from the GUI, as well as the array of values.
Similarly, the function UserFunction, which is called if the GUI user clicks the “Execute User Code” button, is
responsible for interpreting the array of values sent from the User text box in the GUI. The function UserPlot gives
the user the option to send data back from the PIC for plotting under the “Plot User” button whenever any of the
execute GUI buttons are pressed.

3.2 What You May Not Modify (i.e., Everything Else)
The code we have written for you takes care of the communication, reading the encoder, generating the trajectory,
setting up the interrupt service routines, etc. We have given you enough flexibility to design your controller without
changing these. Therefore, to keep the playing field level, you are not allowed to change code in NU32v2 final.c. We
have included the source code for you, though, so you can see all the code if you’re interested.

4



In particular, the two ISRs (one using TIMER 3, triggering at 200 Hz for the MotionControl function, and one
at 10 kHz when a new ADC sample is ready, for the current controller) are defined at the very end of NU32v2 final.c.
These two ISRs call your MotionControl and CurrentControl functions, respectively. You may wish to
inspect these ISRs. The 200 Hz ISR also keeps track of your tracking score. Obviously you are not allowed to change
this! (We can test for it, if need be.)

5


