
INTRODUCTION TO ROBOTICS

MECHANICS, PLANNING, AND CONTROL

F. C. Park and K. M. Lynch

Contents

1 Preview 1

2 Configuration Space 9
2.1 Degrees of Freedom of a Rigid Body 10
2.2 Degrees of Freedom of a Robot 13

2.2.1 Robot Joints . 13
2.2.2 Grübler’s Formula . 14

2.3 Configuration Space: Topology and Representation 19
2.3.1 Configuration Space Topology 19
2.3.2 Configuration Space Representation 21

2.4 Configuration and Velocity Constraints 25
2.5 Task Space and Workspace . 28
2.6 Summary . 31
2.7 Exercises . 33

3 Rigid-Body Motions 51
3.1 Rigid-Body Motions in the Plane 53
3.2 Rotations and Angular Velocities 59

3.2.1 Rotation Matrices . 59
3.2.2 Angular Velocity . 65
3.2.3 Exponential Coordinate Representation of Rotation . . . 68

3.3 Rigid-Body Motions and Twists 77
3.3.1 Homogeneous Transformation Matrices 77
3.3.2 Twists . 83
3.3.3 Exponential Coordinate Representation of Rigid-Body Mo-

tions . 90
3.4 Wrenches . 93
3.5 Summary . 95
3.6 Software . 97
3.7 Notes and References . 98
3.8 Exercises . 99

i

CONTENTS

4 Forward Kinematics 117
4.1 Product of Exponentials Formula 120

4.1.1 First Formulation: Screw Axes Expressed in Base Frame . 120
4.1.2 Examples . 122
4.1.3 Second Formulation: Screw Axes Expressed in End-E↵ector

Frame . 127
4.2 The Universal Robot Description Format 130
4.3 Summary . 135
4.4 Software . 137
4.5 Exercises . 138

5 Velocity Kinematics and Statics 149
5.1 Manipulator Jacobian . 155

5.1.1 Space Jacobian . 155
5.1.2 Body Jacobian . 159
5.1.3 Relationship between the Space and Body Jacobian . . . 161
5.1.4 Alternative Notions of the Jacobian 162
5.1.5 Inverse Velocity Kinematics 163

5.2 Statics of Open Chains . 163
5.3 Singularity Analysis . 164
5.4 Manipulability . 169
5.5 Summary . 172
5.6 Software . 173
5.7 Notes and References . 174
5.8 Exercises . 175

6 Inverse Kinematics 191
6.1 Analytic Inverse Kinematics . 193

6.1.1 6R PUMA-Type Arm . 193
6.1.2 Stanford-Type Arms . 196

6.2 Numerical Inverse Kinematics . 198
6.2.1 Newton-Raphson Method 198
6.2.2 Optimization Basics . 199
6.2.3 Numerical Inverse Kinematics Algorithm 201

6.3 Inverse Velocity Kinematics . 205
6.4 A Note on Closed Loops . 207
6.5 Summary . 207
6.6 Software . 208
6.7 Notes and References . 208
6.8 Exercises . 209

7 Kinematics of Closed Chains 217
7.1 Inverse and Forward Kinematics 218

7.1.1 3⇥RPR Planar Parallel Mechanism 219
7.1.2 Stewart-Gough Platform 221
7.1.3 General Parallel Mechanisms 222

Park and Lynch ii 16:22 September 20, 2016

CONTENTS

7.2 Di↵erential Kinematics . 223
7.2.1 Stewart-Gough Platform 224
7.2.2 General Parallel Mechanisms 225

7.3 Singularities . 227
7.4 Summary . 231
7.5 Notes and References . 232
7.6 Exercises . 234

8 Dynamics of Open Chains 241
8.1 Lagrangian Formulation . 242

8.1.1 Basic Concepts and Motivating Examples 242
8.1.2 General Formulation . 246
8.1.3 Understanding the Mass Matrix 248
8.1.4 Lagrangian Dynamics vs. Newton-Euler Dynamics 250

8.2 Dynamics of a Single Rigid Body 251
8.2.1 Classical Formulation . 251
8.2.2 Twist-Wrench Formulation 255

8.3 Newton-Euler Inverse Dynamics 257
8.3.1 Derivation . 257
8.3.2 Newton-Euler Inverse Dynamics Algorithm 260

8.4 Dynamic Equations in Closed Form 260
8.5 Forward Dynamics of Open Chains 263
8.6 Dynamics in Task Space Coordinates 264
8.7 Constrained Dynamics . 266
8.8 Robot Dynamics in the URDF 267
8.9 Actuation, Gearing, and Friction 268

8.9.1 DC Motors and Gearing 270
8.9.2 Apparent Inertia . 273
8.9.3 Friction . 276
8.9.4 Joint and Link Flexibility 277

8.10 Summary . 277
8.11 Software . 280
8.12 Notes and References . 282
8.13 Exercises . 283

9 Trajectory Generation 289
9.1 Definitions . 289
9.2 Point-to-Point Trajectories . 290

9.2.1 Straight-Line Paths . 290
9.2.2 Time Scaling a Straight-Line Path 292

9.3 Polynomial Via Point Trajectories 297
9.4 Time-Optimal Time Scaling . 299

9.4.1 The (s, ṡ) Phase Plane . 301
9.4.2 The Time-Scaling Algorithm 304
9.4.3 Assumptions and Caveats 306

9.5 Summary . 307

Park and Lynch iii 16:22 September 20, 2016

CONTENTS

9.6 Software . 308
9.7 Notes and References . 308
9.8 Exercises . 310

10 Motion Planning 315
10.1 Overview of Motion Planning . 315

10.1.1 Types of Motion Planning Problems 316
10.1.2 Properties of Motion Planners 317
10.1.3 Motion Planning Methods 318

10.2 Foundations . 319
10.2.1 Configuration Space Obstacles 319
10.2.2 Distance to Obstacles and Collision Detection 323
10.2.3 Graphs and Trees . 324
10.2.4 Graph Search . 325

10.3 Complete Path Planners . 328
10.4 Grid Methods . 329

10.4.1 Multi-Resolution Grid Representation 331
10.4.2 Grid Methods with Motion Constraints 332

10.5 Sampling Methods . 337
10.5.1 The RRT . 338
10.5.2 The PRM . 342

10.6 Virtual Potential Fields . 344
10.6.1 A Point in C-space . 344
10.6.2 Navigation Functions . 347
10.6.3 Workspace Potential . 348
10.6.4 Wheeled Mobile Robots 349
10.6.5 Use of Potential Fields in Planners 349

10.7 Nonlinear Optimization . 349
10.8 Smoothing . 351
10.9 Summary . 352
10.10Notes and References . 354
10.11Exercises . 356

11 Robot Control 359
11.1 Control System Overview . 360
11.2 Motion Control . 360

11.2.1 Motion Control of a Multi-Joint Robot with Velocity Input361
11.2.2 Motion Control of a Single Joint with Torque or Force Input363
11.2.3 Motion Control of a Multi-joint Robot with Torque or

Force Input . 374
11.2.4 Task Space Motion Control 376

11.3 Force Control . 378
11.4 Hybrid Motion-Force Control . 380

11.4.1 Natural and Artificial Constraints 380
11.4.2 A Hybrid Controller . 382

11.5 Impedance Control . 384

Park and Lynch iv 16:22 September 20, 2016

CONTENTS

11.5.1 Impedance Control Algorithm 386
11.5.2 Admittance Control Algorithm 387

11.6 Other Topics . 387
11.7 Summary . 388
11.8 Software . 390
11.9 Notes and References . 391
11.10Exercises . 392

12 Grasping and Manipulation 399
12.1 Contact Kinematics . 400

12.1.1 First-Order Analysis of a Single Contact 401
12.1.2 Contact Types: Rolling, Sliding, and Breaking Free 402
12.1.3 Multiple Contacts . 405
12.1.4 Collections of Parts . 406
12.1.5 Other Types of Contacts 407
12.1.6 Planar Graphical Methods 409
12.1.7 Form Closure . 413

12.2 Contact Forces and Friction . 418
12.2.1 Friction . 418
12.2.2 Planar Graphical Methods 420
12.2.3 Force Closure . 423
12.2.4 Duality of Force and Motion Freedoms 428

12.3 Manipulation . 428
12.4 Summary . 434
12.5 Notes and References . 435
12.6 Exercises . 437

13 Wheeled Mobile Robots 455
13.1 Types of Wheeled Mobile Robots 455
13.2 Omnidirectional Wheeled Mobile Robots 457

13.2.1 Modeling . 457
13.2.2 Motion Planning . 461
13.2.3 Feedback Control . 462

13.3 Nonholonomic Wheeled Mobile Robots 462
13.3.1 Modeling . 462
13.3.2 Controllability . 468
13.3.3 Motion Planning . 475
13.3.4 Feedback Control . 480

13.4 Odometry . 483
13.5 Mobile Manipulation . 485
13.6 Summary . 488
13.7 Notes and References . 490
13.8 Exercises . 491

A Summary of Useful Formulas 493

Park and Lynch v 16:22 September 20, 2016

CONTENTS

B Other Representations of Rotations 501
B.1 Euler Angles . 501

B.1.1 Algorithm for Computing the ZYX Euler Angles 503
B.1.2 Other Euler Angle Representations 503

B.2 Roll-Pitch-Yaw Angles . 505
B.3 Unit Quaternions . 506
B.4 Cayley-Rodrigues Parameters . 508

C Denavit-Hartenberg Parameters and Their Relationship to the
Product of Exponentials 511
C.1 Denavit-Hartenberg Representation 511

C.1.1 Assigning Link Frames . 512
C.1.2 Why Four Parameters are Su�cient 515
C.1.3 Manipulator Forward Kinematics 516
C.1.4 Examples . 517
C.1.5 Relation between the Product of Exponential and the

Denavit-Hartenberg Representations 519

Bibliography 521

Index 533

Park and Lynch vi 16:22 September 20, 2016

Chapter 1

Preview

As an academic discipline, robotics is a relatively young field with highly am-
bitious goals, the ultimate one being the creation of machines that can behave
and think like humans. This attempt to create intelligent machines naturally
leads us to first examine ourselves—to ask, for example, why our bodies are de-
signed the way they are, how our limbs are coordinated, and how we learn and
perform complex tasks. The sense that the fundamental questions in robotics
are ultimately questions about ourselves is part of what makes robotics such a
fascinating and engaging endeavor.

Our focus in this book will be on the mechanics, planning and control of
robot mechanisms. Robot arms are one familiar example. So are wheeled
vehicles, as are robot arms mounted on wheeled vehicles. Basically, a mechanism
is constructed by connecting rigid bodies, called links, together with joints, so
that relative motion between adjacent links becomes possible. Actuation of
the joints, typically by electric motors, then causes the robot to move and exert
forces in desired ways.

The links of a robot mechanism can be arranged in serial fashion, like the
familiar open chain arm shown in Figure 1.1(a). Robot mechanisms can also
have closed loops, such as the Stewart-Gough platform shown in Figure 1.1(b).
In the case of an open chain, all of its joints are actuated, while in the case of
mechanisms with closed loops only a subset of its joints may be actuated.

Let us examine more closely the current technology behind robot mecha-
nisms. The links are moved by actuators, which are typically electrically driven
(e.g., DC or AC servo motors, stepper motors, even shape memory alloys), or
sometimes by pneumatic or hydraulic cylinders, or internal combustion engines.
In the case of rotating electric motors, they should ideally be lightweight, oper-
ate at relatively low rotational speeds (e.g., in the range of hundreds of RPM)
and be able to generate large forces and torques. Since most currently avail-
able motors operate in the range of thousands of RPM, speed reduction devices
with low slippage and backlash are often required. Belts, sprockets, and spur
gears are usually not well-suited for this purpose; instead, specially designed
low backlash gears, harmonic drives, and ball screws are used to simultaneously

1

2 Preview

reduce speed and amplify the delivered torque. Brakes may also be attached to
quickly stop the robot or to maintain a stationary posture.

Robots are also equipped with sensors to measure the position and velocity at
the joints. For both revolute and prismatic joints, optical encoders measure the
displacement, while tachometers measure their velocity. Forces at the links or at
the tip can be measured using various types of force-torque sensors. Additional
sensors may be used depending on the nature of the task, e.g., cameras, sonar
and laser range finders to locate and measure the position and orientation of
objects.

This textbook is about the mechanics, motion planning, and control of such
robots. We now provide a preview of the later chapters.

Chapter 2: Configuration Space

(a) An open chain industrial manipulator. (b) Stewart-Gough platform.

Figure 1.1: Open chain and closed chain robot mechanisms.

At its most basic level, a robot consists of rigid bodies connected by joints,
with the joints driven by actuators. In practice the links may not be completely
rigid, and the joints may be a↵ected by factors such as elasticity, backlash,
friction, and hysteresis. In this book we shall ignore these e↵ects for the most
part and assume all links are rigid. The most commonly found joints are revolute
joints (allowing for rotation about the joint axis) and prismatic joints (allowing
for linear translation along the joint axis). Revolute and prismatic joints have
one degree of freedom (either rotation or translation); other joints, such as
the spherical joint (also called the ball-in-socket joint), have higher degrees of
freedom.

In the case of an open chain robot such as the industrial manipulator of
Figure 1.1(a), all of its joints are independently actuated. This is the essen-
tial idea behind the degrees of freedom of a robot: it is the sum of all the
independently actuated degrees of freedom of the joints. For open chains the
degrees of freedom is obtained simply by adding up all the degrees of freedom

3

associated with the joints.
For closed chains like the Stewart-Gough platform shown in Figure 1.1(b),

the situation is somewhat more complicated. First, joints with multiple degrees
of freedom like the spherical joint are quite common. Second, it is usually
not possible to independently actuate all of the joints—fixing a certain set of
joints to prescribed values automatically determines the values of the remaining
joints. For even more complicated closed chains with multiple loops and di↵erent
joint types, determining the degrees of freedom may not be straightforward or
intuitive.

A more abstract but equivalent definition of the degrees of freedom of a robot
begins with the notion of its configuration space: a robot’s configuration
is a complete specification of the positions and orientations of each link of a
robot, and its configuration space is the set of all possible configurations of the
robot. The degrees of freedom, then, is the minimum number of independent
parameters required to specify the position and orientation of each of the links.
Based on this definition we obtain a formula—Grübler’s formula—that relates
the number of links and joints (including the degrees of freedom of each joint)
comprising a robot with its degrees of freedom.

Robot motion planning and control both begin by choosing coordinates that
parametrize the robot’s configuration space. Often the coordinates of choice
are the joint variables, and the configuration space can be parametrized either
explicitly or implicitly in terms of these joint variables. Also, to grasp and
manipulate objects, a robot is typically equipped with an end-e↵ector, e.g.,
a mechanical hand or gripper. The task space, also called the workspace, is
the configuration space of the end-e↵ector. In this chapter we study the various
ways in which the configuration and task spaces of a robot can be parametrized.

Chapter 3: Rigid-Body Motions

This chapter addresses the problem of how to mathematically describe the mo-
tion of a rigid body moving in three-dimensional physical space. One convenient
way is to attach a reference frame to the rigid body, and to develop a way to
quantitatively describe the frame’s position and orientation as it moves. As a
first step, we introduce the 3⇥ 3 matrix representation for describing a frame’s
orientation; such a matrix is referred to as a rotation matrix.

A rotation matrix is parametrized by three independent coordinates. The
most natural and intuitive way to visualize a rotation matrix is in terms of its
exponential coordinate representation. That is, given a rotation matrix R,
there exists some unit vector !̂ 2 R3 and angle ✓ 2 [0,⇡] such that the rota-
tion matrix can be obtained by rotating the identity frame (that is, the frame
corresponding to the identity matrix) about !̂ by ✓. The exponential coordi-
nates are defined as ! = !̂✓ 2 R3, which is a three-parameter representation.
There are several other well-known coordinate representations, e.g., Euler an-
gles, Cayley-Rodrigues parameters, unit quaternions, that are further discussed
in the appendix.

Another reason for focusing on the exponential description of rotations is

4 Preview

that they lead directly to the exponential description of rigid-body motions.
The latter can be viewed as a modern geometric interpretation of the classical
screw theory, or a modern screw theory. Keeping the classical terminology (e.g.,
twists, wrenches) as much as possible, we cover in detail the linear algebraic
constructs of screw theory, including the unified description of linear and angu-
lar velocities as six-dimensional spatial velocities (twists), and an analogous
description of three-dimensional forces and moments as six-dimensional spatial
forces (wrenches).

Chapter 4: Forward Kinematics

For an open chain, the position and orientation of the end-e↵ector are uniquely
determined from the joint positions. This is precisely the forward kinematics
problem for a robot: given a set of input joint values, find the output position
and orientation of the reference frame attached to the end-e↵ector. In this
chapter we present the product of exponentials (PoE) formula for describing
the forward kinematics of open chains. As the name implies, the PoE formula is
is directly derived from the exponential coordinate representation for rigid body
motions. Aside from providing an intuitive and easily visualizable interpretation
of the exponential coordinates as the twists of the joint axes, the PoE formula
o↵ers other advantages, like eliminating the need for link frames (only the base
frame and end-e↵ector frame are required, and these can be chosen arbitrarily).

In the appendix we also present the Denavit-Hartenberg (D-H) represen-
tation for forward kinematics. The D-H representation uses a fewer number
of parameters, but requires that reference frames be attached to each link fol-
lowing special rules of assignment, which can be cumbersome. Details of the
transformation from the D-H to the PoE representation are also provided in the
appendix.

Chapter 5: Velocity Kinematics and Statics

Velocity kinematics refers to the relationship between joint rates and the linear
and angular velocities of the end-e↵ector frame. Central to velocity kinematics is
the Jacobian of the forward kinematics. By multiplying the vector of joint rates
by this matrix, the linear and angular velocities of the end-e↵ector frame can be
obtained for any given robot configuration. Kinematic singularities, which
are configurations in which the end-e↵ector frame loses the ability to move or
rotate in one or more directions—imagine, for example, a two-link planar chain
with its two links folded over each other—correspond to those configurations at
which the Jacobian matrix fails to have maximal rank. The closely related and
more general notion of the manipulability ellipsoid, whose shape indicates
the ease with which the robot can move in various directions, is also derived
from the Jacobian.

Finally, the Jacobian is also central to static force analysis. In static equilib-
rium settings, the Jacobian is used to determine what forces and torques need
to be exerted at the input joints in order for the end-e↵ector to apply a certain

5

force or moment in a particular direction. In this chapter we show how to obtain
the Jacobian for general open chains, and its many practical uses in the above
and other settings.

Chapter 6: Inverse Kinematics

In the inverse kinematics problem, given a desired position and orientation
of the end-e↵ector frame, the objective is to determine the set of joint positions
that achieves this desired end-e↵ector configuration. For open chain robots, the
inverse kinematics is in general more involved than the forward kinematics: for
a given set of joint values there usually exist a unique end-e↵ector position and
orientation, but for a particular end-e↵ector position and orientation, there may
exist multiple solutions, or even none at all.

In this chapter we first examine a popular class of six-dof open chain struc-
tures whose inverse kinematics admits a closed-form analytic solution. Iterative
numerical algorithms are then derived for solving the inverse kinematics of gen-
eral six-dof open chains. We also examine the inverse kinematics of redundant
spatial open chains (that is, those with seven or more degrees of freedom) in
the context of tracking a desired end-e↵ector trajectory. For this problem, we
present a solution for obtaining the corresponding input joint rates that relies
on the generalized inverse of the forward kinematics Jacobian.

Chapter 7: Kinematics of Closed Chains

While open chains have unique forward kinematics solutions, closed chains will
often have multiple forward kinematics solutions, and sometimes even multiple
solutions for the inverse kinematics as well. Also, because closed chains possess
both actuated and passive joints, the kinematic singularity analysis of closed
chains presents subtleties not encountered in open chains. In this chapter we
study the basic concepts and tools for the kinematic analysis of closed chains.
We begin with a detailed case study of mechanisms like the planar five-bar
linkage and the Stewart-Gough Platform. These results are then generalized
into a systematic methodology for the kinematic analysis of more general closed
chains.

Chapter 8: Dynamics of Open Chains

Dynamics is the study of motion taking into account the forces and torques that
cause it. In this chapter we study the dynamics of open chain robots. Analo-
gous to the notions of a robot’s forward and inverse kinematics, the forward
dynamics problem seeks to determine the resulting joint trajectory for a given
input joint torque profile. The inverse dynamics problem is concerned with
determining the input joint torque profile for a desired joint trajectory. The
dynamic equations relating the forces and torques to the motion of the robot’s
links are given by a set of second-order ordinary di↵erential equations.

6 Preview

We begin with a formulation of the dynamic equations for a single rigid body
in terms of spatial velocities (twists), spatial accelerations, and spatial forces
(wrenches). The dynamics for an open chain robot can be derived using one of
two approaches. In the Newton-Euler approach, the equations of motion derived
for each rigid body are merged in an appropriate fashion. Because of the open
chain structure, the dynamics can be formulated recursively along the links. In
the Lagrangian approach, a set of coordinates—referred to as the generalized
coordinates in the classical dymamics literature—are first chosen to parametrize
the configuration space. The sum of the potential and kinetic energies of the
robot’s links are then expressed in terms of the generalized coordinates. These
are then substituted into the Euler-Lagrange equations, which then lead to
a set of second-order di↵erentia equations for the dynamics, expressed in the
chosen coordinates for the configuration space.

In this chapter we examine both approaches to deriving a robot’s dynamic
equations. Recursive algorithms for both the forward and inverse dynamics, as
well as analytical formulations of the dynamic equations, are also presented.

Chapter 9: Trajectory Generation

What sets a robot apart from an automated machine is that it should be easily
reprogrammable for di↵erent tasks. Di↵erent tasks require di↵erent motions,
and it would be unreasonable to expect the user to specify the entire time-history
of each joint for every task; clearly it would be desirable for the computer to
“fill in the details” from a small set of task input data.

This chapter is concerned with the automatic generation of joint trajectories
from this set of task input data. Formally, a trajectory consists of a path, which
is a purely geometric description of the sequence of configurations achieved by
a robot, typically described by a curve in the joint configuration space. A
trajectory also consists of a time scaling, which specifies the times at which
those configurations are reached.

Often the input task data is given in the form of an ordered set of joint
values, called control points, together with a corresponding set of control times.
Based on this data the trajectory generation algorithm produces a trajectory for
each joint that satisfies various user-supplied conditions. In this chapter we will
focus on three cases: (i) point-to-point straight line trajectories in both joint
space and task space; (ii) smooth trajectories passing through a sequence of
timed via points; (iii) minimum-time trajectories along specified paths. Finding
paths that avoid collisions is the subject of the next chapter on motion planning.

Chapter 10: Motion Planning

This chapter addresses the problem of finding a collision-free motion for a robot
through a cluttered workspace, while avoiding joint and torque limits, and other
physical constraints imposed on the robot. The path planning problem is a
subproblem of the general motion planning problem, and seeks to determine
a collision-free path between a start and goal configuration, usually without

7

regard to the dynamics, the duration of the motion, or other constraints on the
motion or control inputs. There is no single planner applicable to all motion
planning problems. In this chapter we shall consider three basic approaches:
grid methods, sampling methods, and methods based on virtual potential fields.

Chapter 11: Robot Control

A robot arm can exhibit a number of di↵erent behaviors depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
manufacturing applications. It can act as a source of forces, for example when
grinding or polishing a workpiece. In tasks such as writing on a chalkboard, it
must control forces in some directions (the force pressing the chalk against the
board) and motions in others (motion in the plane of the board). In certain
applications, e.g., haptic displays, we may want the robot to act like a spring,
damper, or mass, controlling its position, velocity, or acceleration in response
to forces applied to it.

In each of these cases, it is the job of the robot controller to convert the
task specification to forces and torques at the actuators. Control strategies
to achieve the behaviors described above are known as motion (or position)
control, force control, hybrid motion-force control, and impedance con-
trol. Which of these behaviors is appropriate depends on both the task and
the environment. For example, a force control goal makes sense when the end-
e↵ector is in contact with something, but not when it is moving in free space. We
also have a fundamental constraint imposed by mechanics, irrespective of the
environment: the robot cannot independently control both motions and forces
in the same direction. If the robot imposes a motion, then the environment
determines the force, and vice versa.

Most robots are driven by actuators that apply a force or torque to each
joint. Hence, to precisely control a robot would require an understanding of
the relationship between joint forces and torques and the motion of the robot;
this is the domain of dynamics. Even for simple robots, however, the dynamic
equations are usually very complex, Also, to accurately derive the dynamics
requires, among other things, precise knowledge of the mass and inertia of each
link, which may not be readily available. Even if they were, the dynamic equa-
tions would still not reflect physical phenomena like friction, elasticity, backlash,
and hysteresis.

Most practical control schemes compensate for these errors by using feed-
back. One e↵ective method of industrial robot control is to neglect the robot’s
dynamics, and instead model each actuator as a scalar second-order linear sys-
tem. As such we first introduce basic concepts from linear control, and show
how they can be used to e↵ectively control complex multi-dof robots.

This chapter also introduces some basic robot control techniques that as-
sume a dynamic model of the robot is available; such feedforward control
techniques use the dynamic model of the robot and its environment to deter-
mine actuator control inputs that achieve the desired task. Because of modeling

8 Preview

and other errors, feedforward control is rarely used by itself, but is often used
in conjunction with feedback control. After considering feedback and forward
strategies for model-based motion control, we then examine force control, hybrid
motion-force control, and impedance control.

Chapter 12: Grasping and Manipulation

The focus of the previous chapters has been mostly on the internal charac-
terization of the robot—its kinematics and dynamics, as well as methods for
motion planning and control. In this chapter we now explicitly consider physi-
cal interactions between the robot and its environment. A fundamental problem
addressed in this chapter is how to restrain a rigid body using a fixed number
of point contacts. The first order of business is to characterize the nature of
contacts between the robot and objects, or more generally, contact constraints
between rigid bodies. As such it becomes necessary to consider friction. We
examine the equations of motion for rigid body mechanics with friction, formu-
late the general problem of manipulation plannning and grasping, and examine
simplifications and assumptions that lead to certain basic solutions.

Chapter 13: Wheeled Robots

This chapter addresses the kinematics, motion planning, and control of wheeled
robots that are subject to no-slip rolling constraints. Such constraints are funda-
mentally di↵erent from the loop closure constraints found in closed chains—the
former are holonomic, the latter nonholonomic—and as such we begin with
a discussion of nonholonomic constraints. We then examine the kinematics
of some popular wheeled robots: car-like, di↵erential drive, Dubins, and om-
nidirectional robots. The controllability problem of determining whether a
wheeled robot is able to move from a given initial configuration to an arbitrary
final configuration is then examined. The chapter concludes with a discussion
of motion planning and control algorithms for wheeled robots, including the
problem of characterizing and finding optimal paths, and feedback control of
wheeled robots.

Chapter 2

Configuration Space

A robot is mechanically constructed by connecting a set of bodies, called links,
to each other using various types of joints. Actuators, such as electric motors,
deliver forces or torques to the joints that cause the robot’s links to move. Usu-
ally an end-e↵ector, such as a gripper or hand for grasping and manipulating
objects, is attached to a specific link. All of the robots considered in this book
have links that can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where
is it? (In the sense of where the links of the robot are situated.) The answer
is the robot’s configuration: a specification of the positions of all points of
the robot. Since the robot’s links are rigid and of known shape,1 only a few
numbers are needed to represent the robot’s configuration. For example, the
configuration of a door can be represented by a single number, the angle ✓
that the door rotates about its hinge. The configuration of a point lying on
a plane can be described by two coordinates, (x, y). The configuration of a
coin lying heads up on a flat table can be described by three coordinates: two
coordinates (x, y) that specify the location of a particular point on the coin, and
one coordinate ✓ that specifies the coin’s orientation. (See Figure 2.1).

The above coordinates all share the common feature of taking values over
a continuous range of real numbers. The smallest number of real-valued coor-
dinates needed to represent a robot’s configuration is its degrees of freedom
(dof). In the example above, the door (regarded as a robot) has one degree of
freedom. The coin lying heads up on a table has three degrees of freedom. Even
if the coin could lie either heads up or tails up, its configuration space still would
have only three degrees of freedom; introducing a fourth variable to represent
which side of the coin is facing up, this variable would then take values in the
discrete set {heads, tails}, and not over a continuous range of real values like
the other three coordinates (x, y, ✓).

Definition 2.1. The configuration of a robot is a complete specification of
the positions of every point of the robot. The minimum number n of real-

1
Compare with trying to represent the configuration of a soft object like a pillow.

9

10 Configuration Space

θ
ŷ

(x, y)

x̂

θ

(x, y)ŷ

x̂

 (a) (b) (c)

Figure 2.1: (a) The configuration of a door is described by its angle ✓. (b) The
configuration of a point in a plane is described by coordinates (x, y). (c) The
configuration of a coin on a table is described by (x, y, ✓).

valued coordinates needed to represent the configuration is the degrees of
freedom (dof) of the robot. The n-dimensional space containing all possible
configurations of the robot is called the configuration space (or C-space).

In this chapter we study the C-space and degrees of freedom of general
robots. Since our robots are constructed of rigid links, we first examine the
degrees of freedom of a single rigid body, followed by the degrees of freedom of
general multi-link robots. We then study the shape (or topology) and geometry
of C-spaces and their mathematical representation. The chapter concludes with
a discussion of the C-space of a robot’s end-e↵ector, or its task space. In the
next chapter we study in more detail the various mathematical representations
for the C-space of a single rigid body.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points
A, B, and C on the coin (Figure 2.2(a)). Once a coordinate frame x̂-ŷ is attached
to the plane,2 the positions of these points in the plane are written (x

A

, y
A

),
(x

B

, y
B

), and (x
C

, y
C

). If these points could be placed independently anywhere
in the plane, the coin would have six degrees of freedom—two for each of the
three points. However, according to the definition of a rigid body, the distance
between point A and point B, denoted d(A,B), is always constant regardless of
where the coin is. Similarly, the distances d(B,C) and d(A,C) must be constant.
The following equality constraints on the coordinates (x

A

, y
A

), (x
B

, y
B

), and

2
The unit axes of coordinate frames are written with a hat, indicating they are unit vectors,

in a non-italic font, e.g., x̂, ŷ, and ẑ.

2.1. Degrees of Freedom of a Rigid Body 11

A

B

C

x̂ ŷ

ẑ

(a) (b) (c)

ŷ

x̂

BCd

dAC

dAB
A

B

C

Figure 2.2: (a) Choosing three points fixed to the coin. (b) Once the location
of A is chosen, B must lie on a circle of radius d

AB

centered at A. Once the
location of B is chosen, C must lie at the intersection of circles centered at
A and B. Only one of these two intersections corresponds to the “heads up”
configuration. (c) The configuration of a coin in three-dimensional space is given
by the three coordinates of A, two angles to the point B on the sphere of radius
d
AB

centered at A, and one angle to the point C on the circle defined by the
intersection of the a sphere centered at A and a sphere centered at B.

(x
C

, y
C

) must therefore always be satisfied:

d(A,B) =
p
(x

A

� x
B

)2 + (y
A

� y
B

)2 = d
AB

d(B,C) =
p
(x

B

� x
C

)2 + (y
B

� y
C

)2 = d
BC

d(A,C) =
p
(x

A

� x
C

)2 + (y
A

� y
C

)2 = d
AC

.

To determine the number of degrees of freedom of the coin, first choose the
position of point A in the plane (Figure 2.2(b)). We may choose it to be anything
we want, so we have two degrees of freedom to specify, (x

A

, y
A

). Once (x
A

, y
A

)
is specified, the constraint d(A,B) = d

AB

restricts the choice of (x
B

, y
B

) to
those points on the circle of radius d

AB

centered at A. A point on this circle
can be specified by a single parameter, e.g., the angle specifying the location of
B on the circle centered at A; let’s call this angle �

AB

, and define it to be the

angle that the vector
��!
AB makes with the x̂-axis.

Once we have chosen the location of point B, there are only two possible
locations for C: at the intersections of the circle of radius d

AC

centered at A,
and the circle of radius d

BC

centered at B (Figure 2.2(b)). These two solutions
correspond to heads or tails. In other words, once we have placed A and B and
chosen heads or tails, the two constraints d(A,C) = d

AC

and d(B,C) = d
BC

eliminate the two apparent freedoms provided by (x
C

, y
C

), and the location of
C is fixed. The coin has exactly three degrees of freedom in the plane, which
can be specified by (x

A

, y
A

,�
AB

).
Suppose we were to choose an additional point D on the coin. This new

point introduces three additional constraints: d(A,D) = d
AD

, d(B,D) = d
BD

,
and d(C,D) = d

CD

. One of these constraints is redundant, i.e., it provides no

12 Configuration Space

new information; only two of the three constraints are independent. The two
freedoms apparently introduced by the coordinates (x

D

, y
D

) are then immedi-
ately eliminated by these two independent constraints. The same would hold for
any other newly chosen point on the coin, so that there is no need to consider
additional points.

We have been applying the following general rule for determining the number
of degrees of freedom of a system:

Degrees of freedom = (Sum of freedoms of the points) �
(Number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and inde-
pendent equations that describe the system:

Degrees of freedom = (Number of variables) �
(Number of independent equations). (2.2)

This general rule can also be used to determine the number of freedoms of
a rigid body in three dimensions. For example, assume our coin is no longer
confined to the table (Figure 2.2(c)). The coordinates for the three points A, B,
and C are now given by (x

A

, y
A

, z
A

), (x
B

, y
B

, z
B

), and (x
C

, y
C

, z
C

), respectively.
Point A can be placed freely (three degrees of freedom). The location of point B
is subject to the constraint d(A,B) = d

AB

, meaning it must lie on the sphere of
radius d

AB

centered at A. Thus we have 3�1 = 2 freedoms to specify, which can
be expressed as the latitude and longitude for the point on the sphere. Finally,
the location of point C must lie at the intersection of spheres centered at A and
B of radius d

AC

and d
BC

, respectively. In the general case the intersection of
two spheres is a circle, and the location of point C can be described by an angle
that parametrizes this circle. Point C therefore adds 3 � 2 = 1 freedom. Once
the position of point C is chosen, the coin is fixed in space.

In summary, a rigid body in three-dimensional space has six freedoms, which
can be described by the three coordinates parametrizing point A, the two angles
parametrizing point B, and one angle parametrizing point C. Other represen-
tations for the configuration of a rigid body are discussed in Chapter 3.

We have just established that a rigid body moving in three-dimensional
space, which we call a spatial rigid body, has six degrees of freedom. Similarly,
a rigid body moving in a two-dimensional plane, which we henceforth call a
planar rigid body, has three degrees of freedom. This latter result can also
be obtained by considering the planar rigid body to be a spatial rigid body with
six degrees of freedom, but with the three independent constraints z

A

= z
B

=
z
C

= 0.
Since our robots are constructed of rigid bodies, Equation (2.1) can be ex-

pressed as follows:

Degrees of freedom = (Sum of freedoms of the bodies) �
(Number of independent constraints). (2.3)

2.2. Degrees of Freedom of a Robot 13

Equation (2.3) forms the basis for determining the degrees of freedom of general
robots, which is the topic of the next section.

2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single
rigid body connected to the wall by a hinge joint. From the previous section we
know that the door has only one degree of freedom, conveniently represented by
the hinge joint angle ✓. Without the hinge joint, the door is free to move in three-
dimensional space and has six degrees of freedom. By connecting the door to the
wall via the hinge joint, five independent constraints are imposed on the motion
of the door, leaving only one independent coordinate (✓). Alternatively, the
door can be viewed from above and regarded as a planar body, which has three
degrees of freedom. The hinge joint then imposes two independent constraints,
again leaving only one independent coordinate (✓). Its C-space is represented
by some range in the interval [0, 2⇡) over which ✓ is allowed to vary.

In both cases the joints have the e↵ect of constraining the motion of the
rigid body, and thus reducing the overall degrees of freedom. This observation
suggests a formula for determining the number of degrees of freedom of a robot,
simply by counting the number of rigid bodies and joints. In this section we
derive precisely such a formula, called Grübler’s formula, for determining the
number of degrees of freedom of planar and spatial robots.

2.2.1 Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint con-
nects exactly two links; joint that simultaneously connect three or more links
are not allowed. The revolute joint (R), also called a hinge joint, allows for
rotational motion about the joint axis. The prismatic joint (P), also called a
sliding or linear joint, allows for translational (or rectilinear) motion along the
direction of the joint axis. The screw joint (H), also called a helical joint, allows
simultaneous rotation and translation about a screw axis. Revolute, prismatic,
and screw joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint
(C) is a two-dof joint that allows for independent translations and rotations
about a single fixed joint axis. The universal joint (U) is another two-dof
joint that consists of a pair of revolute joints arranged so that their joint axes
are orthogonal. The spherical joint (S), also called a ball-and-socket joint,
has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to
move relative to another. It can also be viewed as providing constraints on the
possible motions of the two rigid bodies it connects. For example, a revolute
joint can be viewed as allowing one freedom of motion between two rigid bodies
in space, or it can be viewed as providing five constraints on the motion of one
rigid body relative to the other. Generalizing, the number of degrees of freedom

14 Configuration Space

Prismatic

 (P)

Revolute

 (R)

Helical

 (H)

Cylindrical

 (C)

Universal

 (U)

Spherical

 (S)

Figure 2.3: Typical robot joints.

Constraints c Constraints c
between two between two

Joint type dof f planar spatial
rigid bodies rigid bodies

Revolute (R) 1 2 5
Prismatic (P) 1 2 5

Screw (H) 1 N/A 5
Cylindrical (C) 2 N/A 4
Universal (U) 2 N/A 4
Spherical (S) 3 N/A 3

Table 2.1: The number of degrees of freedom and constraints provided by com-
mon joints.

of a rigid body (three for planar bodies and six for spatial bodies) minus the
number of constraints provided by a joint must equal the number of freedoms
provided by the joint.

The freedoms and constraints provided by the various joint types are sum-
marized in Table 2.1.

2.2.2 Grübler’s Formula

The number of degrees of freedom of a mechanism with links and joints can be
calculated using Grübler’s formula, which is an expression of Equation (2.3).

Proposition 2.1. Consider a mechanism consisting of N links, where ground
is also regarded as a link. Let J be the number of joints, m be the number of
degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for

2.2. Degrees of Freedom of a Robot 15

(a) (b)

Figure 2.4: (a) Four-bar linkage. (b) Slider-crank mechanism.

spatial mechanisms), f
i

be the number of freedoms provided by joint i, and c
i

be
the number of constraints provided by joint i (it follows that f

i

+ c
i

= m for all
i). Then Grübler’s formula for the degrees of freedom (dof) of the robot is

dof = m(N � 1)| {z }
rigid body freedoms

�
JX

i=1

c
i

| {z }
joint constraints

= m(N � 1)�
JX

i=1

(m� f
i

)

= m(N � 1� J) +
JX

i=1

f
i

. (2.4)

This formula only holds if all joint constraints are independent. If they are not
independent, then the formula provides a lower bound on the number of degrees
of freedom.

Below we apply Grübler’s formula to several planar and spatial mechanisms.
We distinguish between two types of mechanisms: open-chain mechanisms
(also known as serial mechanisms) and closed-chain mechanisms. A
closed-chain mechanism is any mechanism that has a closed loop. A person
standing with both feet on the ground is an example of a closed-chain mech-
anism, since a closed loop is traced from the ground, through the right leg,
through the waist, through the left leg, and back to the ground (recall that
ground itself is a link). An open-chain mechanism is any mechanism without a
closed loop; an example is your arm when your hand is allowed to move freely
in space.

Example 2.1. Four-bar linkage and slider-crank mechanism
The planar four-bar linkage shown in Figure 2.4(a) consists of four links (one of
them ground) arranged in a single closed loop and connected by four revolute
joints. Since all the links are confined to move in the same plane, m = 3.
Subsituting N = 4, J = 4, and f

i

= 1, i = 1, . . . , 4, into Grübler’s formula, we
see that the four-bar linkage has one degree of freedom.

The slider-crank closed-chain mechanism of Figure 2.4(b) can be analyzed in
two ways: (i) the mechanism consists of three revolute joints and one prismatic

16 Configuration Space

(a) (b)

(c) (d)

Figure 2.5: (a) k-link planar serial chain. (b) Five-bar planar linkage. (c)
Stephenson six-bar linkage. (d) Watt six-bar linkage.

joint (J = 4, and each f
i

= 1) and four links (N = 4, including the ground
link), or (ii) the mechanism consists of two revolute joints (f

i

= 1) and one RP
joint (the RP joint is a concatenation of a revolute and prismatic joint, so that
f
i

= 2) and three links (N = 3; remember that each joint connects precisely
two bodies). In both cases the mechanism has one degree of freedom.

Example 2.2. Some classical planar mechanisms
Let us now apply Grübler’s formula to several classical planar mechanisms. The
k-link planar serial chain of revolute joints in Figure 2.5(a) (called a kR robot
for its k revolute joints) has N = k + 1 (k links plus ground) and J = k, and
since all the joints are revolute, each f

i

= 1. Therefore,

dof = 3((k + 1)� 1� k) + k = k

as expected. For the planar five-bar linkage of Figure 2.5(b), N = 5 (four links
plus ground), J = 5, and since all joints are revolute, each f

i

= 1. Therefore,

dof = 3(5� 1� 5) + 5 = 2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and
f
i

= 1 for all i, so that

dof = 3(6� 1� 7) + 7 = 1.

2.2. Degrees of Freedom of a Robot 17

Figure 2.6: A planar mechanism with two overlapping joints.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
and f

i

= 1 for all i, so that like the Stephenson six-bar linkage,

dof = 3(6� 1� 7) + 7 = 1.

Example 2.3. A planar mechanism with overlapping joints
The planar mechanism illustrated in Figure 2.6 has three links that meet at a
single point on the right of the large link. Recalling that a joint by definition
connects exactly two links, the joint at this point of intersection should not
be regarded as a single revolute joint. Rather, it is correctly interpreted as
two revolute joints overlapping each other. Again, there is more than one way
to derive the number of degrees of freedom of this mechanism using Grübler’s
formula: (i) The mechanism consists of eight links (N = 8), eight revolute joints,
and one prismatic joint. Substituting into Grübler’s formula,

dof = 3(8� 1� 9) + 9(1) = 3.

(ii) Alternatively, the lower-right revolute-prismatic joint pair can be regarded
as a single two-dof joint. In this case the number of links is N = 7, with seven
revolute joints, and a single two-dof revolute-prismatic pair. Substituting into
Grübler’s formula,

dof = 3(7� 1� 8) + 7(1) + 1(2) = 3.

Example 2.4. Grübler’s formula and singularities
For the parallelogram linkage of Figure 2.7(a), N = 5, J = 6, and f

i

= 1
for each joint. From Grübler’s formula, the degrees of freedom is given by
3(5� 1� 6)+ 6 = 0. A mechanism with zero degrees of freedom is by definition
a rigid structure. However, if the three parallel links are of the same length,
and the two horizontal rows of joints are also collinear as implied by the figure,
the mechanism can in fact move with one degree of freedom.

A similar situation occurs for the two-dof planar five-bar linkage of Fig-
ure 2.7(b). If the two joints connected to ground are locked at some fixed angle,

18 Configuration Space

(a) (b)

Figure 2.7: (a) A parallelogram linkage; (b) The five-bar linkage in a regular
and singular configuration.

Figure 2.8: The Delta robot.

the five-bar linkage should then become a rigid structure. However, if the two
middle links are of equal length and overlap each other as illustrated in the
figure, then these overlapping links can rotate freely about the two overlapping
joints. Of course, the link lengths of the five-bar linkage must meet certain
specifications in order for such a configuration to even be possible. Also note
that if a di↵erent pair of joints is locked in place, the mechanism does become
a rigid structure as expected.

Grübler’s formula provides a lower bound on the degrees of freedom for
singular cases like those just described. Configuration space singularities arising
in closed chains are discussed in Chapter 7.

Example 2.5. Delta robot
The Delta robot of Figure 2.8 consists of two platforms—the lower one mobile,

2.3. Configuration Space: Topology and Representation 19

the upper one stationary—connected by three legs: each leg consists of an RR
serial chain connected to a closed-loop parallelogram linkage. Naively applying
the spatial version of Grübler’s formula yields N = 17, J = 21 (all revolute
joints), and dof = 17(17 � 1 � 21) + 21 = �9, which would imply that the
mechanism is overconstrained and therefore a rigid structure. However, each
parallelogram linkage has one degree of freedom of motion, so that each leg
of the Delta robot is kinematically equivalent to an RUU chain. In this case
N = 8, J = 9 (six U joints and three R joints), and

dof = 6(8� 1� 9) + 3(1) + 6(2) = 3.

The Delta robot has three degrees of freedom. The moving platform in fact
always remains parallel to the fixed platform and in the same orientation, so
that the Delta robot in e↵ect acts as a Cartesian positioning device.

Example 2.6. Stewart-Gough Platform
The Stewart-Gough platform of Figure 1.1(b) consists of two platforms—the
lower one stationary and regarded as ground, the upper one mobile—connected
by six universal-prismatic-spherical (UPS) serial chains. The total number of
links is fourteen (N = 14). There are six universal joints (each with two degrees
of freedom, f

i

= 2), six prismatic joints (each with a single degree of freedom,
f
i

= 1), and six spherical joints (each with three degrees of freedom, f
i

= 3).
The total number of joints is 18. Substituting these values into Grübler’s formula
with m = 6,

dof = 6(14� 1� 18) + 6(1) + 6(2) + 6(3) = 6.

In some versions of the Stewart-Gough platform the six universal joints are
replaced by spherical joints. By Grübler’s formula this mechanism would have
twelve degrees of freedom; replacing each universal joint by a spherical joint
introduces an extra degree of freedom in each leg, allowing torsional rotations
about the leg axis. Note however that this torsional rotation has no e↵ect on
the motion of the mobile platform.

The Stewart-Gough platform is a popular choice for car and airplane cockpit
simulators, as the platform moves with the full six degrees of freedom of motion
of a rigid body. The parallel structure means that each leg only needs to support
a fraction of the weight of the payload. On the other hand, the parallel design
also limits the range of translational and rotational motion of the platform.

2.3 Configuration Space: Topology and Represen-
tation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space—
its dimension, or the number of degrees of freedom. However, the shape of the
space is also important.

20 Configuration Space

a b
()

() ()
Figure 2.9: An open interval of the real line, denoted (a, b), can be deformed
to an open semicircle. This open semicircle can then be deformed to the real
line by the mapping illustrated: beginning from a point at the center of the
semicircle, draw a ray that intersects the semicircle and then a line above the
semicircle. These rays show that every point of the semicircle can be stretched
to exactly one point on the line, and vice-versa. Thus an open interval can be
continuously deformed to a line, so an open interval and a line are topologically
equivalent.

Consider a point moving on the surface of a sphere. The point’s C-space is
two-dimensional, as the configuration can be described by two coordinates, e.g.,
latitude and longitude. As another example, a point moving on a plane also
has a two-dimensional C-space, with coordinates (x, y). While both a plane and
the surface of a sphere are two-dimensional, clearly they do not have the same
shape—the plane extends infinitely while the sphere wraps around.

On the other hand, a larger sphere has the same shape as the original sphere,
in that it wraps around in the same way. Only its size is di↵erent. For that mat-
ter, an oval-shaped American football also wraps around similarly to a sphere.
The only di↵erence between a football and a sphere is that the football has been
stretched in one direction.

The idea that the two-dimensional surfaces of a small sphere, a large sphere,
and a football all have the same kind of shape, which is di↵erent from the shape
of a plane, is expressed by the topology of the surfaces. We do not attempt a
rigorous treatment in this book3, but we say that two spaces are topologically
equivalent if one can be continuously deformed into the other without cutting
or gluing. A sphere can be deformed into a football simply by stretching, without
cutting or gluing, so those two spaces are topologically equivalent. You cannot
turn a sphere into a plane without cutting it, however, so a sphere and a plane
are not topologically equivalent.

Topologically distinct one-dimensional spaces include the circle, the line, and
a closed interval of the line. The circle is written mathematically as S or S1,
i.e., a one-dimensional “sphere.” The line can be written E or E1, indicating a
one-dimensional Euclidean (or “flat”) space. Since a point in E1 is so commonly
represented by a real number (after choosing an origin and a length scale), it is
often written R or R1 instead. A closed interval of the line, which contains its
endpoints, can be written [a, b] ⇢ R1. (An open interval (a, b) does not include
the endpoints a and b and is topologically equivalent to a line, since the open
interval can be stretched to a line, as shown in Figure 2.9. A closed interval is
not topologically equivalent to a line, since a line does not contain endpoints.)

3
For those familiar with concepts in topology, all spaces we consider can be viewed as

embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of that

2.3. Configuration Space: Topology and Representation 21

In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the
n-dimensional surface of a sphere in (n + 1)-dimensional space. For example,
S2 is the two-dimensional surface of a sphere in three-dimensional space.

Note that the topology of a space is a fundamental property of the space
itself, and it is independent of how we choose to use coordinates to represent
points in the space. For example, to represent a point on a circle, we could refer
to the point by the angle ✓ from the center of the circle to the point, relative
to a chosen zero angle. Or we could choose a reference frame with its origin at
the center of the circle and represent the point by the two coordinates (x, y),
subject to the constraint x2 + y2 = 1. No matter our choice of coordinates, the
space itself does not change.

Some C-spaces can be expressed as the Cartesian product of two or more
spaces of lower dimension; that is, points in such a C-space can be represented
as the union of the representation of points in the lower-dimensional spaces. For
example:

• The C-space of a rigid body in the plane can be written as R2 ⇥ S1,
since the configuration can be represented as the concatenation of the
coordinates (x, y) representing R2 and an angle ✓ representing S1.

• The C-space of a PR robot arm can be written R1⇥S1. (Typically we will
not worry about joint limits when expressing the topology of the C-space.)

• The C-space of a 2R robot arm can be written as S1 ⇥ S1 = T 2, where
Tn is the n-dimensional surface of a torus in an (n+1)-dimensional space.
(See Table 2.2.) Note that S1 ⇥ S1 ⇥ . . .⇥ S1 (n copies of S1) is equal to
Tn, not Sn; for example, a sphere S2 is not topologically equivalent to a
torus T 2.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot)
with a 2R robot arm can be written as R2 ⇥ S1 ⇥ T 2 = R2 ⇥ T 3.

• As we saw in Section 2.1 when we counted the degrees of freedom of a
rigid body in three dimensions, the configuration of a rigid body can be
described by a point in R3, plus a point on a two-dimensional sphere
S2, plus a point on a one-dimensional circle S1, for a total C-space of
R3 ⇥ S2 ⇥ S1.

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the space,
consisting of a set of real numbers. We are familiar with this idea from linear
algebra—a vector is a natural way to represent a point in a Euclidean space.
It is important to keep in mind that the representation of a space involves a
choice, and therefore it is not as fundamental as the topology of the space itself,

space.

22 Configuration Space

system C-space sample representation

(x,y)
y^

x^

point on a plane E2 R2

longitude

latitude

-90o

90o

-180o 180o
tip of spherical pendulum 2-sphere S2 [�180�, 180�)⇥ [�90�, 90�]

θ1

θ2

0

2π

0 2π

2R robot arm 2-torus T 2 = S1 ⇥ S1 [0, 2⇡)⇥ [0, 2⇡)

x

θ

......
2π

0

rotating sliding knob cylinder R1 ⇥ S1 R1 ⇥ [0, 2⇡)

Table 2.2: Four topologically di↵erent two-dimensional C-spaces and exam-
ple coordinate representations. In the latitude-longitude representation of the
sphere, the latitudes �90� and 90� each correspond to a single point (the South
Pole and the North Pole, respectively), and the longitude parameter wraps
around at 180� and �180�: the edges with the arrows are glued together. Sim-
ilarly, the coordinate representations of the torus and cylinder wrap around at
the edges marked with identical arrows. To turn the torus into its coordinate
representation (a subset of R2), the torus can be cut along the small circle
shown (representing the range of angles ✓

2

of the second joint while ✓
1

= 0) and
straightened out to make a cylinder, then cut along the length of the cylinder
(representing the range of angles of the first joint while ✓

2

= 0) and flattened.

which is independent of the representation. For example, the same point in a
3D space can have di↵erent coordinate representations depending on the choice

2.3. Configuration Space: Topology and Representation 23

of the reference frame (the origin and the direction of the coordinate axes) and
the choice of length scale, but the topology of the underlying space is the same
regardless of our choice.

While it is natural to choose a reference frame and length scale and use
a vector to represent points in a Euclidean space, representing a point on a
curved space, like a sphere, is less obvious. One solution for a sphere is to use
latitude and longitude coordinates. A choice of n coordinates, or parameters,
to represent an n-dimensional space is called an explicit parametrization of
the space. The explicit parametrization is valid for a particular range of the
parameters (e.g., [�90�, 90�] for latitude and [�180�, 180�) for longitude for a
sphere, where, on Earth, negative values correspond to “South” and “West,”
respectively).

The latitude-longitude representatation of a sphere is dissatisfying if you
are walking near the North Pole (latitude equals 90�) or South Pole (latitude
equals �90�), where taking a very small step can result in a large change in the
coordinates. The North and South Poles are singularities of the representation,
and the existence of singularities is a result of the fact that a sphere does not
have the same topology as a plane, i.e., the space of the two real numbers
that we have chosen to represent the sphere (latitude and longitude). The
location of these singularities has nothing to do with the sphere itself, which
looks the same everywhere, and everything to do with the chosen representation
of it. Singularities of the parametrization are particularly problematic when
representing velocities as the time rate of change of coordinates, since these
representations may tend to infinity near singularities even if the point on the
sphere is moving at a constant speed

p
ẋ2 + ẏ2 + ż2 (if you had represented the

point as (x, y, z) instead).
If you assume that the configuration never approaches a singularity of the

representation, you can ignore this issue. If you cannot make this assumption,
there are two ways to overcome the problem:

• Define more than one coordinate chart on the space, where each co-
ordinate chart is an explicit parametrization covering only a portion of
the space. Within each chart, there is no singularity. For example,
we could define two coordinate charts on the sphere: the usual latitude
� 2 [�90�, 90�] and longitude 2 [�180�, 180�), and alternative coordi-
nates (�0, 0) in a rotated coordinate frame, where the alternative latitude
�0 is 90� at the “East Pole” and �90� at the “West Pole.” Then the
first coordinate chart can be used when �90� + ✏ < � < 90� � ✏, for
some small ✏ > 0, and the second coordinate chart can be used when
�90� + ✏ < �0 < 90� � ✏.
If we define a set of singularity-free coordinate charts that overlap each
other and cover the entire space, like the two charts above, the charts are
said to form an atlas of the space, much like an atlas of the Earth consists
of several maps that together cover the Earth. An advantage of using
an atlas of coordinate charts is that the representation always uses the
minimum number of numbers. A disadvantage is the extra bookkeeping

24 Configuration Space

required to switch the representation between coordinate charts to avoid
singularities. (Note that Euclidean spaces can be covered by a single
coordinate chart without singularities.)

• Instead of using an explicit parametrization, use an implicit represen-
tation of the space. An implicit representation views the n-dimensional
space as embedded in a Euclidean space of more than n dimensions, just
like a two-dimensional unit sphere can be viewed as a surface embed-
ded in a three-dimensional Euclidean space. An implicit representation
uses the coordinates of the higher-dimensional space (e.g., (x, y, z) in the
three-dimensional space), but subjects these coordinates to constraints
that reduce the number of degrees of freedom (e.g., x2 + y2 + z2 = 1 for
the unit sphere).

A disadvantage of this approach is that the representation has more num-
bers than the number of degrees of freedom. An advantage is that there are
no singularities in the representation—a point moving smoothly around
the sphere is represented by a smoothly changing (x, y, z), even at the
North and South Poles. A single representation is used for the whole
sphere; multiple coordinate charts are not needed.

Another advantage is that while it may be very di�cult to construct an
explicit parametrization, or atlas, for a closed-chain mechanism, it is easy
to find an implicit representation: the set of all joint coordinates subject
to the loop-closure equations that define the closed loops (Section 2.4).

We use implicit representations throughout the book, beginning in the
next chapter. In particular, we use nine numbers, subject to six con-
straints, to represent the three orientation freedoms of a rigid body in
space. This is called a rotation matrix. In addition to being singularity-free
(unlike three-parameter representations such as roll-pitch-yaw angles4),
the rotation matrix representation has the benefit of allowing us to use
linear algebra to perform computations such as (1) rotating a rigid body
or (2) changing the reference frame in which the orientation of a rigid
body is expressed.5

In summary, the non-Euclidean shape of many C-spaces motivates the use
of implicit representations of C-space throughout this book. We return to this
topic in the next chapter.

2.4. Configuration and Velocity Constraints 25

y

x̂

^

θ4

θ1

θ2

θ3
L3

L2
L1

L4

Figure 2.10: The four-bar linkage.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit represen-
tation is more easily obtained than an explicit parametrization. For example,
consider the planar four-bar linkage of Figure 2.10, which has one degree of free-
dom. The fact that the four links always form a closed loop can be expressed
in the form of the following three equations:

L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

) + . . .+ L
4

cos(✓
1

+ . . .+ ✓
4

) = 0

L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

) + . . .+ L
4

sin(✓
1

+ . . .+ ✓
4

) = 0

✓
1

+ ✓
2

+ ✓
3

+ ✓
4

� 2⇡ = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain
with four revolute joints, in which (i) the tip of link L

4

always coincides with
the origin and (ii) the orientation of link L

4

is always horizontal.
These equations are sometimes referred to as loop-closure equations. For

the four-bar linkage they are given by a set of three equations in four unknowns.
The set of all solutions forms a one-dimensional curve in the four-dimensional
joint space and constitutes the C-space.

For general robots containing one or more closed loops, the configuration
space can be implicitly represented by ✓ = (✓

1

, . . . , ✓
n

) 2 Rn and loop-closure
equations of the form

g(✓) =

2

64
g
1

(✓
1

, . . . , ✓
n

)
...

g
k

(✓
1

, . . . , ✓
n

)

3

75 = 0, (2.5)

4
Roll-pitch-yaw angles and Euler angles use three parameters for the space of rotations

S2 ⇥ S1
(two for S2

and one for S1
), and therefore are subject to singularities as discussed

above.

5
Another singularity-free implicit representation of orientations, the unit quaternion, uses

only four numbers subject to the constraint that the four-vector be unit length. In fact, this

representation is a double covering of the set of orientations: for every orientation, there are

two unit quaternions.

26 Configuration Space

where g : Rn ! Rk is a set of k independent equations, with k n. Such
constraints are known as holonomic constraints, constraints that reduce the
dimension of the C-space.6 The C-space can be viewed as a surface of dimension
n� k (assuming all constraints are independent) embedded in Rn.

Suppose a closed-chain robot with loop-closure equations g(✓) = 0, g : Rn !
Rk, is in motion, following the time trajectory ✓(t). Di↵erentiating both sides
of g(✓(t)) = 0 with respect to t, we obtain

d

dt
g(✓(t)) = 0

2

64

@g

1

@✓

1

(✓)✓̇
1

+ . . .+ @g

1

@✓

n

(✓)✓̇
n

...
@g

k

@✓

1

(✓)✓̇
1

+ . . .+ @g

k

@✓

n

(✓)✓̇
n

3

75 = 0

2

64

@g

1

@✓

1

(✓) · · · @g

1

@✓

n

(✓)
...

. . .
...

@g

k

@✓

1

(✓) · · · @g

k

@✓

n

(✓)

3

75

2

64
✓̇
1

...
✓̇
n

3

75 = 0

@g

@✓
(✓)✓̇ = 0. (2.6)

Here ✓̇
i

denotes the time derivative of ✓
i

with respect to time t, @g
@✓

(✓) 2 Rk⇥n,

and ✓, ✓̇ 2 Rn. From the above we see that the joint velocity vector ✓̇ 2 Rn

cannot be arbitrary, but must always satisfy

@g

@✓
(✓)✓̇ = 0. (2.7)

These constraints can be written in the form

A(✓)✓̇ = 0, (2.8)

where A(✓) 2 Rk⇥n. Velocity constraints of this form are called Pfa�an con-
straints. For the case of A(✓) = @g

@✓

(✓), one could regard g(✓) as being the
“integral” of A(✓); for this reason, holonomic constraints of the form g(✓) = 0
are also called integrable constraints—the velocity constraints that they im-
ply can be integrated to give equivalent configuration constraints.

We now consider another class of Pfa�an constraints that is fundamentally
di↵erent from the holonomic type. To illustrate with a concrete example, con-
sider an upright coin of radius r rolling on the plane as shown in Figure 2.11.
The configuration of the coin is given by the contact point (x, y) on the plane,
the steering angle �, and the angle of rotation (see Figure 2.11). The C-space of
the coin is therefore R2⇥T 2, where T 2 is the two-dimensional torus parametrized
by the angles � and ✓. This C-space is four-dimensional.

6
Viewing a rigid body as a collection of points, the distance constraints between the points,

as we saw earlier, can be viewed as holonomic constraints.

2.4. Configuration and Velocity Constraints 27

x^
y^

z^ θ

(x, y)
φ

Figure 2.11: A coin rolling on a plane without slipping.

We now express, in mathematical form, the fact that the coin rolls without
slipping. The coin must always roll in the direction indicated by (cos�, sin�),
with forward speed r✓̇:

ẋ
ẏ

�
= r✓̇

cos�
sin�

�
. (2.9)

Collecting the four C-space coordinates into a single vector q = (q
1

, q
2

, q
3

, q
4

) =
(x, y,�, ✓) 2 R2⇥T 2, the above no-slip rolling constraint can then be expressed
in the form

1 0 0 �r cos q
3

0 1 0 �r sin q
3

�
q̇ = 0. (2.10)

These are Pfa�an constraints of the form A(q)q̇ = 0, A(q) 2 R2⇥4.
These constraints are not integrable; that is, for the A(q) given in (2.10),

there does not exist any di↵erentiable g : R4 ! R2 such that @g

@q

= A(q). To see

why, there would have to exist a di↵erentiable g
1

(q) that satisfied the following
four equalities:

@g

1

@q

1

= 1 �! g
1

(q) = q
1

+ h
1

(q
2

, q
3

, q
4

)
@g

1

@q

2

= 0 �! g
1

(q) = h
2

(q
1

, q
3

, q
4

)
@g

1

@q

3

= 0 �! g
1

(q) = h
3

(q
1

, q
2

, q
4

)
@g

1

@q

4

= �r cos q
3

�! g
1

(q) = �rq
4

cos q
3

+ h
4

(q
1

, q
2

, q
3

),

for some h
i

, i = 1, . . . , 4, di↵erentiable in each of its variables. By inspection
it should be clear that no such g

1

(q) exists. Similarly, it can be shown that
g
2

(q) does not exist, so that the constraint (2.10) is nonintegrable. A Pfa�an
constraint that is nonintegrable is called a nonholonomic constraint. Such
constraints reduce the dimension of the feasible velocities of the system, but
do not reduce the dimension of the reachable C-space. The rolling coin can
reach any point in its four-dimensional C-space despite the two constraints on
its velocity.7 See Exercise 28.

7
Some texts define the number of degrees of freedom of a system to be the dimension of

28 Configuration Space

(a) (b)

(d)(c)

θ1

θ2
θ3

Figure 2.12: Examples of workspaces for various robots: (a) a planar 2R open
chain; (b) a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R
orienting mechanism.

Nonholonomic constraints arise in a number of robotics contexts that involve
conservation of momentum and rolling without slipping, e.g., wheeled vehicle
kinematics and grasp contact kinematics. We examine nonholonomic constraints
in greater detail in the later chapter on wheeled robots.

2.5 Task Space and Workspace

We introduce two more concepts relating to the configuration of a robot: the
task space and the workspace. Both relate to the configuration of the end-
e↵ector of a robot, not the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally ex-
pressed. For example, if the robot’s task is to plot with a pen on a piece of paper,
the task space would be R2. If the task is to manipulate a rigid body, a natural
representation of the task space is the C-space of a rigid body, representing the
position and orientation of a frame attached to the robot’s end-e↵ector. This is

the feasible velocities, e.g., two for the rolling coin. We uniformly refer to the dimension of

the C-space as the number of degrees of freedom.

2.5. Task Space and Workspace 29

the default representation of task space. The decision of how to define the task
space is driven by the task, independent of the robot.

The workspace is a specification of the configurations the end-e↵ector of
the robot can reach. The definition of the workspace is primarily driven by the
robot’s structure, independent of the task.

Both the task space and the workspace involve a choice by the user; in
particular, the user may decide that some freedoms of the end-e↵ector (e.g., its
orientation) do not need to be represented.

The task space and the workspace are distinct from the robot’s C-space. A
point in the task space or the workspace may be achievable by more than one
robot configuration, meaning that the point is not a full specification of the
robot’s configuration. For example, for an open-chain robot with seven joints,
the six-dof position and orientation of its end-e↵ector does not fully specify the
robot’s configuration.

Some points in task space may not be reachable at all by the robot, e.g., a
point on a chalkboard that the robot cannot reach. By definition, all points in
the workspace are reachable by at least one configuration of the robot.

Two mechanisms with di↵erent C-spaces may have the same workspace. For
example, considering the end-e↵ector to be the Cartesian tip of the robot (e.g.,
the location of a plotting pen) and ignoring orientations, the planar 2R open
chain with links of equal length three (Figure 2.12(a)) and the planar 3R open
chain with links of equal length two (Figure 2.12(b)) have the same workspace
despite having di↵erent C-spaces.

Two mechanisms with the same C-space may also have di↵erent workspaces.
For example, taking the end-e↵ector to be the Cartesian tip of the robot and
ignoring orientations, the 2R open chain of Figure 2.12(a) has a planar disk as
its workspace, while the 2R open chain of Figure 2.12(c) has the surface of a
sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open chain
“wrist” mechanism of Figure 2.12(d), we see that the frame can achieve any
orientation by rotating the joints, but the Cartesian position of the tip is always
fixed. This can be seen by noting that the three joint axes always intersect at
the tip. For this mechanism, we would likely define the workspace to be the
three-dof space of orientations of the frame, S2⇥S1, which is di↵erent from the
C-space T 3. The task space depends on the task; if the job is to point a laser
pointer, then rotations about the axis of the laser beam are immaterial, and the
task space would be S2, the set of directions the laser can point.

Example 2.7. The SCARA robot of Figure 2.13 is an RRRP open chain that is
widely used for tabletop pick-and-place tasks. The end-e↵ector configuration is
completely described by the four parameters (x, y, z,�), where (x, y, z) denotes
the Cartesian position of the end-e↵ector center point, and � denotes the ori-
entation of the end-e↵ector in the x-y plane. Its task space would typically be
defined as R3⇥S1, and its workspace would typically be defined as the reachable
points in (x, y, z) Cartesian space, since all orientations � 2 S1 can be achieved
at all reachable points.

30 Configuration Space

ϕθ4

θ1
θ2

θ3

x

y
ẑ

^

^
(x,y,z)

Figure 2.13: SCARA robot.

Figure 2.14: A spray-painting robot.

Example 2.8. A standard 6R industrial manipulator can be adapted to spray-
painting applications as shown in Figure 2.14. The paint spray nozzle attached
to the tip can be regarded as the end-e↵ector. What is important to the task
is the Cartesian position of the spray nozzle, together with the direction in
which the spray nozzle is pointing; rotations about the nozzle axis (which points
in the direction in which paint is being sprayed) do not matter. The nozzle
configuration can therefore be described by five coordinates: (x, y, z) for the

2.6. Summary 31

Cartesian position of the nozzle and spherical coordinates (✓,�) to describe
the direction in which the nozzle is pointing. The task space can be written
as R3 ⇥ S2. The workspace could be the reachable points in R3 ⇥ S2, or, to
simplify visualization, the user could define the workspace to be the subset of
R3 corresponding to the reachable Cartesian positions of the nozzle.

2.6 Summary

• A robot is mechanically constructed from links that are connected by
various types of joints. The links are usually modeled as rigid bodies.
An end-e↵ector such as a gripper may be attached to some link of the
robot. Actuators deliver forces and torques to the joints, thereby causing
motion of the robot.

• The most widely used one-dof joints are the revolute joint, which allows
for rotation about the joint axis, and the prismatic joint, which allows
for translation in the direction of the joint axis. Some common two-dof
joints include the cylindrical joint, which is constructed by serially con-
necting a revolute and prismatic joint, and the universal joint, which is
constructed by orthogonally connecting two revolute joints. The spheri-
cal joint, also known as ball-in-socket joint, is a three-dof joint whose
function is similar to the human shoulder joint.

• The configuration of a rigid body is a specification of the location of all
of its points. For a rigid body moving in the plane, three independent
parameters are needed to specify the configuration. For a rigid body
moving in three-dimensional space, six independent parameters are needed
to specify the configuration.

• The configuration of a robot is a specification of the configuration of all of
its links. The robot’s configuration space is the set of all possible robot
configurations. The dimension of the C-space is the number of degrees
of freedom of a robot.

• The number of degrees of freedom of a robot can be calculated using
Grübler’s formula,

dof = m(N � 1� J) +
JX

i=1

f
i

,

where m = 3 for planar mechanisms and m = 6 for spatial mechanisms,
N is the number of links (including the ground link), J is the number of
joints, and f

i

is the number of degrees of freedom of joint i.

• A robot’s C-space can be parametrized explicitly or represented implicitly.
For a robot with n degrees of freedom, an explicit parametrization uses
n coordinates, the minimum necessary. An implicit representation

32 Configuration Space

involves m coordinates with m � n, with the m coordinates subject to
m� n constraint equations. With the implicit parametrization, a robot’s
C-space can be viewed as a surface of dimension n embedded in a space
of higher dimension m.

• The C-space of an n-dof robot whose structure contains one or more closed
loops can be implicitly represented using k loop-closure equations of
the form g(✓) = 0, where ✓ 2 Rm and g : Rm ! Rk. Such constraint
equations are called holonomic constraints. Assuming ✓(t) varies with
time t, the holonomic constraints g(✓(t)) = 0 can be di↵erentiated with
respect to t to yield

@g

@✓
(✓)✓̇ = 0,

where @g

@✓

(✓) is a k ⇥m matrix.

• A robot’s motion can also be subject to velocity constraints of the form

A(✓)✓̇ = 0,

where A(✓) is a k⇥m matrix that cannot be expressed as the di↵erential
of some function g(✓), i.e., there does not exist any g(✓), g : Rm ! Rk,
such that

A(✓) =
@g

@✓
(✓).

Such constraints are said to be nonholonomic constraints, or noninte-
grable constraints. These constraints reduce the dimension of feasible
velocities of the system but do not reduce the dimension of the reach-
able C-space. Nonholonomic constraints arise in robot systems subject to
conservation of momentum or rolling without slipping.

• A robot’s task space is a space in which the robot’s task can be naturally
expressed. A robot’s workspace is a specification of the configurations
the end-e↵ector of the robot can reach.

Notes and References

In the kinematics literature, structures that consist of links connected by joints
are also calledmechanisms or linkages. The degrees of freedom of mechanisms
is treated in most texts on mechanism analysis and design, e.g., [29]. A robot’s
configuration space has the mathematical structure of a di↵erentiable manifold.
Some accessible introductions to di↵erential manifolds and di↵erential geometry
are [88], [18]. Configuration spaces are further examined in a motion planning
context in [59], [19].

2.7. Exercises 33

A

Robot

Human

Figure 2.15: Robot used for human arm rehabilitation.

2.7 Exercises

1. Using the methods of Section 2.1, derive a formula, in terms of n, for the
degrees of freedom of a rigid body in n-dimensional space. Indicate how many of
those dof are translational and how many are rotational. Describe the topology
of the C-space (e.g., for n = 2, the topology is R2 ⇥ S1).

2. Find the degrees of freedom of your arm, from your torso to your palm (just
past the wrist, not including finger degrees of freedom). Do this in two ways:
(a) add up the degrees of freedom at the shoulder, elbow, and wrist joints, and
(b) fix your palm flat on a table with your elbow bent, and without moving your
torso, investigate how many degrees of freedom with which you can still move
your arm. Do your answers agree? How many constraints were placed on your
arm when you placed your palm at a fixed configuration on the table?

3. Assume each of your arms has n degrees of freedom. You are driving a car,
your torso is stationary relative to the car (a tight seatbelt!), and both hands
are firmly grasping the wheel, so that your hands do not move relative to the
wheel. How many degrees of freedom does your arms-plus-steering wheel system
have? Explain your answer.

4. Figure 2.15 shows a robot used for human arm rehabilitation. Determine
the degrees of freedom of the chain formed by the human arm and robot.

5. The mobile manipulator of Figure 2.16 consists of a 6R arm and multifin-
gered hand mounted on a mobile base with a single wheel. The wheel rotates

34 Configuration Space

Figure 2.16: Mobile manipulator.

Spherical Joint

Revolute Joint

Figure 2.17: Three cooperating SRS arms grasping a common object.

without slip, and its axis of rotation always remains parallel to the ground.
(a) Ignoring the multifingered hand, describe the configuration space of the mo-
bile manipulator.
(b) Now suppose the robot hand rigidly grasps the refrigerator door handle, and
with its wheel completely stationary, opens the door using only its arm. With
the door open, how many degrees of freedom does the mechanism formed by
the arm and open door have?
(c) A second identical mobile manipulator comes along, and after parking its
mobile base, also rigidly grasps the refrigerator door handle. How many de-
grees of freedom does the mechanism formed by the two arms and the open
referigerator door have?

6. Three identical SRS open chain arms are grasping a common object as shown
in Figure 2.17.
(a) Find the degrees of freedom of this system.
(b) Suppose there are now a total of n such arms grasping the object. What is
the degrees of freedom of this system?

2.7. Exercises 35

(c) Suppose the spherical wrist joint in each of the n arms is now replaced by a
universal joint. What is the degrees of freedom of the overall system?

7. Consider a spatial parallel mechanism consisting of a moving plate connected
to the fixed plate by n identical open chain legs. In order for the moving plate
to have six degrees of freedom, how many degrees of freedom should each leg
have, as a function of n? For example, if n = 3, then the moving plate and fixed
plate are connected by three open chains; how many degrees of freedom should
each open chain have in order for the moving plate to move with six degrees of
freedom? Solve for arbitrary n.

8. Use the planar version of Grübler’s formula to determine the degrees of free-
dom of the mechanisms shown in Figure 2.18. Comment on whether your results
agree with your intuition about the possible motions of these mechanisms.

9. Use the spatial version of Grübler’s formula to determine the degrees of free-
dom of the mechanisms shown in Figure 2.19. Comment on whether your results
agree with your intuition about the possible motions of these mechanisms.

10. In the parallel mechanism shown in Figure 2.20, six legs of identical length
are connected to a fixed and moving platform via spherical joints. Determine
the degrees of freedom of this mechanism using Grübler’s formula. Illustrate all
possible motions of the upper platform.

11. The 3 ⇥ UPU platform of Figure 2.21 consists of two platforms–the lower
one stationary, the upper one mobile–connected by three UPU serial chains.
(a) Using the spatial version of Grübler’s formula, Verify that it has three degrees
of freedom.
(b) Construct a physical model of the 3⇥UPU platform to see if it indeed has
three degrees of freedom. In particular, lock the three P joints in place; does the
robot become a structure as predicted by Grübler’s formula, or does it move?
Try reversing the order of the U joints, i.e., with the rotational axes connecting
the leg to the platforms arranged parallel to the platforms, and also arranged
orthogonal to the platforms. Does the order in which the U joints are connected
matter?

12. (a) The mechanism of Figure 2.22(a) consists of six identical squares ar-
ranged in a single closed loop, connected serially by revolute joints. The bottom
square is fixed to ground. Determine its degrees of freedom using an appropriate
version of Grübler’s formula.
(b) The mechanism of Figure 2.22(b) also consists of six identical squares con-
nected by revolute joints, but arranged di↵erently as shown. Determine its de-
grees of freedom using an appropriate version of Grübler’s formula. Does your
result agree with your intuition about the possible motions of this mechanism?

36 Configuration Space

(a) (b)

Fork Joint

Slider

Slider

(c) (d)

Beam

Arm

Bucket
B

(e) (f)

(g) (h)

2.7. Exercises 37

(i) (j)

(k) (l)

Figure 2.18: A collection of planar mechanisms.

13. Figure 2.23 shows a spherical four-bar linkage, in which four links (one
of the links is the ground link) are connected by four revolute joints to form a
single-loop closed chain. The four revolute joints are arranged so that they lie
on a sphere, and such that their joint axes intersect at a common point.
(a) Use an appropriate version of Grübler’s formula to find the degrees of free-
dom. Justify your choice of formula.
(b) Describe the configuration space.
(c) Assuming a reference frame is attached to the center link, describe its
workspace.

14. Figure 2.24 shows a parallel robot for surgical applications. As shown in
Figure 2.24(a), leg A is an RRRP chain, while legs B and C are RRRUR chains.
A surgical tool is attached to the end-e↵ector as shown.
(a) Use an appropriate version of Grübler’s formula to find the degrees of free-
dom of the mechanism in Figure 2.24(a).

38 Configuration Space

(a)

o {f}

x
y

z

P
{M}

Revolute Joint

Circular Prismatic Joint Circular guide

Linear
Prismatic JointBall Joint

Spindle platform

ColumnA₁

A₃

A₂

B₁

B₃

B₂
C₁

C₃

C₂

^

^

^

x
y

z^
^

^

(b)

 Revolute Joint

Circular
Prismatic Joint

Linear Prismatic Joint Ball Joint

Circular
ColumnLinear

Column

A₁

A₃

A₂

B₁
B₃

B₂ C₁

C₃

C₂

o
{f}

x
yz

P
{M}^
^

^

x
yẑ ^

^

(c)

Prismatic joint
Universal joint

Universal joint

(d)

(e)

S joint

R joint

P joint

P joint

(f)

U

U

R

(g) (h)

2.7. Exercises 39

Universal joint

Ball joint

Revolute joint

(i)

R

P

R
R

R
R

R

(j)

Figure 2.19: A collection of spatial parallel mechanisms.

Figure 2.20: A 6⇥ SS platform.

(b) Now suppose the surgical tool must always pass through point A in Fig-
ure 2.24(a). How many degrees of freedom does the manipulator have?
(c) Legs A, B, and C are now replaced by three identical RRRR legs as shown in
Figure 2.24(b). Furthermore the axes of all R joints pass through point A. Use
an appropriate version of Grübler’s formula to derive the degrees of freedom of
this mechanism.

15. Figure 2.25 shows a 3 ⇥ PUP platform, in which three identical PUP legs
connect a fixed base to a moving platform. As shown in the figure, the P
joints on both the fixed base and moving platform are arranged symmetrically.
Recalling that the U joint consists of two revolute joints connected orthogonally,

40 Configuration Space

Figure 2.21: The 3⇥UPU platform.

R

R

R

R

R

R

stationary

(a)

R

R

R

R

R

R

stationary

(b)

Figure 2.22: Two mechanisms.

each R joint connected to the moving platform has its joint axis aligned in the

2.7. Exercises 41

Figure 2.23: The spherical four-bar linkage.

End-effector

Base

Point A

Surgical tool

Leg A

Leg B

Leg C

(a)

End-effector

Base

Surgical tool

Point A

Leg D

Leg D

Leg D

(b)

Figure 2.24: Surgical manipulator.

same direction as the platform’s P joint. The R joint connected to the fixed base
has its joint axis orthogonal to the base P joint. Use an appropriate version of
Grübler’s formula to find the degrees of freedom. Does your answer agree with
your intuition about this mechanism? If not, try to explain any discrepancies
without resorting to a detailed kinematic analysis.

16. The dual-arm robot of Figure 2.26 is rigidly grasping a box as shown. The
box can only slide on the table; the bottom face of the box must always be in
contact with the table. How many degrees of freedom does this system have?

42 Configuration Space

platform P joint

platform

U joint

base P joint

base

Figure 2.25: The 3⇥ PUP platform.

S

R

S

SS

R

R

Figure 2.26: Dual arm robot.

17. The dragonfly robot of Figure 2.27 has a body, four legs, and four wings
as shown. Each leg is connected to its adjacent leg by a USP open chain. Use
appropriate versions of Grübler’s formula to answer the following questions:
(a) Suppose the body is fixed, and only the legs and wings can move. How many
degrees of freedom does the robot have?
(b) Now suppose the robot is flying in the air. How many degrees of freedom
does the robot have?
(c) Now suppose the robot is standing with all four feet in contact with the
ground. Assume the ground is uneven, and that each foot-ground contact can
be modeled as a point contact with no slip. How many degrees of freedom does
the robot have?

2.7. Exercises 43

P joint

P joint

S joint

U joint

S joint

R joint

Figure 2.27: Dragonfly robot.

(a) (b)

Contact

(c)

Figure 2.28: A caterpillar robot.

18. (a) A caterpillar robot is hanging by its tail as shown in Figure 2.28(a).
The caterpillar robot consists of eight rigid links (one head, one tail, and six
body links) connected serially by revolute-prismatic pairs as shown. Find the
degrees of freedom of this robot.
(b) The caterpillar robot is now crawling on a leaf as shown in Figure 2.28(b).
Suppose all six body links must be in contact with the leaf at all times (each
link-leaf contact can be modelled as a frictionless point contact). Find the de-

44 Configuration Space

(a) (b) (c)

Figure 2.29: (a) A four-fingered hand with palm. (b) The hand grasping an
ellipsoidal object. (c) A rounded fingertip that can roll on the object without
sliding.

grees of freedom of this robot during crawling.
(c) Now suppose the caterpillar robot crawls on the leaf as shown in Fig-
ure 2.28(c), in which only the first and last body links are in contact with
the leaf. Find the degrees of freedom of this robot during crawling.

19. The four-fingered hand of Figure 2.29(a) consists of a palm and four URR
fingers (the U joints connect the fingers to the palm).
(a) Assume the fingertips are points, and that one of the fingertips is in contact
with the table surface (sliding of the fingertip point contact is allowed). How
many degrees of freedom does the hand have? WHat if two fingertips are in
sliding point contact with the table? Three? All four?
(b) Repeat part (a) but with each URR finger replaced by an SRR finger (each
universal joint is replaced by a spherical joint).
(c) The hand (with URR fingers) now grasps an ellipsoidal object as shown
in Figure 2.29(b). Assume the palm is fixed in space, and that no slip occurs
between the fingertips and object. How many degrees of freedom does the
system have?
(d) Now assume the fingertips are spheres as shown in Figure 2.29(c). Each
of the fingertips can roll on the object, but cannot slip or break contact with
the object. How many degrees of freedom does the system have? For a single
fingertip in rolling contact with theobject, comment on the dimension of the
space of feasible fingertip velocities relative to the object versus the number of
parameters needed to represent the fingertip configuration relative to the object
(its degrees of freedom). (Hint: You may want to experiment by rolling a ball
around on a tabletop to get some intuition.)

20. Consider the slider-crank mechanism of Figure 2.4(b). A rotational motion
at the revolute joint fixed to ground (the “crank”) causes a translational motion
at the prismatic joint (the “slider”). Suppose the two links connected to the
crank and slider are of equal length. Determine the configuration space of this
mechanism, and draw its projected version on the space defined by the crank

2.7. Exercises 45

α

β

ϕ

α2+β2y

x̂

^

ψθ

h

a b

g

A B

(a) (b)

Figure 2.30: Planar four-bar linkage.

and slider joint variables.

21. (a) Use an appropriate version of Grübler’s formula to determine the degrees
of freedom of a planar four-bar linkage floating in space.
(b) Derive an implicit parametrization of the four-bar’s configuration space as
follows. First, label the four links 1,2,3,4, and choose three points A,B,C on
link 1, D,E, F on link 2, G,H, I on link 3, and J,K,L on link 4. The four-
bar linkage is constructed such that the four following pairs of points are each
connected by a revolute joint: C with D, F with G, I with J , and L with A.
Write down explicit constraints on the coordinates for the eight points A,. . .H
(assume a fixed reference frame has been chosen, and denote the coordinates
for point A by p

A

= (x
A

, y
A

, z
A

), and similarly for the other points). Based on
counting the number of variables and constraints, what is the degrees of freedom
of the configuration space? If it di↵ers from the result you obtained in (a), try
to explain why.

22. In this exercise we examine in more detail the representation of the C-space
for the planar four-bar linkage of Figure 2.30. Attach a fixed reference frame and
label the joints and link lengths as shown in the figure. The (x, y) coordinates
for joints A and B are given by

A(✓) = (a cos ✓, a sin ✓)T

B() = (g + b cos , b sin)T .

Using the fact that the link connecting A and B is of fixed length h, i.e., kA(✓)�
B()k2 = h2, we have the constraint

b2 + g2 + 2gb cos + a2 � 2(a cos ✓(g + b cos) + ab sin ✓ sin) = h2.

Grouping the coe�cients of cos and sin , the above equation can be expressed
in the form

↵(✓) cos + �(✓) sin = �(✓), (2.11)

46 Configuration Space

y

x̂

^

Obstacle

Figure 2.31: A circular disc robot moving in the plane.

where

↵(✓) = 2gb� 2ab cos ✓

�(✓) = �2ab sin ✓
�(✓) = h2 � g2 � b2 � a2 + 2ag cos ✓.

We now express as a function of ✓, by first dividing both sides of Equa-
tion (2.11) by

p
↵2 + �2 to obtain

↵p
↵2 + �2

cos +
�p

↵2 + �2

sin =
�p

↵2 +B2

Referring to Figure 2.30(b), the angle � is given by � = tan�1(�/↵), so that
Equation (22) becomes

cos(� �) = �p
↵2 + �2

.

Therefore,

 = tan�1(
�

↵
)± cos�1

�p

↵2 + �2

!
.

(a) Note that a solution exists only if �2 ↵2 + �2. What are the physical
implications if this constraint is not satisfied?
(b) Note that for each value of input angle ✓, there exists two possible values of
the output angle . What do these two solutions look like?
(c) Draw the configuration space of the mechanism in ✓- space for the following
link length values: a = b = g = h = 1.
(d) Repeat (c) for the following link length values: a = 1, b = 2, h =

p
5, g = 2.

(e) Repeat (c) for the following link length values: a = 1, b = 1, h = 1, g =
p
3.

23. A circular disc robot moves in the plane as shown in Figure 2.31. An
L-shaped obstacle is nearby. Using the (x, y) coordinates of the robot’s center
as its configuration space coordinates, draw the free configuration space (i.e.,
the set of all feasible configurations) of the robot.

2.7. Exercises 47

θ₁

θ₂

y

x

^

^

Figure 2.32: Two-link planar 2R open chain.

24. The tip coordinates for the two-link planar 2R robot of Figure 2.32 are
given by

x = 2 cos ✓
1

+ cos(✓
1

+ ✓
2

)

y = 2 sin ✓
1

+ sin(✓
1

+ ✓
2

).

(a) What is the robot’s configuration space?
(b) What is the robot’s task space (i.e., the set of all points reachable by the
tip)?
(c) Suppose infinitely long vertical barriers are placed at x = 1 and x = �1.
What is the free C-space of the robot (i.e., the portion of the C-space that does
not result in any collisions with the vertical barriers)?

25. (a) Consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 5, 2, and 1, respectively. Considering only the Cartesian point
of the tip, draw its workspace.
(b) Now consider a planar 3R open chain with link lengths (starting from the
fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian point of
the tip, draw its workspace. Which of these two chains has a larger workspace?
(c) A not-so-clever designer claims that he can make the workspace of any planar
open chain larger simply by increasing the length of the last link. Explain the
fallacy behind this claim.

26. (a) Describe the task space for a robot arm writing on a blackboard.
(b) Describe the task space for a robot arm twirling a baton.

27. Give a mathematical description of the topologies of the C-spaces of the
following systems. Use cross-products, as appropriate, of spaces such as a closed
interval of a line [a, b] and Rk, Sm, and Tn, where k, m, and n are chosen
appropriately.

(i) The chassis of a car-like mobile robot rolling on an infinite plane.

48 Configuration Space

φ1

θ

(x,y)

Side view Top view

r
d

Figure 2.33: A side view and a top view of a di↵-drive robot.

(ii) The car-like mobile robot, but including a representation of the wheel
configurations.

(iii) The car-like mobile robot driving around on a spherical asteroid.

(iv) The car-like mobile robot on an infinite plane with an RRPR robot arm
mounted on it. The prismatic joint has joint limits, but the revolute joints
do not.

(v) A free-flying spacecraft with a 6R arm mounted on it, no joint limits.

28. Describe an algorithm that drives the rolling coin of Figure 2.11 from any
arbitrary initial configuration in its four-dimensional C-space to any arbitrary
goal configuration, despite the two nonholonomic constraints. The control in-
puts are the rolling speed ✓̇ and the turning speed �̇.

29. A di↵erential-drive mobile robot has two wheels which do not steer but
whose speeds can be controlled independently. The robot goes forward and
backward by spinning the wheels in the same direction at the same speed, and
it turns by spinning the wheels at di↵erent speeds. The configuration of the
robot is given by five variables: the (x, y) location of the point halfway between
the wheels, the heading direction ✓ of the robot’s chassis relative to the x-axis of
the world frame, and the rotation angles �

1

and �
2

of the two wheels about the
axis through the centers of the wheels (Figure 2.33). Assume that the radius of
each wheel is r and the distance between the wheels is 2d.

(i) Let q = (x, y, ✓,�
1

,�
2

)T be the configuration of the robot. If the two
control inputs are the angular velocities of the wheels !

1

= �̇
1

and !
2

=
�̇
2

, write the vector di↵erential equation q̇ = g
1

(q)!
1

+g
2

(q)!
2

. The vector
fields g

1

(q) and g
2

(q) are called control vector fields, expressing how the
system moves when the respective control is applied.

(ii) Write the corresponding Pfa�an constraints A(q)q̇ = 0 for this system.
How many Pfa�an constraints are there?

2.7. Exercises 49

(iii) Are the constraints holonomic or nonholonomic? Or how many are holo-
nomic and how many nonholonomic?

30. Determine if the following di↵erential constraints are holonomic or non-
holonomic:
(a)

(1 + cos q
1

)q̇
1

+ (1 + cos q
2

)q̇
2

+ (cos q
1

+ cos q
2

+ 4)q̇
3

= 0.

(b)

�q̇
1

cos q
2

+ q̇
3

sin(q
1

+ q
2

)� q̇
4

cos(q
1

+ q
2

) = 0

q̇
3

sin q
1

� q̇
4

cos q
1

= 0.

50 Configuration Space

Chapter 3

Rigid-Body Motions

In the previous chapter, we saw that a minimum of six numbers are needed to
specify the position and orientation of a rigid body in three-dimensional physical
space. In this chapter we develop a systematic way to describe a rigid body’s
position and orientation that relies on attaching a reference frame to the body.
The configuration of this frame with respect to a fixed reference frame is then
represented as a 4⇥ 4 matrix. This is an example of an implicit representation
of the C-space, as discussed in the previous chapter: the actual six-dimensional
space of rigid-body configurations is obtained by applying ten constraints to the
sixteen-dimensional space of 4⇥ 4 real matrices.

Such a matrix not only represents the configuration of a frame, but it can
also be used to (1) translate and rotate a vector or a frame, and (2) change the
representation of a vector or a frame from coordinates in one frame (e.g., {a})
to coordinates in another frame (e.g., {b}). These operations can be performed
by simple linear algebra, which is a major reason we choose to represent a
configuration as a 4⇥ 4 matrix.

The non-Euclidean (non-“flat”) nature of the C-space of positions and ori-
entations leads us to use the matrix representation. A rigid body’s velocity,
however, can be represented simply as a point in R6: three angular velocities
and three linear velocities, which together we call a spatial velocity or twist.
More generally, even though a robot’s C-space may not be Euclidean, the set of
feasible velocities at any point in the C-space always forms a Euclidean space.
As an example, consider a robot whose C-space is the sphere S2: although the
C-space is not flat, the velocity at any configuration can be represented by two
real numbers (an element of R2), such as the rate of change of the latitude and
the longitude. At any point on the sphere, the space of velocities can be thought
of as the plane (a Euclidean space) tangent to that point on the sphere.

Any rigid-body configuration can be achieved by starting from the fixed
(home) reference frame and integrating a constant twist for a specified time.
Such a motion resembles the motion of a screw, rotating about and translat-
ing along the same fixed axis. The observation that all configurations can be
achieved by a screw motion motivates a six-parameter representation of the

51

52 Rigid-Body Motions

configuration called the exponential coordinates. The six parameters can be di-
vided into parameters to describe the direction of the screw axis and a scalar
to indicate how far the screw motion must be followed to achieve the desired
configuration.

This chapter concludes with a discussion of forces. Just as angular and linear
velocities are packaged together into a single vector in R6, moments (torques)
and forces are packaged together into a six-vector called a spatial force or wrench.

To illustrate the concepts and to provide a synopsis of the chapter, we begin
with a motivating planar example. Before doing so, we make some remarks
about vector notation.

A Word about Vectors and Reference Frames

A free vector is a geometric quantity with a length and a direction. Think
of it as an arrow in Rn. It is called “free” because it is not necessarily rooted
anywhere; only its length and direction matter. A linear velocity can be viewed
as a free vector: the length of the arrow is the speed and the direction of the
arrow is the direction of the velocity. A free vector is denoted by a regular text
symbol, e.g., v.

If a reference frame and length scale have been chosen for the underlying
space in which v lies, then this free vector can be moved so the base of the arrow
is at the origin, without changing the orientation. The free vector v can then
be represented as a column vector in the coordinates of the reference frame.
This vector is written in italics, v 2 Rn, where v is at the “head” of the arrow
in the frame’s coordinates. If a di↵erent reference frame and length scale are
chosen, then the representation v will change, but the underlying free vector v
is unchanged.

In other words, we say that v is coordinate free; it refers to a physical quantity
in the underlying space, and it does not care how we represent it. On the other
hand, v is a representation of v that depends on a choice of a coordinate frame.

A point p in physical space can also be represented as a vector. Given
a choice of reference frame and length scale for physical space, the point p
can be represented as a vector from the reference frame origin to p; its vector
representation is denoted in italics by p 2 Rn. Here, as before, a di↵erent
choice of reference frame and length scale for physical space leads to a di↵erent
representation p 2 Rn for the same point p in physical space. See Figure 3.1.

In the rest of this book, a choice of length scale will always be assumed, but
we will be dealing with reference frames at di↵erent positions and orientations.
A reference frame can be placed anywhere in space, and any reference frame
leads to an equally valid representation of the underlying space and objects in
it. However, we always assume that exactly one stationary fixed frame, or
space frame, denoted {s}, has been defined. This might be attached to a
corner of a room, for example. Similarly, we often assume that at least one
frame has been attached to some moving rigid body, such as the body of a
quadrotor flying in the room. The body frame, denoted {b}, is the stationary
frame that is coincident with the body-attached frame at any instant.

3.1. Rigid-Body Motions in the Plane 53

y^a

x^a{a}

y^b

x^b
{b}

p

pa

p
b

Figure 3.1: The point p exists in physical space, and it does not care how we
represent it. If we fix a reference frame {a}, with unit coordinate axes x̂

a

and ŷ
a

,
we can represent p as p

a

= (1, 2). If we fix a reference frame {b} at a di↵erent
location, a di↵erent orientation, and a di↵erent length scale, we can represent p
as p

b

= (4,�2).

Important! All frames in this book are stationary, inertial frames. When
we refer to a body frame {b}, we mean a motionless frame that is instanta-
neously coincident with a frame that is fixed to a (possibly moving) body.
This is important to keep in mind, since you may have had a dynamics
course that used non-inertial moving frames. Do not confuse these with the
stationary, inertial body frames of this book.

For simplicity, we refer to a body frame as a frame attached to a moving
rigid body. Despite this, at any instant, by “body frame” we mean the
stationary frame that is coincident with the frame moving along with the
body.

It is worth repeating to yourself one more time: all frames are sta-
tionary.

While it is common to attach the origin of the {b} frame to some important
point on the body, such as its center of mass, this is not required. The origin
of the {b} frame might not even be on the physical body itself, as long as
its location relative to the body, viewed from an observer on the body that is
stationary relative to the body, is constant.

3.1 Rigid-Body Motions in the Plane

Consider the planar body of Figure 3.2, whose motion is confined to the plane.
Suppose a length scale and a fixed reference frame have been chosen as shown.
We call the fixed reference frame the fixed frame, or the space frame, denoted
{s}, and label its unit axes x̂

s

and ŷ
s

. (Throughout this book, the ˆ notation
indicates a unit vector.) Similarly, we attach a reference frame with unit axes
x̂
b

and ŷ
b

to the planar body. Because this frame moves with the body, it is
called the body frame, and is denoted {b}.

54 Rigid-Body Motions

y^b

x^b

{b}
y^s

x^s{s}

θ

p

Figure 3.2: The body frame {b} in fixed-frame coordinates {s} is represented
by the vector p and the direction of the unit axes x̂

b

and ŷ
b

expressed in {s}.
In this example, p = (2, 1)T and ✓ = 60�, so x̂

b

= (cos ✓, sin ✓)T = (0.5, 1/
p
2)T

and ŷ
b

= (� sin ✓, cos ✓)T = (�1/
p
2, 0.5)T .

To describe the configuration of the planar body, only the position and ori-
entation of the body frame with respect to the fixed frame needs to be specified.
The body frame origin p can be expressed in terms of the coordinate axes of
{s} as

p = p
x

x̂
s

+ p
y

ŷ
s

. (3.1)

You are probably more accustomed to writing this vector as simply p = (p
x

, p
y

);
this is fine when there is no possibility of ambiguity about reference frames, but
writing p as in Equation (3.1) clearly indicates the reference frame with respect
to which (p

x

, p
y

) is defined.
The simplest way to describe the orientation of the body frame {b} relative

to the fixed frame {s} is by specifying the angle ✓ as shown in Figure 3.2.
Another (admittedly less simple) way is to specify the directions of the unit
axes x̂

b

and ŷ
b

of {b} relative to {s}, in the form

x̂
b

= cos ✓ x̂
s

+ sin ✓ ŷ
s

(3.2)

ŷ
b

= � sin ✓ x̂
s

+ cos ✓ ŷ
s

. (3.3)

At first sight this seems a rather ine�cient way to represent the body frame
orientation. However, imagine the body were to move arbitrarily in three-
dimensional space; a single angle ✓ alone clearly would not su�ce to describe
the orientation of the displaced reference frame. We would in fact need three
angles, but it is not yet clear how to define an appropriate set of three angles.
On the other hand, expressing the directions of the coordinate axes of {b} in
terms of coe�cients of the coordinate axes of {s}, as we have done above for
the planar case, is straightforward.

Assuming we agree to express everything in terms of {s}, then just as the

3.1. Rigid-Body Motions in the Plane 55

y^b

x^b

{b}

y^s

x^s{s}

p

θ

φ
q

r
y^c

x^c
{c}

ψ

Figure 3.3: The frame {b} in {s} is given by (P, p), and the frame {c} in {b}
is given by (Q, q). From these we can derive the frame {c} in {s}, described by
(R, r). The numerical values of the vectors p, q, and r, and the coordinate axis
directions of the three frames, are evident from the grid of unit squares.

point p can be represented as a column vector p 2 R2 of the form

p =

p
x

p
y

�
, (3.4)

the two vectors x̂
b

and ŷ
b

can also be written as column vectors and packaged
into the following 2⇥ 2 matrix P ,

P = [x̂
b

ŷ
b

] =

cos ✓ � sin ✓
sin ✓ cos ✓

�
. (3.5)

The matrix P is an example of a rotation matrix. Although P is constructed
of four numbers, they are subject to three constraints (each column of P must
be a unit vector, and the two columns must be orthogonal to each other), and
the one remaining degree of freedom is parametrized by ✓. Together, the pair
(P, p) provides a description of the orientation and position of {b} relative to
{s}.

Now refer to the three frames in Figure 3.3. Repeating the approach above,
and expressing {c} in {s} as the pair (R, r), we can write

r =

r
x

r
y

�
, R =

cos� � sin�
sin� cos�

�
. (3.6)

We could also describe the frame {c} relative to {b}. Letting q denote the
vector from the origin of {b} to the origin of {c} expressed in {b} coordinates,
and letting Q denote the orientation of {c} relative to {b}, we can write {c}

56 Rigid-Body Motions

relative to {b} as the pair (Q, q), where

q =

q
x

q
y

�
, Q =

cos � sin
sin cos

�
. (3.7)

If we know (Q, q) (the configuration of {c} relative to {b}) and (P, p) (the
configuration of {b} relative to {s}), we can compute the configuration of {c}
relative to {s} as follows:

R = PQ (convert Q to the {s} frame) (3.8)

r = Pq + p (convert q to the {s} frame and vector sum with p). (3.9)

Thus (P, p) not only represents a configuration of {b} in {s}; it can also be used
to convert the representation of a point or frame from {b} coordinates to {s}
coordinates.

Now consider a rigid body with two frames attached to it, {d} and {c}. The
frame {d} is initially coincident with {s}, and {c} is initially described by (R, r)
in {s} (Figure 3.4(a)). Then the body is moved so that {d} moves to {d0},
coincident with a frame {b} described by (P, p) in {s}. Where does {c} end up
after this motion? Denoting (R0, r0) as the configuration of the new frame {c0},
you can verify that

R0 = PR (3.10)

r0 = Pr + p, (3.11)

very similar to Equations (3.8) and (3.9). The di↵erence is that (P, p) is ex-
pressed in the same frame as (R, r), so the equations are not viewed as a change
of coordinates, but instead as a rigid-body displacement (also known as a
rigid-body motion) that 1� rotates {c} according to P and 2� translates it
by p in {s}. See Figure 3.4(a).

Thus we see that a rotation matrix-vector pair such as (P, p) can be used to
do three things:

(i) Represent a configuration of a rigid body in {s} (Figure 3.2).

(ii) Change the reference frame in which a vector or frame is represented
(Figure 3.3).

(iii) Displace a vector or a frame (Figure 3.4(a)).

Referring to Figure 3.4(b), note that the rigid-body motion illustrated in
Figure 3.4(a), expressed as a rotation followed by a translation, can be obtained
by simply rotating the body about a fixed point s by an angle �. This is a planar
example of a screw motion.1 The displacement can therefore be parametrized
by the three screw coordinates (�, s

x

, s
y

), where (s
x

, s
y

) denote the coordinates
for the point s (i.e., the screw axis) in the fixed-frame {s}.

1
If the displacement is a pure translation without rotation, then s lies at infinity.

3.1. Rigid-Body Motions in the Plane 57

{b,d’}

{s,d}

p
r

{c}
Pr

Pr+p

{c’}

2

1

p

{d’}

{s,d}

{c}

{c’}

β

s

(a) (b)

Figure 3.4: (a) The frame {d}, fixed to an elliptical rigid body and initially coin-
cident with {s}, is displaced to {d0} (coincident with the stationary frame {b}),
by first rotating according to P then translating according to p, where (P, p) is
the representation of {b} in {s}. The same transformation takes the frame {c},
also attached to the rigid body, to {c0}. The transformation marked 1� rigidly
rotates {c} about the origin of {s}, and then transformation 2� translates the
frame by p expressed in {s}. (b) Instead of viewing this displacement as a rota-
tion followed by a translation, both rotation and translation can be performed
simultaneously. The displacement can be viewed as a rotation of � = 90� about
a fixed point s.

Another way to represent the screw motion is to consider it the displacement
obtained by following a simultaneous angular and linear velocity for a given
amount of time. Inspecting Figure 3.4(b), we see that rotating about s with
a unit angular velocity (! = 1 rad/s) means that a point at the origin of
the {s} frame moves at two units per second in the +x̂ direction of the {s}
frame (v = (v

x

, v
y

) = (2, 0)). Packaging these together in a 3-vector as V =
(!, v

x

, v
y

) = (1, 2, 0), we call this the planar twist (velocity) corresponding
to a unit angular velocity rotation about s. Following this planar twist for
time (or angle) t = ⇡/2 yields the final displacement. We can now express the
screw motion (�, s

x

, s
y

) in the alternate form Vt = (⇡/2,⇡, 0). This form has
some advantages, and we call these coordinates the exponential coordinate
representation of the planar rigid-body displacement.

58 Rigid-Body Motions

Figure 3.5: Mathematical description of position and orientation.

Remainder of the chapter. In the remainder of this chapter we generalize
the concepts above to three-dimensional rigid-body motions. For this purpose
consider a rigid body occupying three-dimensional physical space as shown in
Figure 3.5. Assume that a length scale for physical space has been chosen, and
that both the fixed frame {s} and body frame {b} have been chosen as shown.
Throughout this book all reference frames are right-handed, i.e., the unit axes
{x̂, ŷ, ẑ} always satisfy x̂ ⇥ ŷ = ẑ. Denote the unit axes of the fixed frame by
{x̂

s

, ŷ
s

, ẑ
s

} and the unit axes of the body frame by {x̂
b

, ŷ
b

, ẑ
b

}. Let p denote
the vector from the fixed frame origin to the body frame origin. In terms of the
fixed frame coordinates, p can be expressed as

p = p
1

x̂
s

+ p
2

ŷ
s

+ p
3

ẑ
s

. (3.12)

The axes of the body frame can also be expressed as

x̂
b

= r
11

x̂
s

+ r
21

ŷ
s

+ r
31

ẑ
s

(3.13)

ŷ
b

= r
12

x̂
s

+ r
22

ŷ
s

+ r
32

ẑ
s

(3.14)

ẑ
b

= r
13

x̂
s

+ r
23

ŷ
s

+ r
33

ẑ
s

. (3.15)

Defining p 2 R3 and R 2 R3⇥3 as

p =

2

4
p
1

p
2

p
3

3

5 , R = [x̂
b

ŷ
b

ẑ
b

] =

2

4
r
11

r
12

r
13

r
21

r
22

r
23

r
31

r
32

r
33

3

5 , (3.16)

the twelve parameters given by (R, p) then provide a description of the position
and orientation of the rigid body relative to the fixed frame.

Since the orientation of a rigid body has three degrees of freedom, only
three of the nine entries in R can be chosen independently. One three-parameter
representation of rotations are the exponential coordinates, which define an axis
of rotation and the distance rotated about that axis. We leave other popular
representations of orientations (three-parameter Euler angles and roll-pitch-
yaw angles, theCayley-Rodrigues parameters, and the unit quaternions
that use four variables subject to one constraint) to Appendix B.

3.2. Rotations and Angular Velocities 59

We then examine six-parameter exponential coordinates for the configuration
of a rigid body that arise from integrating a six-dimensional twist consisting
of the body’s angular and linear velocity. This representation follows from the
Chasles-Mozzi theorem that states that every rigid-body displacement can be
described as a finite rotation and translation about a fixed screw axis.

We conclude with a discussion of forces and moments. Rather than treat
these as separate three-dimensional quantities, we merge the moment and force
vectors into a six-dimensional wrench. The twist and wrench, and rules for
manipulating them, form the basis for the kinematic and dynamic analyses in
the subsequent chapters.

3.2 Rotations and Angular Velocities

3.2.1 Rotation Matrices

We argued earlier that of the nine entries in the rotation matrix R, only three can
be chosen independently. We begin by expressing a set of six explicit constraints
on the entries of R. Recall that the three columns of R correspond to the
body frame’s unit axes {x̂

b

, ŷ
b

, ẑ
b

}. The following conditions must therefore be
satisfied:

(i) Unit norm condition: x̂
b

, ŷ
b

, and ẑ
b

are all of unit norm, or

r2
11

+ r2
21

+ r2
31

= 1

r2
12

+ r2
22

+ r2
32

= 1 (3.17)

r2
13

+ r2
23

+ r2
33

= 1.

(ii) Orthogonality condition: x̂
b

· ŷ
b

= x̂
b

· ẑ
b

= ŷ
b

· ẑ
b

= 0 (here · denotes the
inner product), or

r
11

r
12

+ r
21

r
22

+ r
31

r
32

= 0

r
12

r
13

+ r
22

r
23

+ r
32

r
33

= 0 (3.18)

r
11

r
13

+ r
21

r
23

+ r
31

r
33

= 0.

These six constraints can be expressed more compactly as a single set of con-
straints on the matrix R,

RTR = I, (3.19)

where RT denotes the transpose of R and I denotes the identity matrix.
There is still the matter of accounting for the fact that the frame is right-

handed (i.e., x̂
b

⇥ ŷ
b

= ẑ
b

, where ⇥ denotes the cross-product) rather than
left-handed (i.e., x̂

b

⇥ ŷ
b

= �ẑ
b

); our six equality constraints above do not dis-
tinguish between right- and left-handed frames. We recall the following formula
for evaluating the determinant of a 3⇥3 matrix M : denoting the three columns
of M by a, b, and c, respectively, its determinant is given by

detM = aT (b⇥ c) = cT (a⇥ b) = bT (c⇥ a). (3.20)

60 Rigid-Body Motions

Substituting the columns for R into this formula then leads to the constraint

detR = 1. (3.21)

Note that if the frame had been left-handed, we would have detR = �1. In
summary, the six equality constraints represented by (3.19) imply that detR =
±1; imposing the additional constraint detR = 1 means that only right-handed
frames are allowed. The constraint detR = 1 does not change the number of
independent continuous variables needed to parametrize R.

The set of 3⇥ 3 rotation matrices forms the Special Orthogonal Group
SO(3), which we now formally define:

Definition 3.1. The Special Orthogonal Group SO(3), also known as the
group of rotation matrices, is the set of all 3⇥ 3 real matrices R that satisfy (i)
RTR = I and (ii) detR = 1.

The set of 2 ⇥ 2 rotation matrices is a subgroup of SO(3), and is denoted
SO(2).

Definition 3.2. The Special Orthogonal Group SO(2) is the set of all 2⇥2
real matrices R that satisfy (i) RTR = I and (ii) detR = 1.

From the definition it follows that every R 2 SO(2) can be written

R =

r
11

r
12

r
21

r
22

�
=

cos ✓ � sin ✓
sin ✓ cos ✓

�
,

where ✓ 2 [0, 2⇡). Elements of SO(2) represent planar orientations and elements
of SO(3) represent spatial orientations.

3.2.1.1 Properties of Rotation Matrices

The sets of rotation matrices SO(2) and SO(3) are called “groups” because
they satisfy the properties required of a mathematical group.2 Specifically, a
group consists of a set of elements and an operation on two elements (matrix
multiplication for SO(n)) such that, for all A, B in the group, the following
properties are satisfied:

• closure: AB is also in the group.

• associativity: (AB)C = A(BC).

• identity element existence: There exists an I in the group (the identity
matrix for SO(n)) such that AI = IA = A.

• inverse element existence: There exists an A�1 in the group such that
AA�1 = A�1A = I.

2
More specifically, the SO(n) groups are also called Lie groups, where “Lie” is pronounced

“lee,” because the elements of the group form a di↵erentiable manifold.

3.2. Rotations and Angular Velocities 61

Proofs of these properties are given below, using the fact that the identity
matrix I is a trivial example of a rotation matrix.

Proposition 3.1. The inverse of a rotation matrix R 2 SO(3) is also a rotation
matrix, and it is equal to the transpose of R, i.e., R�1 = RT .

Proof. The condition RTR = I implies that R�1 = RT and RRT = I. Since
detRT = detR = 1, RT is also a rotation matrix.

Proposition 3.2. The product of two rotation matrices is a rotation matrix.

Proof. Given R
1

, R
2

2 SO(3), their product R
1

R
2

satisfies (R
1

R
2

)T (R
1

R
2

) =
RT

2

RT

1

R
1

R
2

= RT

2

R
2

= I. Further, detR
1

R
2

= detR
1

·detR
2

= 1. Thus R
1

R
2

satisfies the conditions for a rotation matrix.

Proposition 3.3. Multiplication of rotation matrices is associative, (R
1

R
2

)R
3

=
R

1

(R
2

R
3

), but generally not commutative, R
1

R
2

6= R
2

R
1

. For the special case
of rotation matrices in SO(2), rotations commute.

Proof. Associativity and non-commutativity follows from properties of matrix
multiplication in linear algebra. Commutativity for planar rotations follows
from a direct calculation.

Another important property is that the action of a rotation matrix on a
vector (e.g., rotating the vector) does not change the length of the vector.

Proposition 3.4. For any vector x 2 R3 and R 2 SO(3), the vector y = Rx
is of the same length as x.

Proof. This follows from kyk2 = yT y = (Rx)TRx = xTRTRx = xTx = kxk2.

3.2.1.2 Uses of Rotation Matrices

Analogous to Section 3.1, there are three major uses for a rotation matrix R:

(i) Represent an orientation.

(ii) Change the reference frame in which a vector or a frame is represented.

(iii) Rotate a vector or a frame.

In the first use, R is thought of as representing a frame; in the second and third
uses, R is thought of as an operator that acts on a vector or frame (changing
its reference frame or rotating it).

To illustrate these uses, refer to Figure 3.6, which shows three di↵erent
coordinate frames—{a}, {b}, and {c}—representing the same space.3 These
frames have the same origin, since we are only representing orientations, but

3
In the rest of the book, all coordinate frames will use the same length scale; only their

position and orientation may be di↵erent.

62 Rigid-Body Motions

y^ax^a

z^a

p

x^b

y^b
z^b

pp

y^c

x^c

z^c

{a} {b} {c}

Figure 3.6: The same space and the same point p represented in three di↵erent
frames with di↵erent orientations.

to make the axes clear, the figure shows the same space drawn three times. A
point p in the space is also shown. Not shown is a fixed space frame {s}, which
is aligned with {a}. The orientations of the three frames relative to {s} can be
written

R
a

=

2

4
1 0 0
0 1 0
0 0 1

3

5 , R
b

=

2

4
0 �1 0
1 0 0
0 0 1

3

5 , R
c

=

2

4
0 �1 0
0 0 �1
1 0 0

3

5 ,

and the location of the point p in these frames can be written

p
a

=

2

4
1
1
0

3

5 , p
b

=

2

4
1
�1
0

3

5 , p
c

=

2

4
0
�1
�1

3

5 .

Note that {b} is obtained by rotating {a} about ẑ
a

by 90�, and {c} is obtained
by rotating {b} about ŷ

b

by �90�. (The direction of positive rotation about an
axis, ✓ > 0, is determined by the direction the fingers of your right hand curl
about the axis when you point the thumb of your right hand along the axis.)

Representing an orientation. When we write R
c

, we are implicitly referring
to the orientation of frame {c} relative to the fixed frame {s}. We can be more
explicit about this by writing it as R

sc

: we are representing the frame of the
second subscript, {c}, relative to the frame of the first subscript, {s}. This
notation allows us to express a frame relative to a frame that is not {s}; for
example, R

bc

is the orientation of {c} relative to {b}.
If there is no possibility of confusion regarding the frames involved, we may

simply write R.
Inspecting Figure 3.6, we see that

R
ac

=

2

4
0 �1 0
0 0 �1
1 0 0

3

5 , R
ca

=

2

4
0 0 1
�1 0 0
0 �1 0

3

5 .

A simple calculation shows that R
ac

R
ca

= I, i.e., R
ac

= R�1

ca

, or, equivalently,
from Proposition 3.1, R

ac

= RT

ca

. In fact, for any two frames {d} and {e},

R
de

= R�1

ed

= RT

ed

.

3.2. Rotations and Angular Velocities 63

You can verify this fact using any two frames in Figure 3.6.

Changing the reference frame. The rotation matrix R
ab

represents the
orientation of {b} in {a}, and R

bc

represents the orientation of {c} in {b}.
A straightforward calculation shows that the orientation of {c} in {a} can be
computed as

R
ac

= R
ab

R
bc

. (3.22)

In the previous equation, R
bc

can be viewed as a representation of an orientation,
while R

ab

can be viewed as a mathematical operator that changes the reference
frame from {b} to {a}, i.e.,

R
ac

= R
ab

R
bc

= change reference frame from {b} to {a} (R
bc

).

A subscript cancellation rule helps to remember this property. When multi-
plying two rotation matrices, if the second subscript of the first matrix matches
the first subscript of the second matrix, the two subscripts cancel and a change
of reference frame is achieved:

R
ab

R
bc

= R
a⇤b
R
⇤bc
= R

ac

.

A rotation matrix is just a collection of three unit vectors, so the reference
frame of a vector can also be changed by a rotation matrix using a modified
version of the subscript cancellation rule:

R
ab

p
b

= R
a⇤b
p
⇤b
= p

a

.

You can verify these properties using the frames and points in Figure 3.6.

Rotating a vector or a frame. The last use of a rotation matrix is to rotate
a vector or a frame. Figure 3.7 shows a frame {c} initially aligned with {s} with
axes {x̂, ŷ, ẑ}. If we rotate the {c} frame about a unit axis !̂ by an amount ✓, the
new {c0} frame has coordinate axes {x̂0, ŷ0, ẑ0}. The rotation matrix R = R

sc

0

represents the orientation of {c0} relative to {s}, but instead we can think of it
as representing the rotation operation itself. Emphasizing our view of R as a
rotation operator, instead of as an orientation, we can write

R = Rot(!̂, ✓),

the operation that rotates the orientation represented by the identity matrix
to the orientation represented by R. As we will see in Section 3.2.3.3, for
!̂ = (!̂

1

, !̂
2

, !̂
3

),

Rot(!̂, ✓) =
2

4
c
✓

+ !̂2

1

(1� c
✓

) !̂
1

!̂
2

(1� c
✓

)� !̂
3

s
✓

!̂
1

!̂
3

(1� c
✓

) + !̂
2

s
✓

!̂
1

!̂
2

(1� c
✓

) + !̂
3

s
✓

c
✓

+ !̂2

2

(1� c
✓

) !̂
2

!̂
3

(1� c
✓

)� !̂
1

s
✓

!̂
1

!̂
3

(1� c
✓

)� !̂
2

s
✓

!̂
2

!̂
3

(1� c
✓

) + !̂
1

s
✓

c
✓

+ !̂2

3

(1� c
✓

)

3

5 ,

64 Rigid-Body Motions

x^

z^

ω^ θ

x’^

z’^

y,^ y’^

Figure 3.7: A coordinate frame with axes {x̂, ŷ, ẑ} is rotated an amount ✓ about
a unit axis !̂ (which is aligned with �ŷ in this figure). The orientation of the
final frame, with axes {x̂0, ŷ0, ẑ0}, is written as R relative to the original frame.

where s
✓

= sin ✓ and c
✓

= cos ✓. Any R 2 SO(3) can be obtained by rotating
from the identity matrix by some ✓ about some !̂.

Now say R
sb

represents some {b} relative to {s}, and we want to rotate
{b} by ✓ about a unit axis !̂, i.e., R = Rot(!̂, ✓). To be clear about what we
mean, we have to specify whether the axis of rotation !̂ is expressed in {s}
coordinates or {b} coordinates. Depending on our choice, the same numerical
!̂ (and therefore the same numerical R) corresponds to di↵erent rotation axes
in the underlying space, unless the {s} and {b} frames are aligned. Letting
{b0} be the new frame after rotating by ✓ about !̂

s

= !̂ (the rotation axis !̂
is considered to be in the fixed {s} frame), and {b00} be the new frame after
rotating by ✓ about !̂

b

= !̂ (the rotation axis !̂ is considered to be in the body
{b} frame), representations of these new frames can be calculated as

R
sb

0 = rotate by R in {s} frame (R
sb

) = RR
sb

(3.23)

R
sb

00 = rotate by R in {b} frame (R
sb

) = R
sb

R. (3.24)

In other words, premultiplying by R = Rot(!̂, ✓) yields a rotation about !̂
considered to be in the fixed frame, and postmultiplying by R yields a rotation
about !̂ considered to be in the body frame.

Rotating by R in the {s} frame and the {b} frame is illustrated in Figure 3.8.
To rotate a vector v, note that there is only one frame involved, the frame

that v is represented in, and therefore !̂ must be interpreted in this frame. The
rotated vector v0, in that same frame, is

v0 = Rv.

3.2.1.3 Other Representations of Orientations

Other popular representations of orientations include Euler angles, roll-pitch-
yaw angles, the Cayley-Rodrigues parameters, and unit quaternions. These
representations, and their relation to rotation matrices, are discussed in Ap-
pendix B.

3.2. Rotations and Angular Velocities 65

y^sx^s

z^s

{b}{s}

{b’}

x^b’

y^b’
z^b’

{b’’}

x^b’’

y^b’’
z^b’’

x^b
y^b

z^b

R = R Rsb’’ sb

z^b 90

R = R Rsb’ sb

z^s

90

fixed frame
rotation

body frame
rotation

y^x^

z^

x’^

y’^
z’^

R = Rot(z,90)^

90

Figure 3.8: (Top) A rotation operator R defined as R = Rot(ẑ, 90�), the orienta-
tion of the right frame in the left frame. (Bottom) On the left are shown a fixed
frame {s} and a body frame {b}, expressed as R

sb

. The quantity RR
sb

rotates
{b} to {b0} by rotating by 90� about the fixed frame axis ẑ

s

. The quantity R
sb

R
rotates {b} to {b00} by rotating by 90� about the body frame axis ẑ

b

.

3.2.2 Angular Velocity

Referring to Figure 3.9(a), suppose a body frame with unit axes {x̂, ŷ, ẑ} is
attached to a rotating body. Let us determine the time derivatives of these unit
axes. Beginning with ˙̂x, first note that x̂ is of unit length; only the direction
of x̂ can vary with time (the same goes for ŷ and ẑ). If we examine the body
frame at times t and t+�t, the change in frame orientation can be described as
a rotation of angle �✓ about some unit axis ŵ passing through the origin. The
axis ŵ is coordinate-free; it is not yet represented in any particular reference
frame.

In the limit as �t approaches zero, the ratio �✓

�t

becomes the rate of rotation

✓̇, and ŵ can similarly be regarded as the instantaneous axis of rotation. In fact,
ŵ and ✓̇ can be put together to define the angular velocity w as follows:

w = ŵ✓̇. (3.25)

66 Rigid-Body Motions

Figure 3.9: (Left) The instantaneous angular velocity vector. (Right) Calculat-
ing ˙̂x.

Referring to Figure 3.9(b), it should be evident that

˙̂x = w⇥ x̂ (3.26)
˙̂y = w⇥ ŷ (3.27)
˙̂z = w⇥ ẑ. (3.28)

To express these equations in coordinates, we have to choose a reference
frame in which to represent w. We can choose any reference frame, but two
natural choices are the fixed frame {s} and the body frame {b}. Let us start
with fixed frame {s} coordinates. Let R(t) be the rotation matrix describing
the orientation of the body frame with respect to the fixed frame at time t; Ṙ(t)
is its time rate of change. The first column of R(t), denoted r

1

(t), describes x̂
in fixed frame coordinates; similarly, r

2

(t) and r
3

(t) respectively describe ŷ and
ẑ in fixed frame coordinates. At a specific time t, let !

s

2 R3 be the angular
velocity w expressed in fixed frame coordinates. Then Equations (3.26)–(3.28)
can be expressed in fixed frame coordinates as

ṙ
i

= !
s

⇥ r
i

, i = 1, 2, 3.

These three equations can be rearranged into the following single 3⇥ 3 matrix
equation:

Ṙ = [!
s

⇥ r
1

| !
s

⇥ r
2

| !
s

⇥ r
3

] = !
s

⇥R. (3.29)

To eliminate the cross product in Equation (3.29), we introduce some new
notation and rewrite !

s

⇥ R as [!
s

]R, where [!
s

] is a 3 ⇥ 3 skew-symmetric
matrix representation of !

s

2 R3:

Definition 3.3. Given a vector x = (x
1

, x
2

, x
3

)T 2 R3, define

[x] =

2

4
0 �x

3

x
2

x
3

0 �x
1

�x
2

x
1

0

3

5 . (3.30)

3.2. Rotations and Angular Velocities 67

The matrix [x] is a 3⇥ 3 skew-symmetric matrix representation of x; that is,

[x] = �[x]T .

The set of all 3⇥ 3 real skew-symmetric matrices is called so(3).4

A useful property involving rotations and skew-symmetric matrices is the
following:

Proposition 3.5. Given any ! 2 R3 and R 2 SO(3), the following always
holds:

R[!]RT = [R!]. (3.31)

Proof. Letting rT
i

be the ith row of R,

R[!]RT =

2

4
rT
1

(! ⇥ r
1

) rT
1

(! ⇥ r
2

) rT
1

(! ⇥ r
3

)
rT
2

(! ⇥ r
1

) rT
2

(! ⇥ r
2

) rT
2

(! ⇥ r
3

)
rT
3

(! ⇥ r
1

) rT
3

(! ⇥ r
2

) rT
3

(! ⇥ r
3

)

3

5

=

2

4
0 �rT

3

! rT
2

!
rT
3

! 0 �rT
1

!
�rT

2

! rT
1

! 0

3

5

= [R!],

(3.32)

where the second line makes use of the determinant formula for 3⇥ 3 matrices,
i.e., if M is a 3 ⇥ 3 matrix with columns {a, b, c}, then detM = aT (b ⇥ c) =
cT (a⇥ b) = bT (c⇥ a).

With the skew-symmetric notation, we can rewrite Equation (3.29) as

[!
s

]R = Ṙ. (3.33)

We can post-multiply both sides of Equation (3.33) by R�1 to get

[!
s

] = ṘR�1. (3.34)

Now let !
b

be w expressed in body frame coordinates. To see how to obtain
!
b

from !
s

and vice versa, we explicitly write R as R
sb

. Then !
s

and !
b

are
two di↵erent vector representations of the same angular velocity w, and by our
subscript cancellation rule, !

s

= R
sb

!
b

. Therefore

!
b

= R�1

sb

!
s

= R�1!
s

= RT!
s

. (3.35)

Let us now express this relation in skew-symmetric matrix form:

[!
b

] = [RT!
s

]
= RT [!

s

]R (by Proposition 3.5)
= RT (ṘRT)R
= RT Ṙ = R�1Ṙ.

(3.36)

4
The set of skew-symmetric matrices so(3) is called the Lie algebra of the Lie group SO(3).

It consists of all possible

˙R when R = I.

68 Rigid-Body Motions

In summary, we have the following two equations that relate R and Ṙ to the
angular velocity w:

Proposition 3.6. Let R(t) denote the orientation of the rotating frame as seen
from the fixed frame. Denote by w the angular velocity of the rotating frame.
Then

ṘR�1 = [!
s

] (3.37)

R�1Ṙ = [!
b

], (3.38)

where !
s

2 R3 is the fixed frame vector representation of w and [!
s

] 2 so(3) is its
3⇥3 matrix representation, and !

b

2 R3 is the body frame vector representation
of w and [!

b

] 2 so(3) is its 3⇥ 3 matrix representation.

It is important to note that !
b

is not the angular velocity relative to a moving
frame. Instead, !

b

is the angular velocity relative to the stationary frame {b}
that is instantaneously coincident with a frame attached to the moving body.

It is also important to note that the fixed-frame angular velocity !
s

does not
depend on the choice of the body frame. Similarly, the body-frame angular veloc-
ity !

b

does not depend on the choice of the fixed frame. While Equations (3.37)
and (3.38) may appear to depend on both frames (since R and Ṙ individually
depend on both {s} and {b}), the product ṘR�1 is independent of {b} and the
product R�1Ṙ is independent of {s}.

Finally, an angular velocity expressed in an arbitrary frame {d} can be
represented in another frame {c} if we know the rotation that takes {c} to {d},
using our now-familiar subscript cancellation rule:

!
c

= R
cd

!
d

.

3.2.3 Exponential Coordinate Representation of Rotation

We now introduce a three-parameter representation for rotations, the expo-
nential coordinates for rotation. The exponential coordinates parametrize
a rotation matrix in terms of a rotation axis (represented by a unit vector !̂),
together with an angle of rotation ✓ about that axis; the vector !̂✓ 2 R3 then
serves as the three-parameter exponential coordinate representation of the ro-
tation. This representation is also called the axis-angle representation of a
rotation, but we prefer to use the term “exponential coordinates” to emphasize
the connection to the upcoming exponential coordinates for rigid-body trans-
formations.

The exponential coordinates for a rotation can be interpreted equivalently
as:

• rotating about the axis !̂ by ✓;

• integrating the angular velocity !̂✓ for one second; or

• integrating the angular velocity !̂ for ✓ seconds.

3.2. Rotations and Angular Velocities 69

The latter two views suggest that we consider exponential coordinates in the
setting of linear di↵erential equations. Below we briefly review some key results
from linear di↵erential equations.

3.2.3.1 Essential Results from Linear Di↵erential Equations

Let us begin with the simple scalar linear di↵erential equation

ẋ(t) = ax(t), (3.39)

where x(t) 2 R, a 2 R is constant, and the initial condition x(0) = x
0

is assumed
given. Equation (3.39) has solution

x(t) = eatx
0

.

It is also useful to remember the series expansion of the exponential function:

eat = 1 + at+
(at)2

2!
+

(at)3

3!
+ . . .

Now consider the vector linear di↵erential equation

ẋ(t) = Ax(t) (3.40)

where x(t) 2 Rn, A 2 Rn⇥n is constant, and the initial condition x(0) = x
0

is
given. From the earlier scalar result, one can conjecture a solution of the form

x(t) = eAtx
0

(3.41)

where the matrix exponential eAt now needs to be defined in a meaningful way.
Again mimicking the scalar case, we define the matrix exponential to be

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ . . . (3.42)

The first question to be addressed is under what conditions this series converges,
so that the matrix exponential is well-defined. It can be shown that if A is
constant and finite, this series is always guaranteed to converge to a finite limit;
the proof can be found in most texts on ordinary linear di↵erential equations
and is not covered here.

The second question is whether Equation (3.41), using Equation (3.42), is
indeed a solution to Equation (3.40). Taking the time derivative of x(t) = eAtx

0

,

ẋ(t) =

✓
d

dt
eAt

◆
x
0

=
d

dt

✓
I +At+

A2t2

2!
+

A3t3

3!
+ . . .

◆
x
0

=

✓
A+A2t+

A3t2

2!
+ . . .

◆
x
0

(3.43)

= AeAtx
0

= Ax(t),

70 Rigid-Body Motions

which proves that x(t) = eAtx
0

is indeed a solution. That this is a unique
solution follows from the basic existence and uniqueness result for linear ordinary
di↵erential equations, which we invoke here without proof.

While AB 6= BA for arbitrary square matrices A and B, it is always true
that

AeAt = eAtA (3.44)

for any square A and scalar t. You can verify this directly using the series
expansion for the matrix exponential. Therefore, in line four of Equation (3.43),
A could also have been factored to the right, i.e.,

ẋ(t) = eAtAx
0

.

While the matrix exponential eAt is defined as an infinite series, closed-
form expressions are often available. For example, if A can be expressed as
A = PDP�1 for some D 2 Rn⇥n and invertible P 2 Rn⇥n, then

eAt = I +At+
(At)2

2!
+ . . .

= I + (PDP�1)t+ (PDP�1)(PDP�1)
t2

2!
+ . . .

= P (I +Dt+
(Dt)2

2!
+ . . .)P�1 (3.45)

= PeDtP�1.

If moreover D is diagonal, i.e., D = diag{d
1

, d
2

, . . . , d
n

}, then its matrix expo-
nential is particularly simple to evaluate:

eDt =

2

6664

ed1

t 0 · · · 0
0 ed2

t · · · 0
...

...
. . .

...
0 0 · · · edn

t

3

7775
. (3.46)

We summarize the results above in the following proposition.

Proposition 3.7. The linear di↵erential equation ẋ(t) = Ax(t) with initial
condition x(0) = x

0

, where A 2 Rn⇥n is constant and x(t) 2 Rn, has solution

x(t) = eAtx
0

(3.47)

where

eAt = I + tA+
t2

2!
A2 +

t3

3!
A3 + (3.48)

The matrix exponential eAt further satisifies the following properties:

(i) d

dt

eAt = AeAt = eAtA.

(ii) If A = PDP�1 for some D 2 Rn⇥n and invertible P 2 Rn⇥n, then
eAt = PeDtP�1.

3.2. Rotations and Angular Velocities 71

(iii) If AB = BA, then eAeB = eA+B.

(iv) (eA)�1 = e�A.

The third property can be established by expanding the exponentials and
comparing terms. The fourth property follows by setting B = �A in the third
property.

A final linear algebraic result useful in finding closed-form expressions for
eAt is the Cayley-Hamilton Theorem, which we state here without proof:

Proposition 3.8. Let A 2 Rn⇥n be constant, with characteristic polynomial

p(s) = det(sI �A) = sn + c
n�1

sn�1 + . . .+ c
1

s+ c
0

,

and define p(A) as

p(A) = An + c
n�1

An�1 + . . .+ c
1

A+ c
0

I.

Then p(A) = 0.

3.2.3.2 Exponential Coordinates of Rotations

The exponential coordinates of a rotation can be viewed equivalently as (1) a
unit axis of rotation !̂ (!̂ 2 R3, k!̂k = 1) together with a rotation angle about
the axis ✓ 2 R, or (2) as the three-vector obtained by multiplying the two
together, !̂✓ 2 R3. When we represent the motion of a robot joint in the next
chapter, the first view has the advantage of separating the description of the
joint axis from the motion ✓ about the axis.

Referring to Figure 3.10, suppose a three-dimensional vector p(0) is rotated
by ✓ about !̂ to p(✓); here we assume all quantities are expressed in fixed frame
coordinates. This rotation can be achieved by imagining that p(0) rotates at a
constant rate of 1 rad/s (since !̂ is unit) from time t = 0 to t = ✓. Let p(t)
denote this path. The velocity of p(t), denoted ṗ, is then given by

ṗ = !̂ ⇥ p. (3.49)

To see why this is true, let � be the angle between p(t) and !̂. Observe that p
traces a circle of radius kpk sin� about the !̂-axis. Then ṗ = !̂ ⇥ p is tangent
to the path with magnitude kpk sin�, which is exactly Equation (3.49).

The di↵erential equation (3.49) can be expressed as

ṗ = [!̂]p (3.50)

with initial condition p(0). This is a linear di↵erential equation of the form
ẋ = Ax that we studied earlier; its solution is given by

p(t) = e[!̂]tp(0).

72 Rigid-Body Motions

Figure 3.10: The vector p(0) is rotated by an angle ✓ about the axis !̂, to p(✓).

Since t and ✓ are interchangeable, the equation above can also be written

p(✓) = e[!̂]✓p(0).

We now derive a closed-form expression for e[!̂]✓. Here we make use of the
Cayley-Hamilton Theorem. First, the characteristic polynomial associated with
the 3⇥ 3 matrix [!̂] is given by

p(s) = det(sI � [!̂]) = s3 + s.

The Cayley-Hamilton Theorem then implies [!̂]3 + [!̂] = 0, or

[!̂]3 = �[!̂].

Let us now expand the matrix exponential e[!̂]✓ in series form. Replacing [!̂]3

by �[!̂], [!̂]4 by �[!̂]2, [!̂]5 by �[!̂]3 = [!̂], and so on, we obtain

e[!̂]✓ = I + [!̂]✓ + [!̂]2
✓2

2!
+ [!̂]3

✓3

3!
+ . . .

= I +

✓
✓ � ✓3

3!
+
✓5

5!
� · · ·

◆
[!̂] +

✓
✓2

2!
� ✓4

4!
+
✓6

6!
� · · ·

◆
[!̂]2.

Now recall the series expansions for sin ✓ and cos ✓:

sin ✓ = ✓ � ✓3

3!
+
✓5

5!
� . . .

cos ✓ = 1� ✓2

2!
+
✓4

4!
� . . .

The exponential e[!̂]✓ therefore simplifies to the following:

Proposition 3.9. Given a vector !̂✓ 2 R3, such that ✓ is any scalar and !̂ 2 R3

is a unit vector,

Rot(!̂, ✓) = e[!̂]✓ = I + sin ✓ [!̂] + (1� cos ✓)[!̂]2 2 SO(3). (3.51)

This formula provides the matrix exponential of [!̂]✓ 2 so(3).

3.2. Rotations and Angular Velocities 73

This formula is also known as Rodrigues’ formula for rotations.
We have shown how to use the matrix exponential to construct a rotation

matrix from a rotation axis !̂ and an angle ✓. Further, the quantity e[!̂]✓p
amounts to rotating p 2 R3 about the fixed-frame axis !̂ by an angle ✓. Sim-
ilarly, considering that a rotation matrix R consists of three column vectors,
the rotation matrix R0 = e[!̂]✓R = Rot(!̂, ✓)R is the orientation achieved by
rotating R by ✓ about the axis !̂ in the fixed frame. Reversing the order of
matrix multiplication, R00 = Re[!̂]✓ = RRot(!̂, ✓) is the orientation achieved by
rotating R by ✓ about !̂ in the body frame.

Example 3.1. The frame {b} in Figure 3.11 is obtained by rotating from
an initial orientation aligned with the fixed frame {s} about a unit axis !̂ =
(0, 0.866, 0.5)T by an angle of ✓ = 30� = 0.524 rad. The rotation matrix repre-
sentation of {b} can be calculated as

R = e[!̂]✓

= I + sin ✓[!̂] + (1� cos ✓)[!̂]2

= I + 0.5

2

4
0 �0.5 0.866

0.5 0 0
�0.866 0 0

3

5+ 0.134

2

4
0 �0.5 0.866

0.5 0 0
�0.866 0 0

3

5
2

=

2

4
0.866 �0.250 0.433
0.250 0.967 0.058
�0.433 0.058 0.900

3

5 .

The frame {b} can be represented by R or by its exponential coordinates !̂ =
(0, 0.866, 0.5)T and ✓ = 0.524 rad, i.e., !̂✓ = (0, 0.453, 0.262)T .

If {b} is then rotated by �✓ = �0.524 rad about the same fixed-frame axis
!̂, i.e.,

R0 = e�[!̂]✓R,

then we would find R0 = I, as expected; the frame has rotated back to the
identity (aligned with the {s} frame). On the other hand, if {b} were to be
rotated by �✓ about !̂ in the body frame (this axis is di↵erent from !̂ in the
fixed frame), the new orientation would not be aligned with {s}:

R00 = Re�[!̂]✓ 6= I.

Our next task is to show that for any rotation matrix R 2 SO(3), one can
always find a unit vector !̂ and scalar ✓ such that R = e[!̂]✓.

3.2.3.3 Matrix Logarithm of Rotations

If !̂✓ 2 R3 represents the exponential coordinates of a rotation matrix R, then
the skew-symmetric matrix [!̂✓] = [!̂]✓ is thematrix logarithm of the rotation
R. The matrix logarithm is the inverse of the matrix exponential. Just as the

74 Rigid-Body Motions

y^sx^s

z^s

ω^
30θ =

y^b
x^b

z^b

{b}

Figure 3.11: The frame {b} is obtained by rotating from {s} by ✓ = 30� about
!̂ = (0, 0.866, 0.5)T .

matrix exponential “integrates” the matrix representation of an angular velocity
[!̂]✓ 2 so(3) for one second to give an orientation R 2 SO(3), the matrix
logarithm “di↵erentiates” an R 2 SO(3) to find the matrix representation of
a constant angular velocity [!̂]✓ 2 so(3) which, if integrated for one second,
rotates a frame from I to R. In other words,

exp : [!̂]✓ 2 so(3) ! R 2 SO(3)
log : R 2 SO(3) ! [!̂]✓ 2 so(3)

To derive the matrix logarithm, let us expand each of the entries for e[!̂]✓ in
Equation (3.51),
2

4
c
✓

+ !̂2

1

(1� c
✓

) !̂
1

!̂
2

(1� c
✓

)� !̂
3

s
✓

!̂
1

!̂
3

(1� c
✓

) + !̂
2

s
✓

!̂
1

!̂
2

(1� c
✓

) + !̂
3

s
✓

c
✓

+ !̂2

2

(1� c
✓

) !̂
2

!̂
3

(1� c
✓

)� !̂
1

s
✓

!̂
1

!̂
3

(1� c
✓

)� !̂
2

s
✓

!̂
2

!̂
3

(1� c
✓

) + !̂
1

s
✓

c
✓

+ !̂2

3

(1� c
✓

)

3

5 , (3.52)

where !̂ = (!̂
1

, !̂
2

, !̂
3

)T , and we use the shorthand notation s
✓

= sin ✓ and
c
✓

= cos ✓. Setting the above equal to the given R 2 SO(3) and subtracting the
transpose from both sides leads to the following:

r
32

� r
23

= 2!̂
1

sin ✓

r
13

� r
31

= 2!̂
2

sin ✓

r
21

� r
12

= 2!̂
3

sin ✓.

Therefore, as long as sin ✓ 6= 0 (or equivalently, ✓ is not an integer multiple of
⇡), we can write

!̂
1

=
1

2 sin ✓
(r

32

� r
23

)

!̂
2

=
1

2 sin ✓
(r

13

� r
31

)

!̂
3

=
1

2 sin ✓
(r

21

� r
12

).

The above equations can also be expressed in skew-symmetric matrix form as

[!̂] =

2

4
0 �!̂

3

!̂
2

!̂
3

0 �!̂
1

�!̂
2

!̂
1

0

3

5 =
1

2 sin ✓

�
R�RT

�
. (3.53)

3.2. Rotations and Angular Velocities 75

Recall that !̂ represents the axis of rotation for the given R. Because of the
sin ✓ term in the denominator, [!̂] is not well defined if ✓ is an integer multiple
of ⇡.5 We address this situation next, but for now let us assume this is not
the case and find an expression for ✓. Setting R equal to (3.52) and taking the
trace of both sides (recall that the trace of a matrix is the sum of its diagonal
entries),

trR = r
11

+ r
22

+ r
33

= 1 + 2 cos ✓. (3.54)

The above follows since !̂2

1

+ !̂2

2

+ !̂2

3

= 1. For any ✓ satisfying 1+2 cos ✓ = trR
such that ✓ is not an integer multiple of ⇡, R can be expressed as the exponential
e[!̂]✓ with [!̂] as given in Equation (3.53).

Let us now return to the case ✓ = k⇡, where k is some integer. When k is
an even integer, regardless of !̂, we have rotated back to R = I, so the vector
!̂ is undefined. When k is an odd integer (corresponding to ✓ = ±⇡,±3⇡, . . .,
which in turn implies trR = �1), the exponential formula (3.51) simplifies to

R = e[!̂]⇡ = I + 2[!̂]2. (3.55)

The three diagonal terms of Equation (3.55) can be manipulated to

!̂
i

= ±
r

r
ii

+ 1

2
, i = 1, 2, 3. (3.56)

The o↵-diagonal terms lead to the following three equations:

2!̂
1

!̂
2

= r
12

2!̂
2

!̂
3

= r
23

(3.57)

2!̂
1

!̂
3

= r
13

,

From Equation (3.55) we also know that R must be symmetric: r
12

= r
21

,
r
23

= r
32

, r
13

= r
31

. Both Equations (3.56) and (3.57) may be necessary to
obtain a solution for !̂. Once a solution !̂ has been found, then R = e[!̂]✓,
where ✓ = ±⇡,±3⇡,

From the above it can be seen that solutions for ✓ exist at 2⇡ intervals. If
we restrict ✓ to the interval [0,⇡], then the following algorithm can be used to
compute the matrix logarithm of the rotation matrix R 2 SO(3).

Algorithm: Given R 2 SO(3), find a ✓ 2 [0,⇡] and a unit rotation axis
!̂ 2 R3, k!̂ = 1k, such that e[!̂]✓ = R. The vector !̂✓ 2 R3 comprises the
exponential coordinates for R and the skew-symmetric matrix [!̂]✓ 2 so(3) is a
matrix logarithm of R.

(i) If R = I, then ✓ = 0 and !̂ is undefined.

5
A singularity such as this is unavoidable for any three-parameter representation of rota-

tion. Euler angles and roll-pitch-yaw angles su↵er similar singularities.

76 Rigid-Body Motions

ω

π−π

^

θ

Figure 3.12: SO(3) as a solid ball of radius ⇡.

(ii) If trR = �1, then ✓ = ⇡. Set !̂ to any of the following three vectors that
is a feasible solution:

!̂ =
1p

2(1 + r
33

)

2

4
r
13

r
23

1 + r
33

3

5 (3.58)

or

!̂ =
1p

2(1 + r
22

)

2

4
r
12

1 + r
22

r
32

3

5 (3.59)

or

!̂ =
1p

2(1 + r
11

)

2

4
1 + r

11

r
21

r
31

3

5 . (3.60)

(iii) Otherwise ✓ = cos�1

⇣
tr R�1

2

⌘
2 [0,⇡) and

[!̂] =
1

2 sin ✓
(R�RT). (3.61)

Since every R 2 SO(3) satisfies one of the three cases in the algorithm, for
every R there exists a set of exponential coordinates !̂✓.

The formula for the logarithm suggests a picture of the rotation group SO(3)
as a solid ball of radius ⇡ (see Figure 3.12): given a point r 2 R3 in this solid
ball, let !̂ = r/krk be the unit axis in the direction from the origin to r and
and ✓ = krk be the distance from the origin to r, so that r = !̂✓. The rotation

3.3. Rigid-Body Motions and Twists 77

matrix corresponding to r can then be regarded as a rotation about the axis !̂
by an angle ✓. For any R 2 SO(3) such that trR 6= �1, there exists a unique r
in the interior of the solid ball such that e[r] = R. In the event that trR = �1,
logR is given by two antipodal points on the surface of this solid ball. That
is, if there exists some r such that R = e[r] with krk = ⇡, then R = e[�r] also
holds; both r and �r correspond to the same rotation R.

3.3 Rigid-Body Motions and Twists

In this section we derive representations for rigid-body configurations and ve-
locities that extend, but otherwise are analogous to, those in Section 3.2 for
rotations and angular velocities. In particular, the homogeneous transforma-
tion matrix T is analogous to the rotation matrix R; a screw axis S is analogous
to a rotation axis !̂; a twist V can be expressed as S ✓̇ and is analogous to an
angular velocity ! = !̂✓̇; and exponential coordinates S✓ 2 R6 for rigid-body
motions are analogous to exponential coordinates !̂✓ 2 R3 for rotations.

3.3.1 Homogeneous Transformation Matrices

We now consider representations for the combined orientation and position of
a rigid body. A natural choice would be to use a rotation matrix R 2 SO(3)
to represent the orientation of {b} in {s} and a vector p 2 R3 to represent the
origin of {b} in {s}. Rather than identifying R and p separately, we package
them into a single matrix as follows.

Definition 3.4. The Special Euclidean Group SE(3), also known as the
group of rigid-body motions or homogeneous transformations in R3, is
the set of all 4⇥ 4 real matrices T of the form

T =

R p
0 1

�
=

2

664

r
11

r
12

r
13

p
1

r
21

r
22

r
23

p
2

r
31

r
32

r
33

p
3

0 0 0 1

3

775 , (3.62)

where R 2 SO(3) and p 2 R3 is a column vector.

An element T 2 SE(3) will sometimes be denoted (R, p). We begin this
section by establishing some basic properties of SE(3), and explaining why we
package R and p into this matrix form.

Many of the robotic mechanisms we have encountered thus far are planar.
With planar rigid-body motions in mind, we make the following definition:

Definition 3.5. The Special Euclidean Group SE(2) is the set of all 3⇥ 3
real matrices T of the form

T =

R p
0 1

�
, (3.63)

where R 2 SO(2), p 2 R2, and 0 denotes a row vector of two zeros.

78 Rigid-Body Motions

A matrix T 2 SE(2) is always of the form

T =

2

4
r
11

r
12

p
1

r
21

r
22

p
2

0 0 1

3

5 =

2

4
cos ✓ � sin ✓ p

1

sin ✓ cos ✓ p
2

0 0 1

3

5 ,

where ✓ 2 [0, 2⇡).

3.3.1.1 Properties of Transformation Matrices

We now list some basic properties of transformation matrices, which can be
proven by calculation. First, the identity I is a trivial example of a transforma-
tion matrix. The first three properties confirm that SE(3) is a group.

Proposition 3.10. The inverse of a transformation matrix T 2 SE(3) is also
a transformation matrix, and has the following form

T�1 =

R p
0 1

��1

=

RT �RT p
0 1

�
. (3.64)

Proposition 3.11. The product of two transformation matrices is also a trans-
formation matrix.

Proposition 3.12. Multiplication of transformation matrices is associative,
(T

1

T
2

)T
3

= T
1

(T
2

T
3

), but generally not commutative, T
1

T
2

6= T
2

T
1

.

Before stating the next proposition, we note that just as in Section 3.1,
it is often useful to calculate the quantity Rx + p, where x 2 R3 and (R, p)
represents T . If we append a ‘1’ to x, making it a four-dimensional vector, this
computation can be performed as a single matrix multiplication:

T

x
1

�
=

R p
0 1

�
x
1

�
=

Rx+ p

1

�
. (3.65)

The vector (xT , 1)T is the representation of x in homogeneous coordinates,
and accordingly T 2 SE(3) is called a homogenous transformation. When, by
an abuse of notation, we write Tx, we mean Rx+ p.

Proposition 3.13. Given T = (R, p) 2 SE(3) and x, y 2 R3, the following
hold:

(i) kTx� Tyk = kx� yk, where k · k denotes the standard Euclidean norm in
R3, i.e., kxk =

p
xTx.

(ii) hTx�Tz, Ty�Tzi = hx� z, y� zi for all z 2 R3, where h·, ·i denotes the
standard Euclidean inner product in R3, i.e., hx, yi = xT y.

3.3. Rigid-Body Motions and Twists 79

y^ax^a

z^a

x^c

y^c

z^c
{a}

{b}

{c}

x^b

y^b

z^b pab
pbc

pac
v

Figure 3.13: Three reference frames in space, and a point v that can be repre-
sented in {b} as v

b

= (0, 0, 1.5)T .

In Proposition 3.13, T is regarded as a transformation on points in R3, i.e.,
T transforms a point x to Tx. The first property then asserts that T pre-
serves distances, while the second asserts that T preserves angles. Specifically,
if x, y, z 2 R3 represent the three vertices of a triangle, then the triangle formed
by the transformed vertices {Tx, Ty, Tz} has the same set of lengths and angles
as those of the triangle {x, y, z} (the two triangles are said to be isometric). One
can easily imagine taking {x, y, z} to be the points on a rigid body, in which
case {Tx, Ty, Tz} represents a displaced version of the rigid body. It is in this
sense that SE(3) can be identified with the rigid-body motions.

3.3.1.2 Uses of Transformation Matrices

As with rotation matrices, there are three major uses for a transformation matrix
T :

(i) Represent the configuration (position and orientation) of a rigid body.

(ii) Change the reference frame in which a vector or frame is represented.

(iii) Displace a vector or frame.

In the first use, T is thought of as representing the configuration of a frame; in
the second and third uses, T is thought of as an operator that acts to change
the reference frame or to move a vector or a frame.

To illustrate these uses, we refer to the three reference frames {a}, {b},
and {c}, and the point v, in Figure 3.13. These frames are chosen so that the
alignment of their axes is clear, allowing visual confirmation of calculations.

Representing a configuration. The fixed frame {s} is coincident with {a},
and the frames {a}, {b}, and {c}, represented by T

sa

= (R
sa

, p
sa

), T
sb

=
(R

sb

, p
sb

), T
sc

= (R
sc

, p
sc

), respectively, can be expressed relative to {s} by the
rotations

R
sa

=

2

4
1 0 0
0 1 0
0 0 1

3

5 , R
sb

=

2

4
0 0 1
0 �1 0
1 0 0

3

5 , R
sc

=

2

4
�1 0 0
0 0 1
0 1 0

3

5 ,

80 Rigid-Body Motions

and the location of the origin of each frame relative to {s} can be written

p
sa

=

2

4
0
0
0

3

5 , p
sb

=

2

4
0
�2
0

3

5 , p
sc

=

2

4
�1
1
0

3

5 .

Since {a} is collocated with {s}, the transformation matrix T
sa

constructed from
(R

sa

, p
sa

) is the identity matrix.
Any frame can be expressed relative to any other frame, not just {s}; for

example, T
bc

= (R
bc

, p
bc

) represents {b} relative to {c}:

R
bc

=

2

4
0 1 0
0 0 �1
�1 0 0

3

5 , p
bc

=

2

4
0
�3
�1

3

5 .

It can also be shown, using Proposition 3.10, that

T
de

= T�1

ed

for any two frames {d} and {e}.

Changing the reference frame of a vector or a frame. By a subscript
cancellation rule analogous to that for rotations, for any three reference frames
{a}, {b}, and {c}, and any vector v expressed in {b} as v

b

,

T
ab

T
bc

= T
a⇤b
T
⇤bc
= T

ac

T
ab

v
b

= T
a⇤b
v
⇤b
= v

a

,

where v
a

is the vector v expressed in {a}.

Displacing (rotating and translating) a vector or a frame. A transfor-
mation matrix T , viewed as the pair (R, p) = (Rot(!̂, ✓), p), can act on a frame
T
sb

by rotating it by ✓ about an axis !̂ and translating it by p. Whether we
pre-multiply or post-multiply T

sb

by the operator T determines whether the !̂
axis and p are interpreted in the fixed frame {s} or the body frame {b}:

T
sb

0 = TT
sb

=

R p
0 1

�
R

sb

p
sb

0 1

�
=

RR

sb

Rp
sb

+ p
0 1

�
(fixed frame)

(3.66)

T
sb

00 = T
sb

T =

R

sb

p
sb

0 1

�
R p
0 1

�
=

R

sb

R R
sb

p+ p
sb

0 1

�
(body frame).

(3.67)

The fixed-frame transformation (pre-multiplication by T) can be interpreted as
first rotating the {b} frame by ✓ about an axis !̂ in the {s} frame (this rotation
will cause the origin of {b} to move if it is not coincident with the origin of
{s}), then translating it by p in the {s} frame to get the {b0} frame. The

3.3. Rigid-Body Motions and Twists 81

y^sx^s

z^s

{s}

{b}

x^b

y^b

z^b

2

1

x^b’

y^b’ z^b’{b’}
y^sx^s

z^s

{s}

{b}

x^b

y^b

z^b

1

{b’’}

2z^b’’

x^b’’

y^b’’

Figure 3.14: Fixed-frame and body-frame transformations corresponding to !̂ =
(0, 0, 1)T , ✓ = 90�, and p = (0, 2, 0)T . (Left) The frame {b} rotated by 90�

about ẑ
s

and then translated by two units in ŷ
s

, resulting in the new frame
{b0}. (Right) The frame {b} translated by two units in ŷ

b

and then rotated by
90� about the ẑ axis of the body frame, resulting in the new frame {b00}.

body-frame transformation (post-multiplication by T) can be interpreted as first
translating {b} by p considered to be in the {b} frame, then rotating about !̂
in this new body frame (this does not move the origin of the frame) to get {b00}.
Fixed-frame and body-frame transformations are illustrated in Figure 3.14 for
a transformation T with !̂ = (0, 0, 1)T , ✓ = 90�, and p = (0, 2, 0)T , yielding

T = (Rot(!̂, ✓), p) =

2

664

0 �1 0 0
1 0 0 2
0 0 1 0
0 0 0 1

3

775 .

Beginning with the frame {b} represented by

T
sb

=

2

664

0 0 1 0
0 �1 0 �2
1 0 0 0
0 0 0 1

3

775 ,

the new frame {b0} achieved by a fixed-frame transformation TT
sb

and the new
frame {b00} achieved by a body-frame transformation T

sb

T are

TT
sb

= T
sb

0 =

2

664

0 1 0 2
0 0 1 2
1 0 0 0
0 0 0 1

3

775 , T
sb

T = T
sb

00 =

2

664

0 0 1 0
�1 0 0 �4
0 �1 0 0
0 0 0 1

3

775 .

82 Rigid-Body Motions

Figure 3.15: Assignment of reference frames.

Example 3.2. Figure 3.15 shows a robot arm mounted on a wheeled mobile
platform, and a camera fixed to the ceiling. Frames {b} and {c} are respectively
attached to the wheeled platform and the end-e↵ector of the robot arm, and
frame {d} is attached to the camera. A fixed frame {a} has been established,
and the robot must pick up the object with body frame {e}. Suppose that
the transformations T

db

and T
de

can be calculated from measurements obtained
with the camera. The transformation T

bc

can be calculated using the arm’s
joint angle measurements. The transformation T

ad

is assumed to be known in
advance. Suppose these known transformations are given as follows:

T
db

=

2

664

0 0 �1 250
0 �1 0 �150
�1 0 0 200
0 0 0 1

3

775

T
de

=

2

664

0 0 �1 300
0 �1 0 100
�1 0 0 120
0 0 0 1

3

775

T
ad

=

2

664

0 0 �1 400
0 �1 0 50
�1 0 0 300
0 0 0 1

3

775

T
bc

=

2

664

0 �1/
p
2 �1/

p
2 30

0 1/
p
2 �1/

p
2 �40

1 0 0 25
0 0 0 1

3

775 .

In order to calculate how to move the robot arm to pick up the object, the
configuration of the object relative to the robot hand, T

ce

, must be determined.

3.3. Rigid-Body Motions and Twists 83

We know that
T
ab

T
bc

T
ce

= T
ad

T
de

,

where the only quantity besides T
ce

not given to us directly is T
ab

. However,
since T

ab

= T
ad

T
db

, we can determine T
ce

as follows:

T
ce

= (T
ad

T
db

T
bc

)�1 T
ad

T
de

.

From the given transformations,

T
ad

T
de

=

2

664

1 0 0 280
0 1 0 �50
0 0 1 0
0 0 0 1

3

775

T
ad

T
db

T
bc

=

2

664

0 �1/
p
2 �1/

p
2 230

0 1/
p
2 �1/

p
2 160

1 0 0 75
0 0 0 1

3

775

(T
ad

T
db

T
bc

)�1 =

2

664

0 0 1 �75
�1/
p
2 1/

p
2 0 70/

p
2

�1/
p
2 �1/

p
2 0 390/

p
2

0 0 0 1

3

775

from which T
ce

is evaluated to be

T
ce

=

2

664

0 0 1 �75
�1/
p
2 1/

p
2 0 �260/

p
2

�1/
p
2 �1/

p
2 0 130/

p
2

0 0 0 1

3

775 .

3.3.2 Twists

We now consider both the linear and angular velocity of a moving frame. As
before, denote by {s} and {b} the fixed (space) and moving (body) frames,
respectively, and let

T
sb

(t) = T (t) =

R(t) p(t)
0 1

�
(3.68)

denote the homogeneous transformation of {b} as seen from {s} (to keep the
notation uncluttered, for the time being we write T instead of the usual T

sb

).
In Section 3.2.2 we discovered that pre- or post-multiplying Ṙ by R�1 re-

sults in a skew-symmetric representation of the angular velocity vector, either
in fixed or body frame coordinates. One might reasonably ask if a similar prop-
erty carries over to Ṫ , i.e., whether T�1Ṫ and Ṫ T�1 carry similar physical
interpretations.

84 Rigid-Body Motions

Let us first see what happens when we pre-multiply Ṫ by T�1:

T�1Ṫ =

RT �RT p
0 1

�
Ṙ ṗ
0 0

�

=

RT Ṙ RT ṗ
0 0

�
(3.69)

=

[!

b

] v
b

0 0

�
. (3.70)

Recall that RT Ṙ = [!
b

] is just the skew-symmetric matrix representation of the
angular velocity expressed in {b} coordinates. Also, ṗ is the linear velocity of
the origin of {b} expressed in the fixed frame {s}, and RT ṗ = v

b

is this linear
velocity expressed in the frame {b}. Putting these two observations together,
we can conclude that T�1Ṫ represents the linear and angular velocity of the
moving frame relative to the stationary frame {b} currently aligned with the
moving frame.

The previous calculation of T�1Ṫ suggests that it is reasonable to merge
!
b

and v
b

into a single six-dimensional velocity vector. We define the spatial
velocity in the body frame, or simply the body twist6, to be

V
b

=

!
b

v
b

�
2 R6. (3.71)

Just as it is convenient to have a skew-symmetric matrix representation of an
angular velocity vector, it is convenient to have a matrix representation of a
twist, as shown in Equation (3.70). We overload the [·] notation, writing

T�1Ṫ = [V
b

] =

[!

b

] v
b

0 0

�
2 se(3), (3.72)

where [!
b

] 2 so(3) and v
b

2 R3. The set of all 4 ⇥ 4 matrices of this form is
called se(3), the matrix representation of velocities associated with the rigid-
body configurations SE(3).7

Now that we have a physical interpretation for T�1Ṫ , let us evaluate Ṫ T�1:

Ṫ T�1 =

Ṙ ṗ
0 0

�
RT �RT p
0 1

�

=

ṘRT ṗ� ṘRT p
0 0

�
(3.73)

=

[!

s

] v
s

0 0

�
.

6
The term “twist” has been used in di↵erent ways in the mechanisms and screw theory

literature. In robotics, however, it is common to use the term to refer to a spatial velocity.

We adopt this usage to minimize verbiage, e.g., “spatial velocity in the body frame” vs. “body

twist.”

7se(3) is called the Lie algebra of the Lie group SE(3). It consists of all possible

˙T when

T = I.

3.3. Rigid-Body Motions and Twists 85

Figure 3.16: Physical interpretation of v
s

. The initial (solid line) and displaced
(dotted line) configurations of a rigid body.

Observe that the skew-symmetric matrix [!
s

] = ṘRT is the angular velocity
expressed in fixed frame coordinates, but that v

s

= ṗ� ṘRT p is not the linear
velocity of the body frame origin expressed in the fixed frame (that quantity
would simply be ṗ). If we write v

s

as

v
s

= ṗ� !
s

⇥ p = ṗ+ !
s

⇥ (�p), (3.74)

the physical meaning of v
s

can now be inferred: imagining an infinitely large
moving body, v

s

is the instantaneous velocity of the point on this body currently
at the fixed frame origin, expressed in the fixed frame (see Figure 3.16).

As we did for !
b

and v
b

, we assemble !
s

and v
s

into a six-dimensional twist,

V
s

=

!
s

v
s

�
2 R6, [V

s

] =

[!

s

] v
s

0 0

�
= Ṫ T�1 2 se(3), (3.75)

where [V
s

] is the 4 ⇥ 4 matrix representation of V
s

. We call V
s

the spatial
velocity in the space frame, or simply the spatial twist.

If we regard the moving body as being infinitely large, there is an appealing
and natural symmetry between V

s

= (!
s

, v
s

) and V
b

= (!
b

, v
b

):

(i) !
b

is the angular velocity expressed in {b}, and !
s

is the angular velocity
expressed in {s}; and

(ii) v
b

is the linear velocity of a point at the origin of {b} expressed in {b},
and v

s

is the linear velocity of a point at the origin of {s} expressed in
{s}.

V
b

can be obtained from V
s

as follows:

[V
b

] = T�1Ṫ
= T�1 [V

s

]T.
(3.76)

Going the other way,
[V

s

] = T [V
b

]T�1. (3.77)

86 Rigid-Body Motions

Writing out the terms of Equation (3.77), we get

V
s

=

R[!

b

]RT �R[!
b

]RT p+Rv
b

0 0

�

which, using R[!]RT = [R!] (Proposition 3.5) and [!]p = �[p]! for p,! 2 R3,
can be manipulated into the following relation between V

b

and V
s

:

!
s

v
s

�
=

R 0

[p]R R

�
!
b

v
b

�
.

Because the 6 ⇥ 6 matrix pre-multiplying V
b

is useful for changing the frame
of reference for twists and wrenches, as we will see shortly, we give it its own
name.

Definition 3.6. Given T = (R, p) 2 SE(3), its adjoint representation [Ad
T

]
is

[Ad
T

] =

R 0

[p]R R

�
2 R6⇥6.

For any V 2 R6, the adjoint map associated with T is

V 0 = [Ad
T

]V,

also sometimes written as
V 0 = Ad

T

(V).

In terms of the matrix form [V] 2 se(3) of V 2 R6,

[V 0] = T [V]T�1.

The adjoint map satisfies the following properties, verifiable by direct calcu-
lation:

Proposition 3.14. Let T
1

, T
2

2 SE(3), and V = (!, v). Then

Ad
T

1

(Ad
T

2

(V)) = Ad
T

1

T

2

(V) or [Ad
T

1

][Ad
T

2

]V = [Ad
T

1

T

2

]V. (3.78)

Also, for any T 2 SE(3) the following holds:

[Ad
T

]�1 = [Ad
T

�1], (3.79)

The second property follows from the first by choosing T
1

= T�1 and T
2

= T ,
so that

Ad
T

�1 (Ad
T

(V)) = Ad
T

�1

T

(V) = Ad
I

(V) = V. (3.80)

3.3. Rigid-Body Motions and Twists 87

3.3.2.1 Summary of Results on Twists

The main results on twists derived thus far are summarized in the following
proposition:

Proposition 3.15. Given a fixed (space) frame {s} and a body frame {b}, let
T
sb

(t) 2 SE(3) be di↵erentiable, where

T
sb

(t) =

R(t) p(t)
0 1

�
. (3.81)

Then

T�1

sb

Ṫ
sb

= [V
b

] =

[!

b

] v
b

0 0

�
2 se(3) (3.82)

is the matrix representation of the body twist, and

Ṫ
sb

T�1

sb

= [V
s

] =

[!

s

] v
s

0 0

�
2 se(3) (3.83)

is the matrix representation of the spatial twist. The twists V
s

and V
b

are
related by

V
s

=

!
s

v
s

�
=

R 0

[p]R R

�
!
b

v
b

�
= [Ad

T

sb

]V
b

(3.84)

V
b

=

!
b

v
b

�
=

RT 0
�RT [p] RT

�
!
s

v
s

�
= [Ad

T

bs

]V
s

. (3.85)

Similarly, for any two frames {a} and {b}, a twist represented as V
a

in {a} is
related to the representation V

b

in {b} by

V
a

= [Ad
T

ab

]V
b

, V
b

= [Ad
T

ba

]V
a

.

Again analogous to angular velocities, it is important to realize that for a
given twist, its fixed-frame representation V

s

does not depend on the choice of
the body frame {b}, and its body-frame representation V

b

does not depend on
the choice of the fixed frame {s}.

Example 3.3. Figure 3.17 shows a top view of a car with a single front wheel
driving on a plane. The ẑ

b

-axis of the body frame {b} is into the page and the
ẑ
s

-axis of the fixed frame {s} is out of the page. The angle of the front wheel
of the car causes the car’s motion to be a pure angular velocity w = 2 rad/s
about an axis out of the page, at the point r in the plane. Inspecting the figure,
we can write r as r

s

= (2,�1, 0)T or r
b

= (2,�1.4, 0)T ; w as !
s

= (0, 0, 2)T or
!
b

= (0, 0,�2)T ; and T
sb

as

T
sb

=

R

sb

p
sb

0 1

�
=

2

664

�1 0 0 4
0 1 0 0.4
0 0 �1 0
0 0 0 1

3

775 .

88 Rigid-Body Motions

y^s

x^s
{s}

y^b

x^b

{b}

vb

vs
r

w

Figure 3.17: The twist corresponding to the instantaneous motion of the chassis
of a three-wheeled vehicle can be visualized as an angular velocity w about the
point r.

From the figure and simple geometry, we get

v
s

= !
s

⇥ (�r
s

) = r
s

⇥ !
s

= (�2,�4, 0)T

v
b

= !
b

⇥ (�r
b

) = r
b

⇥ !
b

= (2.8, 4, 0)T

to get the twists V
s

and V
b

:

V
s

=

!
s

v
s

�
=

2

6666664

0
0
2
�2
�4
0

3

7777775
, V

b

=

!
b

v
b

�
=

2

6666664

0
0
�2
2.8
4
0

3

7777775
.

To confirm these results, try calculating V
s

= [Ad
T

sb

]V
b

.

3.3.2.2 The Screw Interpretation of a Twist

Just as an angular velocity ! can be viewed as !̂✓̇, where !̂ is the unit rotation
axis and ✓̇ is the rate of rotation about that axis, a twist V can be interpreted
as a screw axis S and a velocity ✓̇ about the screw axis.

A screw axis represents the familiar motion of a screw: rotation about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q 2 R3 is any point on the axis; ŝ is a unit
vector in the direction of the axis; and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity ✓̇ about
the screw axis (Figure 3.18).

Using Figure 3.18 and geometry, we can write the twist V = (!, v) corre-
sponding to an angular velocity ✓̇ about S (represented by {q, ŝ, h}) as

V =

!
v

�
=

ŝ✓̇

�ŝ✓̇ ⇥ q + hŝ✓̇

�
.

3.3. Rigid-Body Motions and Twists 89

y^x^

z^ s^

q

h = pitch =
linear speed/angular speed

hsθ^
.

θ
.

 sθ×q^
._

Figure 3.18: A screw axis S represented by a point q, a unit direction ŝ, and a
pitch h.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝ✓̇, and one due to the linear motion at the origin induced
by rotation about the axis, �ŝ✓̇⇥q. The first term is in the direction of ŝ, while
the second term is in the plane orthogonal to ŝ. It is not hard to show that, for
any V = (!, v) where ! 6= 0, there exists an equivalent screw axis {q, ŝ, h} and
velocity ✓̇, where ŝ = !/k!k, ✓̇ = k!k, h = !̂T v/✓̇, and q is chosen so that the
term �ŝ✓̇ ⇥ q provides the portion of v orthogonal to the screw axis.

If ! = 0, then the pitch h of the screw is infinite. So ŝ is chosen as v/kvk,
and ✓̇ is interpreted as the linear velocity kvk along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and the non-uniqueness of
q (any q along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (!, v) corresponding to motion
along the screw:

(i) If ! 6= 0: S = V/k!k = (!/k!k, v/k!k). The screw axis S is simply
V normalized by the length of the angular velocity vector. The angular
velocity about the screw axis is ✓̇ = k!k, such that S ✓̇ = V.

(ii) If ! = 0: S = V/kvk = (0, v/kvk). The screw axis S is simply V normal-
ized by the length of the linear velocity vector. The linear velocity along
the screw axis is ✓̇ = kvk, such that S ✓̇ = V.

This leads to the following definition of a “unit” (normalized) screw axis:

Definition 3.7. For a given reference frame, a screw axis S is written

S =

!
v

�
2 R6,

where either (i) k!k = 1 or (ii) ! = 0 and kvk = 1. If (i) k!k = 1, then
v = �!⇥q+h!, where q is a point on the axis of the screw and h is the pitch of
the screw (h = 0 for a pure rotation about the screw axis). If (ii) k!k = 0 and

90 Rigid-Body Motions

kvk = 1, the pitch of the screw is h = 1 and the twist is a translation along
the axis defined by v.

The 4⇥ 4 matrix representation [S] of S is

[S] =

[!] v
0 0

�
2 se(3), [!] =

2

4
0 �!

3

!
2

!
3

0 �!
1

�!
2

!
1

0

3

5 2 so(3), (3.86)

where the bottom row of [S] consists of all zeros.

Important: Although we use the pair (!, v) for both normalized screw axes
(where one of k!k or kvk must be unit) and general twists (where there are no
constraints on ! and v), their meaning should be clear from context.

Since a screw axis S is just a normalized twist, a screw axis represented as
S
a

in a frame {a} is related to the representation S
b

in a frame {b} by

S
a

= [Ad
T

ab

]S
b

, S
b

= [Ad
T

ba

]S
a

.

3.3.3 Exponential Coordinate Representation of Rigid-Body
Motions

3.3.3.1 Exponential Coordinates of Rigid-Body Motions

In the planar example in Section 3.1, we saw that any planar rigid-body dis-
placement can be achieved by rotating the rigid body about some fixed point
in the plane (for a pure translation, this point lies at infinity). A similar re-
sult also exists for spatial rigid-body displacements: called the Chasles-Mozzi
Theorem, it states that every rigid-body displacement can be expressed as a
displacement along a fixed screw axis S in space.

By analogy to the exponential coordinates !̂✓ for rotations, we define the six-
dimensional exponential coordinates of a homogeneous transformation
T as S✓ 2 R6, where S is the screw axis and ✓ is the distance that must be
traveled along/about the screw axis to take a frame from the origin I to T . If
the pitch of the screw axis S = (!, v) is finite, then k!k = 1 and ✓ corresponds
to the angle of rotation about the screw axis. If the pitch of the screw is infinite,
then ! = 0 and kvk = 1, and ✓ corresponds to the linear distance traveled along
the screw axis.

Also by analogy to the rotations, we define a matrix exponential and matrix
logarithm:

exp : [S]✓ 2 se(3) ! T 2 SE(3)
log : T 2 SE(3) ! [S]✓ 2 se(3)

We begin by deriving a closed-form expression for the matrix exponential
e[S]✓. Expanding the matrix exponential in series form leads to

e[S]✓ = I + [S]✓ + [S]2 ✓
2

2!
+ [S]3 ✓

3

3!
+ . . .

=

e[!]✓ G(✓)v
0 1

�
, G(✓) = I✓ + [!]

✓2

2!
+ [!]2

✓3

3!
+ . . . (3.87)

3.3. Rigid-Body Motions and Twists 91

Noting the similarity between G(✓) and the series definition for e[!]✓, it is tempt-
ing to write I + G(✓)[!] = e[!]✓, and to conclude that G(✓) = (e[!]✓ � I)[!]�1.
This is wrong: [!]�1 does not exist (try computing det[!]).

Instead we make use of the result [!]3 = �[!] that was obtained from the
Cayley-Hamilton Theorem. In this case G(✓) can be simplified to

G(✓) = I✓ + [!]
✓2

2!
+ [!]2

✓3

3!
+ . . .

= I✓ +

✓
✓2

2!
� ✓4

4!
+
✓6

6!
� . . .

◆
[!] +

✓
✓3

3!
� ✓5

5!
+
✓7

7!
� . . .

◆
[!]2

= I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2. (3.88)

Putting everything together,

Proposition 3.16. Let S = (!, v) be a screw axis. If k!k = 1, then for any
distance ✓ 2 R traveled along the axis,

e[S]✓ =

e[!]✓

�
I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2

�
v

0 1

�
. (3.89)

If ! = 0 and kvk = 1, then

e[S]✓ =

I v✓
0 1

�
. (3.90)

The latter result of the proposition can be verified directly from the series
expansion of e[S]✓ with ! set to zero.

3.3.3.2 Matrix Logarithm of Rigid-Body Motions

The above derivation essentially provides a constructive proof of the Chasles-
Mozzi Theorem. That is, given an arbitrary (R, p) 2 SE(3), one can always
find a screw axis S = (!, v) and a scalar ✓ such that

e[S]✓ =

R p
0 1

�
. (3.91)

In the simplest case, if R = I, then ! = 0, and the preferred choice for v is
v = p/kpk (this makes ✓ = kpk the translation distance). If R is not the identity
matrix and trR 6= �1, one solution is given by

[!] =
1

2 sin ✓
(R�RT) (3.92)

v = G�1(✓)p, (3.93)

where ✓ satisfies 1 + 2 cos ✓ = tr R. We leave as an exercise the verification of
the following formula for G�1(✓):

G�1(✓) =
1

✓
I � 1

2
[!] +

✓
1

✓
� 1

2
cot

✓

2

◆
[!]2. (3.94)

92 Rigid-Body Motions

x^b

y^b

{b}

y^s

x^s{s}

x^c
y^c

{c}

q = (3.37, 3.37)

θ

v = (3.37, –3.37)

ω = 1 rad/s3

Figure 3.19: Two frames in a plane.

Finally, if tr R = �1, we choose ✓ = ⇡, and [!] can be obtained via the matrix
logarithm formula on SO(3). Once [!] and ✓ have been determined, v can then
be obtained as v = G�1(✓)p.

Algorithm: Given (R, p) written as T 2 SE(3), find a ✓ 2 [0,⇡] and a screw
axis S = (!, v) 2 R6 such that e[S]✓ = T . The vector S✓ 2 R6 comprises the
exponential coordinates for T and the matrix [S]✓ 2 se(3) is a matrix logarithm
of T .

(i) If R = I, then set ! = 0, v = p/kpk, and ✓ = kpk.

(ii) If trR = �1, then set ✓ = ⇡, and [!] = logR as determined by the matrix
logarithm formula on SO(3) for the case tr R = �1. v is then given by
v = G�1(✓)p.

(iii) Otherwise set ✓ = cos�1

⇣
tr R�1

2

⌘
2 [0,⇡) and

[!] =
1

2 sin ✓
(R�RT) (3.95)

v = G�1(✓)p, (3.96)

where G�1(✓) is given by Equation (3.94).

Example 3.4. As an example, we consider the special case of planar rigid-
body motions and examine the matrix logarithm formula on SE(2). Suppose
the initial and final configurations of the body are respectively represented by

3.4. Wrenches 93

the SE(2) matrices in Figure 3.19:

T
sb

=

2

4
cos 30� � sin 30� 1
sin 30� cos 30� 2

0 0 1

3

5

T
sc

=

2

4
cos 60� � sin 60� 2
sin 60� cos 60� 1

0 0 1

3

5 .

For this example, the rigid-body displacement occurs in the x̂
s

-ŷ
s

plane. The
corresponding screw motion therefore has its screw axis in the direction of the
ẑ
s

-axis, and is of zero pitch. The screw axis S = (!, v), expressed in {s}, is of
the form

! = (0, 0,!
3

)T

v = (v
1

, v
2

, 0)T .

Using this reduced form, we seek the screw motion that displaces the frame at
T
sb

to T
sc

, i.e., T
sc

= e[S]✓T
sb

, or

T
sc

T�1

sb

= e[S]✓,

where

[S] =

2

4
0 �!

3

v
1

!
3

0 v
2

0 0 0

3

5 .

We can apply the matrix logarithm algorithm directly to T
sc

T�1

sb

to obtain [S]
(and therefore S) and ✓ as follows:

[S] =

2

4
0 �1 3.37
1 0 �3.37
0 0 0

3

5 , S =

2

4
!
3

v
1

v
2

3

5 =

2

4
1

3.37
�3.37

3

5 , ✓ = ⇡/6 rad (or 30�).

The value of S means that the constant screw axis, expressed in the fixed frame
{s}, is represented by an angular velocity of 1 rad/s about ẑ

s

and a linear velocity
of a point currently at the origin of {s} of (3.37,�3.37), expressed in the {s}
frame.

Alternatively, we can observe that the displacement is not a pure translation—
T
sb

and T
sc

have rotation components that di↵er by an angle of 30�—and quickly
determine that ✓ = 30� and !

3

= 1. We can also graphically determine the point
q = (q

x

, q
y

) in the x̂
s

-ŷ
s

plane that the screw axis must pass through; for our
example this point is given by q = (3.37, 3.37).

3.4 Wrenches

Consider a linear force f acting on a rigid body at a point r. Defining a refer-
ence frame {a}, the point r can be represented as r

a

2 R3, the force f can be

94 Rigid-Body Motions

{a}

f

r

{b}

rb

ra

Figure 3.20: Relation between a wrench represented as F
a

and F
b

.

represented as f
a

2 R3, and this force creates a torque or moment m
a

2 R3 in
the {a} frame:

m
a

= r
a

⇥ f
a

.

Note that the point of application of the force along the line of action of the
force is immaterial.

Just as with twists, we can merge the moment and force into a single six-
dimensional spatial force, or wrench, expressed in the {a} frame, F

a

:

F
a

=

m

a

f
a

�
2 R6. (3.97)

If more than one wrench acts on a rigid body, the total wrench on the body
is simply the vector sum of the individual wrenches, provided the wrenches are
expressed in the same frame. A wrench with zero linear component is called a
pure moment.

A wrench in the {a} frame can be represented in another frame {b} if T
ba

is known (Figure 3.20). One way to derive the relationship between F
a

and F
b

is to derive the appropriate transformations between the individual force and
moment vectors based on techniques we have already used.

A simpler and more insightful way to derive the relationship between F
a

and
F

b

is to (1) use the results we have already derived relating the representations
V
a

and V
b

of the same twist, and (2) use the fact that the power generated (or
dissipated) by an (F ,V) pair must be the same regardless of the frame they are
represented in. (Imagine if we could create power simply by changing our choice
of a reference frame!) Recall that the dot product of a force and a velocity is
power, and power is a coordinate-independent quantity. Because of this, we
know

VT

b

F
b

= VT

a

F
a

. (3.98)

From Proposition 3.15 we know that V
a

= [Ad
T

ab

]V
b

, and therefore Equa-
tion (3.98) can be rewritten as

VT

b

F
b

= ([Ad
T

ab

]V
b

)TF
a

= VT

b

[Ad
T

ab

]TF
a

.

3.5. Summary 95

Since this must hold for all V
b

, this simplifies to

F
b

= [Ad
T

ab

]TF
a

. (3.99)

Similarly,
F

a

= [Ad
T

ba

]TF
b

. (3.100)

Proposition 3.17. Given a wrench F, represented in {a} as F
a

and in {b} as
F

b

, the two representations are related by

F
b

= AdT
T

ab

(F
a

) = [Ad
T

ab

]TF
a

(3.101)

F
a

= AdT
T

ba

(F
b

) = [Ad
T

ba

]TF
b

. (3.102)

3.5 Summary

The following table succinctly summarizes some of the key concepts from the
chapter, as well as the parallelism between rotations and rigid-body motions.
For more details, consult the appropriate section of the chapter.

96 Rigid-Body Motions

Rotations Rigid-Body Motions

R 2 SO(3) : 3⇥ 3 matrices satisfying T 2 SE(3) : 4⇥ 4 matrices

RTR = I, detR = 1 T =

R p
0 1

�
,

where R 2 SO(3), p 2 R3

R�1 = RT T�1 =

RT �RT p
0 1

�

change of coord frame: change of coord frame:
R

ab

R
bc

= R
ac

, R
ab

p
b

= p
a

T
ab

T
bc

= T
ac

, T
ab

p
b

= p
a

rotating a frame {b}: displacing a frame {b}:

R = Rot(!̂, ✓) T =

Rot(!̂, ✓) p

0 1

�

R
sb

0 = RR
sb

: rotate ✓ about !̂
s

= !̂ T
sb

0 = TT
sb

: rotate ✓ about !̂
s

= !̂
(moves {b} origin), translate p in {s}

R
sb

00 = R
sb

R: rotate ✓ about !̂
b

= !̂ T
sb

00 = T
sb

T : translate p in {b},
rotate ✓ about !̂ in new body frame

unit rotation axis is !̂ 2 R3, “unit” screw axis is S =

!
v

�
2 R6,

where k!̂k = 1 where either (i) k!k = 1 or
(ii) ! = 0 and kvk = 1

for a screw axis {q, ŝ, h} with finite h,

S =

!
v

�
=

ŝ

�ŝ⇥ q + hŝ

�

angular velocity can be written ! = !̂✓̇ twist can be written V = S ✓̇

for any 3-vector, e.g., ! 2 R3, for V =

!
v

�
2 R6,

[!] =

2

4
0 �!

3

!
2

!
3

0 �!
1

�!
2

!
1

0

3

5 2 so(3) [V] =

[!] v
0 0

�
2 se(3)

identities: for !, x 2 R3, R 2 SO(3): (the pair (!, v) can be a twist V
[!] = �[!]T , [!]x = �[x]!, or a “unit” screw axis S,

[!][x] = ([x][!])T , R[!]RT = [R!] depending on the context)

ṘR�1 = [!
s

], R�1Ṙ = [!
b

] Ṫ T�1 = [V
s

], T�1Ṫ = [V
b

]

[Ad
T

] =

R 0

[p]R R

�
2 R6⇥6

identities: [Ad
T

]�1 = [Ad
T

�1],
[Ad

T

1

][Ad
T

2

] = [Ad
T

1

T

2

]

change of coord frame: change of coord frame:
!̂
a

= R
ab

!̂
b

, !
a

= R
ab

!
b

S
a

= [Ad
T

ab

]S
b

, V
a

= [Ad
T

ab

]V
b

continued...

3.6. Software 97

Rotations (cont.) Rigid-Body Motions (cont.)

!̂✓ 2 R3 are exp coords for R 2 SO(3) S✓ 2 R6 are exp coords for T 2 SE(3)

exp : [!̂]✓ 2 so(3)! R 2 SO(3) exp : [S]✓ 2 se(3)! T 2 SE(3)

R = Rot(!̂, ✓) = e[!̂]✓ = T = e[S]✓ =

e[!̂]✓ ⇤
0 1

�

I + sin ✓[!̂] + (1� cos ✓)[!̂]2 where ⇤ =
(I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2)v

log : R 2 SO(3)! [!̂]✓ 2 so(3) log : T 2 SE(3)! [S]✓ 2 se(3)
algorithm in Section 3.2.3.3 algorithm in Section 3.3.3.2

moment change of coord frame: wrench change of coord frame:
m

a

= R
ab

m
b

F
a

= (m
a

, f
a

) = [Ad
T

ba

]TF
b

3.6 Software

The following functions are included in the software distribution accompanying
the book. The code below is in MATLAB format, but the code is available
in other languages. For more details on the software, consult the code and its
documentation.

invR = RotInv(R)
Computes the inverse of the rotation matrix R.

so3mat = VecToso3(omg)
Returns the 3⇥ 3 skew-symmetric matrix corresponding to omg.

omg = so3ToVec(so3mat)
Returns the 3-vector corresponding to the 3⇥3 skew-symmetric matrix so3mat.

[omghat,theta] = AxisAng3(expc3)
Extracts the rotation axis !̂ and rotation amount ✓ from the 3-vector !̂✓ of
exponential coordinates for rotation, expc3.

R = MatrixExp3(expc3)
Computes the rotation matrix corresponding to a 3-vector of exponential co-
ordinates for rotation. (Note: This function takes exponential coordinates as
input, not an so(3) matrix as implied by the function’s name.)

expc3 = MatrixLog3(R)
Computes the 3-vector of exponential coordinates corresponding to the matrix
logarithm of R. (Note: This function returns exponential coordinates, not an
so(3) matrix as implied by the function’s name.)

T = RpToTrans(R,p)
Builds the homogeneous transformation matrix T corresponding to a rotation

98 Rigid-Body Motions

matrix R 2 SO(3) and a position vector p 2 R3.

[R,p] = TransToRp(T)
Extracts the rotation matrix and position vector from a homogeneous transfor-
mation matrix T.

invT = TransInv(T)
Computes the inverse of a homogeneous transformation matrix T.

se3mat = VecTose3(V)
Returns the se(3) matrix corresponding to a 6-vector twist V.

V = se3ToVec(se3mat)
Returns the 6-vector twist corresponding to an se(3) matrix se3mat.

AdT = Adjoint(T)
Computes the 6⇥ 6 adjoint representation [Ad

T

] of the homogeneous transfor-
mation matrix T.

S = ScrewToAxis(q,s,h)
Returns a normalized screw axis representation S of a screw described by a unit
vector s in the direction of the screw axis, located at the point q, with pitch h.

[S,theta] = AxisAng(expc6)
Extracts the normalized screw axis S and distance traveled along the screw ✓
from the 6-vector of exponential coordinates S✓.

T = MatrixExp6(expc6)
Computes the homogeneous transformation matrix corresponding to a 6-vector
S✓ of exponential coordinates for rigid-body motion. (Note: This function
takes exponential coordinates as input, not an se(3) matrix as implied by the
function’s name.)

expc6 = MatrixLog(T)
Computes the 6-vector of exponential coordinates corresponding to the matrix
logarithm of T. (Note: This function returns exponential coordinates, not an
se(3) matrix as implied by the function’s name.)

3.7 Notes and References

More detailed coverage of the various parametrizations of SO(3) can be found in,
e.g., [96] and the references cited there. The treatment of the matrix exponential
representation for screw motions is based on the work of Brockett [14]; a more
mathematically detailed discussion can be found in [90]. Classical screw theory
is presented in its original form in R. Ball’s treatise [4]. More modern (algebraic
and geometric) treatments can be found in, e.g., Bottema and Roth [13], Angeles
[1], and McCarthy [86].

3.8. Exercises 99

3.8 Exercises

1. In terms of the x̂
s

-ŷ
s

-ẑ
s

coordinates of a fixed space frame {s}, the frame {a}
has an x̂

a

-axis pointing in the direction (0, 0, 1) and a ŷ
a

-axis pointing in the
direction (�1, 0, 0), and the frame {b} has an x̂

b

-axis pointing in the direction
(1, 0, 0) and a ŷ

b

-axis pointing in the direction (0, 0,�1).
(a) Give your best hand drawing of the three frames. Draw them at di↵erent
locations so they are easy to see.
(b) Write the rotation matrices R

sa

and R
sb

.
(c) Given R

sb

, how do you calculate R�1

sb

without using a matrix inverse? Write
R�1

sb

and verify its correctness with your drawing.
(d) Given R

sa

and R
sb

, how do you calculate R
ab

(again no matrix inverses)?
Compute the answer and verify its correctness with your drawing.
(e) Let R = R

sb

be considered as a transformation operator consisting of a
rotation about x̂ by �90�. Calculate R

1

= R
sa

R, and think of R
sa

as a repre-
sentation of an orientation, R as a rotation of R

sa

, and R
1

as the new orientation
after performing the rotation. Does the new orientation R

1

correspond to rotat-
ing R

sa

by �90� about the world-fixed x̂
s

-axis or the body-fixed x̂
a

-axis? Now
calculate R

2

= RR
sa

. Does the new orientation R
2

correspond to rotating R
sa

by �90� about the world-fixed x̂
s

-axis or the body-fixed x̂
a

-axis?
(f) Use R

sb

to change the representation of the point p
b

= (1, 2, 3)T (in {b}
coordinates) to {s} coordinates.
(g) Choose a point p represented by p

s

= (1, 2, 3)T in {s} coordinates. Calculate
p0 = R

sb

p
s

and p00 = RT

sb

p
s

. For each operation, should the result be interpreted
as changing coordinates (from the {s} frame to {b}) without moving the point
p, or as moving the location of the point without changing the reference frame
of the representation?
(h) An angular velocity w is represented in {s} as !

s

= (3, 2, 1)T . What is its
representation !

a

?
(h) By hand, calculate the matrix logarithm [!̂]✓ of R

sa

. (You may verify your
answer with software.) Extract the unit angular velocity !̂ and rotation amount
✓. Redraw the fixed frame {s} and in it draw !̂.
(i) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rotation !̂✓ = (1, 2, 0)T . Draw the corresponding frame relative to {s},
as well as the rotation axis !̂.

2. Let p be a point whose coordinates are p = (1p
3

,� 1p
6

, 1p
2

) with respect to

the fixed frame x̂-ŷ-ẑ. Suppose p is rotated about the fixed frame x̂-axis by 30
degrees, then about the fixed frame ŷ-axis by 135 degrees, and finally about
the fixed frame ẑ-axis by �120 degrees. Denote the coordinates of this newly
rotated point by p0.
(a) What are the coordinates of p0?

100 Rigid-Body Motions

(b) Find the rotation matrix R such that p0 = Rp for the p0 you obtained in (a).

3. Suppose p
i

2 R3 and p0
i

2 R3 are related by p0
i

= Rp
i

, i = 1, 2, 3, for some
unknown rotation matrix R to be determined. Find, if it exists, the rotation R
for the three input-output pairs p

i

7! p0
i

:

p
1

= (
p
2, 0, 2)T 7! p0

1

= (0, 2,
p
2)T

p
2

= (1, 1,�1)T 7! p0
2

= (
1p
2
,
1p
2
,�
p
2)T

p
3

= (0, 2
p
2, 0)T 7! p0

3

= (�
p
2,
p
2,�2)T .

4. In this exercise you are asked to prove the property R
ab

R
bc

= R
ac

of Equa-
tion (3.22). Define the unit axes of frames {a}, {b}, and {c} by the triplet of
orthogonal unit vectors {x̂

a

, ŷ
a

, ẑ
a

}, {x̂
b

, ŷ
b

, ẑ
b

}, and {x̂
c

, ŷ
c

, ẑ
c

}, respectively.
Suppose that the unit axes of frame {b} can be expressed in terms of the unit
axes of frame {a} by

x̂
b

= r
11

x̂
a

+ r
21

ŷ
a

+ r
31

ẑ
a

ŷ
b

= r
12

x̂
a

+ r
22

ŷ
a

+ r
32

ẑ
a

ẑ
b

= r
13

x̂
a

+ r
23

ŷ
a

+ r
33

ẑ
a

.

Similarly, suppose the unit axes of frame {c} can be expressed in terms of the
unit axes of frame {b} by

x̂
c

= s
11

x̂
b

+ s
21

ŷ
b

+ s
31

ẑ
b

ŷ
c

= s
12

x̂
b

+ s
22

ŷ
b

+ s
32

ẑ
b

ẑ
c

= s
13

x̂
b

+ s
23

ŷ
b

+ s
33

ẑ
b

.

From the above prove that R
ab

R
bc

= R
ac

.

5. Find the exponential coordinates !̂✓ 2 R3 for the SO(3) matrix

2

4
0 �1 0
0 0 �1
1 0 0

3

5 .

6. Given R = Rot(x̂, ⇡
2

)Rot(ẑ,⇡), find the unit vector !̂ and angle ✓ such that

R = e[!̂]✓.

7. (a) Given the rotation matrix

R =

2

4
0 0 1
0 �1 0
1 0 0

3

5 ,

3.8. Exercises 101

find all possible values for !̂ 2 R3, k!̂k = 1, and ✓ 2 [0, 2⇡] such that e[!̂]✓ = R.
(b) The two vectors v

1

, v
2

2 R3 are related by

v
2

= Rv
1

= e[!̂]✓v
1

where !̂ 2 R3 has length one, and ✓ 2 [�⇡,⇡]. Given !̂ = (2
3

, 2

3

, 1

3

)T , v
1

=
(1, 0, 1)T , v

2

= (0, 1, 1)T , find all angles ✓ that satisfy the above equation.

8. (a) Suppose we seek the logarithm of a rotation matrix R whose trace is �1.
From the exponential formula

e[!̂]✓ = I + sin ✓[!̂] + (1� cos ✓)[!̂]2, k!k = 1,

and recalling that trR = �1 implies ✓ = ⇡, the above equation simplifies to

R = I + 2[!̂]2 =

2

4
1� 2(!̂2

2

+ !̂2

3

) 2!̂
1

!̂
2

2!̂
1

!̂
3

2!̂
1

!̂
2

1� 2(!̂2

1

+ !̂2

3

) 2!̂
2

!̂
3

2!̂
1

!̂
2

2!̂
2

!̂
3

1� 2(!̂2

1

+ !̂2

2

)

3

5

Using the fact that !̂2

1

+ !̂2

2

+ !̂2

3

= 1, is it correct to conclude that

!̂
1

=

r
r
11

+ 1

2
, !̂

2

=

r
r
22

+ 1

2
, !̂

3

=

r
r
33

+ 1

2

is also a solution?
(c) Using the fact that [!̂]3 = �[!̂], the identity R = I + 2[!̂]2 can also be
written in the alternative form

R� I = 2[!̂]2

[!̂] (R� I) = 2 [!̂]3 = �2 [!̂]
[!̂] (R+ I) = 0.

The resulting equation is a system of three linear equations in (!̂
1

, !̂
2

, !̂
3

). What
is the relation between the solution to this linear system and the logarithm of
R?

9. Exploiting all of the known properties of rotation matrices, determine the
minimum number of arithmetic operations (multiplication and division, addi-
tion and subtraction) required to multiply two rotation matrices.

10. Due to finite arithmetic precision, the numerically obtained product of
two rotation matrices is not necessarily a rotation matrix; that is, the resulting
rotation A may not exactly satisfy ATA = I as desired. Devise an iterative
numerical procedure that takes an arbitrary matrix A 2 R3⇥3, and produces a
matrix R 2 SO(3) that minimizes

kA�Rk2 = tr (A�R)(A�R)T .

102 Rigid-Body Motions

11. (a) If A = [a] and B = [b] for a, b 2 R3, then under what conditions on a
and b does eAeB = eA+B?
(b) If A = [V

a

] and B = [V
b

], where V
a

= (!
a

, v
a

) and V
b

= (!
b

, v
b

) are arbitrary
twists, then under what conditions on V

a

and V
b

does eAeB = eA+B? Try to
give a physical description of this condition.
(c) Under what conditions on general A,B 2 Rn⇥n does eAeB = eA+B?

12. (a) Given a rotation matrix A = Rot(ẑ,↵), where Rot(ẑ,↵) indicates a
rotation about the ẑ-axis by an angle ↵, find all rotation matrices R 2 SO(3)
that satisfy AR = RA.
(b) Given rotation matrices A = Rot(ẑ,↵) and B = Rot(ẑ,�), with ↵ 6= �, find
all rotation matrices R 2 SO(3) that satisfy AR = RB.
(c) Given arbitrary rotation matrices A,B 2 SO(3), find all solutions R 2 SO(3)
to the equation AR = RB.

13. (a) Show that the three eigenvalues of a rotation matrix R 2 SO(3) each
have unit magnitude, and conclude that they can always be written {µ+ i⌫, µ�
i⌫, 1}, where µ2 + ⌫2 = 1.
(b) Show that a rotation matrix R 2 SO(3) can always be factored in the form

R = A

2

4
µ ⌫ 0
�⌫ µ 0
0 0 1

3

5A�1,

where A 2 SO(3) and µ2 + ⌫2 = 1. (Hint: Denote the eigenvector associated
with the eigenvalue µ+ i⌫ by x+ iy, x, y 2 R3, and the eigenvector associated
with the eigenvalue 1 by z 2 R3. For the purposes of this problem you may
assume that the set of vectors {x, y, z} can always be chosen to be linearly
independent.)

14. Given ! 2 R3, k!k = 1, and ✓ a nonzero scalar, show that

�
I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2

��1

=
1

✓
I � 1

2
[!] +

✓
1

✓
� 1

2
cot

✓

2

◆
[!]2.

Hint: From the identity [!]3 = �[!], express the inverse expressed as a quadratic
matrix polynomial in [!].

15. (a) Given a fixed frame {0}, and a moving frame {1} in the identity
orientation, perform the following sequence of rotations on {1}:

(i) Rotate {1} about the {0} frame x-axis by ↵; call this new frame {2}.

(ii) Rotate {2} about the {0} frame y-axis by �; call this new frame {3}.

3.8. Exercises 103

(iii) Rotate {3} about the {0} frame z-axis by �; call this new frame {4}.

What is the final orientation R
04

?
(b) Suppose that the third step in (a) is replaced by the following: “Rotate {3}
about the frame {3} z-axis by �; call this new frame {4}.” What is the final
orientation R

04

?
(c) From the given transformations, find T

ca

:

T
ab

=

2

664

1p
2

� 1p
2

0 �1
1p
2

1p
2

0 0

0 0 1 1
0 0 0 1

3

775 , T
cb

=

2

664

1p
2

0 1p
2

0

0 1 0 1
� 1p

2

0 1p
2

0

0 0 0 1

3

775 .

16. In terms of the x̂
s

-ŷ
s

-ẑ
s

coordinates of a fixed space frame {s}, the frame
{a} has an x̂

a

-axis pointing in the direction (0, 0, 1) and a ŷ
a

-axis pointing in the
direction (�1, 0, 0), and the frame {b} has an x̂

b

-axis pointing in the direction
(1, 0, 0) and a ŷ

b

-axis pointing in the direction (0, 0,�1). The origin of {a} is
at (3,0,0) in {s} and the origin of {b} is at (0,2,0).
(a) Give your best hand drawing showing {a} and {b} relative to {s}.
(b) Write the rotation matrices R

sa

and R
sb

and the transformation matrices
T
sa

and T
sb

.
(c) Given T

sb

, how do you calculate T�1

sb

without using a matrix inverse? Write
T�1

sb

and verify its correctness with your drawing.
(d) Given T

sa

and T
sb

, how do you calculate T
ab

(again no matrix inverses)?
Compute the answer and verify its correctness with your drawing.
(e) Let T = T

sb

be considered as a transformation operator consisting of a rota-
tion about x̂ by �90� and a translation along ŷ by 2 units. Calculate T

1

= T
sa

T .
Does T

1

correspond to a rotation and translation about x̂
s

and ŷ
s

, respectively
(world-fixed transformation of T

sa

), or a rotation and translation about x̂
a

and
ŷ
a

, respectively (body-fixed transformation of T
sa

)? Now calculate T
2

= TT
sa

.
Does T

2

correspond to a body-fixed or world-fixed transformation of T
sa

?
(f) Use T

sb

to change the representation of the point p
b

= (1, 2, 3)T (in {b}
coordinates) to {s} coordinates.
(g) Choose a point p represented by p

s

= (1, 2, 3)T in {s} coordinates. Calculate
p0 = T

sb

p
s

and p00 = T�1

sb

p
s

. For each operation, should the result be interpreted
as changing coordinates (from the {s} frame to {b}) without moving the point
p, or as moving the location of the point without changing the reference frame
of the representation?
(g) A twist V is represented in {s} as V

s

= (3, 2, 1,�1,�2,�3)T . What is its
representation V

a

?
(h) By hand, calculate the matrix logarithm [S]✓ of T

sa

. (You may verify
your answer with software.) Extract the normalized screw axis S and rotation
amount ✓. Get the {q, ŝ, h} representation of the screw axis. Redraw the fixed
frame {s} and in it draw S.
(i) Calculate the matrix exponential corresponding to the exponential coordi-

104 Rigid-Body Motions

nates of rigid-body motion S✓ = (0, 1, 2, 3, 0, 0)T . Draw the corresponding frame
relative to {s}, as well as the screw axis S.

Figure 3.21: Four reference frames defined in a robot’s workspace.

17. Four reference frames are shown in the robot workspace of Figure 3.21:
the fixed frame {a}, the end-e↵ector frame e↵ector {b}, camera frame {c}, and
workpiece frame {d}.
(a) Find T

ad

and T
cd

in terms of the dimensions given in the figure.
(b) Find T

ab

given that

T
bc

=

2

664

1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1

3

775 .

18. Consider a robot arm mounted on a spacecraft as shown in Figure 3.22,
in which frames are attached to the earth {e}, satellite {s}, the spacecraft {a},
and the robot arm {r}, respectively.
(a) Given T

ea

, T
ar

, and T
es

, find T
rs

.
(b) Suppose the frame {s} origin as seen from {e} is (1, 1, 1), and

T
er

=

2

664

�1 0 0 1
0 1 0 1
0 0 �1 1
0 0 0 1

3

775 .

3.8. Exercises 105

Figure 3.22: A robot arm mounted on a spacecraft.

Write down the coordinates of the frame {s} origin as seen from frame {r}.

30

v2

v1
x

R1

R2

{1}

y

x

y

x

y

z

{2}

{0}

Satellite1

Satellite2

Figure 3.23: Two satellites circling the earth.

19. Two satellites are circling the earth as shown in Figure 3.23. Frames {1}
and {2} are rigidly attached to the satellites such that their x̂-axes always point
toward the earth. Satellite 1 moves at a constant speed v

1

, while satellite 2
moves at a constant speed v

2

. To simplify matters assume the earth is does not
rotate about its own axis. The fixed frame {0} is located at the center of the
earth. Figure 3.23 shows the position of the two satellites at t = 0.
(a) Derive frames T

01

, T
02

as a function of t.
(b) Using your results obtain in (a), find T

21

as a function of t.

20. Consider the high-wheel bicycle of Figure 3.24, in which the diameter of the

106 Rigid-Body Motions

Figure 3.24: A high-wheel bicycle.

front wheel is twice that of the rear wheel. Frames {a} and {b} are attached to
the centers of each wheel, and frame {c} is attached to the top of the front wheel.
Assuming the bike moves forward in the ŷ direction, find T

ac

as a function of
the front wheel’s rotation angle ✓ (assume ✓ = 0 at the instant shown in the
figure).

Figure 3.25: Spacecraft and space station.

21. The space station of Figure 3.25 moves in circular orbit around the earth,
and at the same time rotates about an axis always pointing toward the north
star. Due to an instrument malfunction, a spacecraft heading toward the space
station is unable to locate the docking port. An earth-based ground station

3.8. Exercises 107

sends the following information to the spacecraft:

T
ab

=

2

664

0 �1 0 �100
1 0 0 300
0 0 1 500
0 0 0 1

3

775 , p
a

=

2

4
0
800
0

3

5 ,

where p
a

is the vector ~p expressed in {a} frame coordinates.
(a) From the given information, find r

b

, the vector ~r expressed in {b} frame
coordinates.
(b) Determine T

bc

at the instant shown in the figure. Assume here that the ŷ
and ẑ axes of the {a} and {c} frames are coplanar with the docking port.

Figure 3.26: A laser tracking a moving target.

22. A target moves along a circular path at constant angular velocity ! rad/s
as shown in Figure 3.26. The target is tracked by a laser mounted on a moving
platform, rising vertically at constant speed v. Assume the laser and the plat-
form start at L

1

at t = 0, while the target starts at frame T
1

.
(a) Derive frames T

01

, T
12

, T
03

as a function of t.
(b) Using your results from part (a), derive T

23

as a function of t.

23. Two toy cars are moving on a round table as shown in Figure 3.27. Car 1
moves at a constant speed v

1

along the circumference of the table, while car 2
moves at a constant speed v

2

along a radius; the positions of the two vehicles
at t = 0 are shown in the figure.
(a) Find T

01

, T
02

as a function of t.
(b) Find T

12

as a function of t.

108 Rigid-Body Motions

Figure 3.27: Two toy cars on a round table.

Figure 3.28: A robot arm with a screw joint.

24. Figure 3.28 shows the configuration, at t = 0, of a robot arm whose first
joint is a screw joint of pitch h = 2. The arm’s link lengths are L

1

= 10,
L
2

= L
3

= 5, and L
4

= 3. Suppose all joint angular velocities are constant,

3.8. Exercises 109

with values !
1

= ⇡

4

, !
2

= ⇡

8

, w
3

= �⇡
4

rad/s. Find T
sb

(4) 2 SE(3), i.e., the
end-e↵ector frame {b} 2 SE(3) relative to the fixed frame {s}, at time t = 4.

Figure 3.29: A camera rigidly attached to a robot arm.

25. A camera is rigidly attached to a robot arm as shown in Figure 3.29. The
transformation X 2 SE(3) is constant. The robot arm moves from pose 1 to
pose 2. The transformations A 2 SE(3) and B 2 SE(3) are measured and
assumed known.
(a) Suppose X and A are given as follows:

X =

2

664

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , A =

2

664

0 0 1 0
0 1 0 1
�1 0 1 0
0 0 0 1

3

775

What is B?
(b) Now suppose

A =

R

A

p
A

0 1

�
, B =

R

B

p
B

0 1

�

are known and we wish to find

X =

R

X

p
X

0 1

�
.

Suppose R
A

= e[↵] and R
B

= e[�]. What are the conditions on ↵ 2 R3 and
� 2 R3 for a solution R

X

to exist?

110 Rigid-Body Motions

(c) Now suppose we have a set of k equations

A
i

X = XB
i

for i = 1, . . . , k

Assume A
i

and B
i

are all known. What is the minimum number of k for which
a unique solution exists?

26. Draw the screw axis with q = (3, 0, 0)T , ŝ = (0, 0, 1)T , and h = 2.

27. Draw the screw axis corresponding to the twist V = (0, 2, 2, 4, 0, 0)T .

28. Assume that the space frame angular velocity is !
s

= (1, 2, 3)T for a moving
body with frame {b} at

R =

2

4
0 �1 0
0 0 �1
1 0 0

3

5

in the world frame {s}. Calculate the angular velocity !
b

in {b}.

29. Two frames {a} and {b} are attached to a moving rigid body. Show that
the twist of {a} in space frame coordinates is the same as the twist of {b} in
space frame coordinates.

(a) a (b) b

Figure 3.30: A cube undergoing two di↵erent screw motions.

30. A cube undergoes two di↵erent screw motions from frame {1} to frame {2}
as shown in Figure 3.30. In both cases (a) and (b), the initial configuration of
the cube is

T
01

=

2

664

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

3

775 .

3.8. Exercises 111

(a) For each case (a) and (b), find the exponential coordinates S✓ = (!, v) such
that T

02

= e[S]✓T
01

, where no constraints are placed on ! or v.
(b) Repeat (a), this time with the constraint that k!k 2 [�⇡,⇡].

31. In Example 3.2 and Figure 3.15, the block the robot must pick up weighs
1 kg, which means the robot must provide approximately 10 N of force in the
ẑ
e

direction of the block’s frame {e} (which you can assume is at the block’s
center of mass). Express this force as a wrench in the {e} frame, F

e

. Given
the transformation matrices in Example 3.2, express this same wrench in the
end-e↵ector frame {c} as F

c

.

32. Given two reference frames {a} and {b} in physical space, and a fixed frame
{o}, define the distance between frames {a} and {b} as

dist(T
oa

, T
ob

) ⌘
p
✓2 + ||p

ab

||2

where R
ab

= e[!̂]✓. Suppose the fixed frame is displaced to another frame {o0},
and that T

o

0
a

= ST
oa

, T
o

0
b

= ST
o

0
b

for some constant S = (R
s

, p
s

) 2 SE(3).
(a) Evaluate dist(T

o

0
a

, T
o

0
b

) using the above distance formula.
(b) Under what conditions on S does dist(T

oa

, T
ob

) = dist(T
o

0
a

, T
o

0
b

)?

33. (a) Find the general solution to the di↵erential equation ẋ = Ax, where

A =

�2 1
0 �1

�
.

What happens to the solution x(t) as t!1?
(b) Do the same for

A =

2 �1
1 2

�
.

What happens to the solution x(t) as t!1?

34. Let x 2 R2, A 2 R2⇥2, and consider the linear di↵erential equation ẋ(t) =
Ax(t). Suppose that

x(t) =

e�3t

�3e�3t

�

is a solution for the initial condition x(0) = (1,�3), and

x(t) =

et

et

�
.

is a solution for the initial condition x(0) = (1, 1). Find A and eAt.

35. Given a di↵erential equation of the form ẋ = Ax+ f(t), where x 2 Rn and
f(t) is a given di↵erentiable function of t. Show that the general solution can

112 Rigid-Body Motions

be written

x(t) = eAtx(0) =

Z
t

0

eA(t�s)f(s) ds.

(Hint: Define z(t) = e�Atx(t), and evaluate ż(t).)

36. Referring to Appendix B, answer the following questions related to ZXZ
Euler angles.
(a) Derive a procedure for finding the ZXZ Euler angles of a rotation matrix.
(b) Using the results of (a), find the ZXZ Euler angles for the following rotation
matrix: 2

64
� 1p

2

1p
2

0

� 1

2

� 1

2

1p
2

1

2

1

2

1p
2

3

75 .

37. Consider a wrist mechanism with two revolute joints ✓
1

and ✓
2

, in which
the end-e↵ector frame orientation R 2 SO(3) is given by

R = e[!̂1

]✓

1e[!̂2

]✓

2 ,

with !̂
1

= (0, 0, 1) and !̂
2

= (0, 1p
2

,� 1p
2

). Determine whether the following

orientation is reachable (that is, find, if it exists, a solution (✓
1

, ✓
2

) for the
following R):

R =

2

4
1p
2

0 � 1p
2

0 1 0
1p
2

0 1p
2

3

5

38. Show that rotation matrices of the form
2

4
r
11

r
12

0
r
21

r
22

r
23

r
31

r
32

r
33

3

5

can be parametrized using just two parameters ✓ and � as follows:
2

4
cos ✓ � sin ✓ 0

sin ✓ cos� cos ✓ cos� � sin�
sin ✓ sin� cos ✓ sin� cos�

3

5 .

What should the range of values be for ✓ and �?

39. Figure 3.31 shows a three degree of freedom wrist mechanism in its zero
position (that is, with all its joints set to zero).
(a) Express the tool frame orientation R

03

= R(↵,�, �) as a product of three
rotation matrices.
(b) Find all possible angles (↵,�, �) for the two values of R

03

given below. If
no solution exists, explain why in terms of the analogy between SO(3) and the
solid ball of radius ⇡.

3.8. Exercises 113

Figure 3.31: A three degree of freedom wrist mechanism.

(i) R
03

=

2

4
0 1 0
1 0 0
0 0 �1

3

5 .

(ii) R
03

= e[!̂]
⇡

2 , where !̂ = (0, 1p
5

, 2p
5

).

40. Refer to Appendix B.
(a) Verify the formula for obtaining the unit quaternion representation of a ro-
tation R 2 SO(3).
(b) Verify the formula for obtaining the rotation matrix R given a unit quater-
nion q 2 S3.
(c) Verify the product rule for two unit quaternions. That is, given two unit
quaternions q, p 2 S3 corresponding respectively to the rotations R,Q 2 SO(3),
find a formula for the unit quaternion representation of the product RQ 2
SO(3).

41. (Refer to Appendix B.) The Cayley transform of Equation (B.18) can be
generalized to higher-order as follows:

R = (I � [r])k(I + [r])�k. (3.103)

(a) For the case k = 2, show that the rotation R corresponding to r can be

114 Rigid-Body Motions

computed from the formula

R = I + 4
1� rT r

(1 + rT r)2
[r] +

8

(1 + rT r)2
[r]2. (3.104)

(b) Conversely, given a rotation matrix R, show that a vector r that satisfies
equation (3.104) can be obtained as

r = !̂ tan
✓

4
, (3.105)

where as before !̂ is the unit vector corresponding to the axis of rotation for R,
and ✓ is the corresponding rotation angle. Is this solution unique?
(c) Show that the angular velocity in the body-fixed frame obeys the following
relation:

ṙ =
1

4

�
(1� rT r)I + 2[r] + 2rrT

!. (3.106)

(d) Explain what happens to the singularity at ⇡ that exists for the standard
Cayley-Rodrigues parameters. Discuss the relative advantages and disadvan-
tages of the modified Cayley-Rodrigues parameters, particularly as one goes to
order k = 4 and higher.
(e) Compare the number of arithmetic operations for multiplying two rota-
tion matrices, two unit quaternions, and two Cayley-Rodrigues representations.
Which requires fewer arithmetic operations?

42. Among the programming languages for which the software exists, choose
your favorite language. If it is not represented, port the Chapter 3 software to
your favorite programming language.

43. Write a function that returns “true” if a given 3 ⇥ 3 matrix is within ✏ of
being a rotation matrix, and “false” otherwise. It is up to you how to define
the “distance” between a random 3 ⇥ 3 real matrix and the closest member of
SO(3). If the function returns “true,” it should also return the “nearest” matrix
in SO(3). See, for example, Exercise 10.

44. Write a function that returns “true” if a given 4 ⇥ 4 matrix is within ✏ of
an element of SE(3), and “false” otherwise.

45. Write a function that returns “true” if a given 3 ⇥ 3 matrix is within ✏ of
an element of so(3), and “false” otherwise.

46. Write a function that returns “true” if a given 4 ⇥ 4 matrix is within ✏ of
an element of se(3), and “false” otherwise.

47. The primary purpose of the provided software is to be easy to read and
educational, reinforcing the concepts in the book. The code is optimized neither
for e�ciency nor robustness, nor does it do full error-checking on its inputs.

3.8. Exercises 115

Familiarize yourself with all of the code in your favorite language by reading
the functions and their comments. This should help cement your understanding
of the material in this chapter. Then:
(a) Rewrite one function to do full error-checking on its input, and have the
function return a recognizable error value if the function is called with improper
input (e.g., an argument to the function is not an element of SO(3), SE(3),
so(3), or se(3), as expected).
(b) Rewrite one function to improve computational e�ciency, perhaps by using
what you know about properties of rotation or transformation matrices.
(c) Can you reduce the numerical sensitivity of either of the matrix logarithm
functions?

48. Use the provided software to write a program that allows the user to
specify an initial configuration of a rigid body by T , a screw axis specified
by {q, ŝ, h}, and a total distance traveled along the screw axis ✓. The program
should calculate the final configuration T

1

= e[S]✓T attained when the rigid body
follows the screw S a distance ✓, as well as the intermediate configurations at
✓/4, ✓/2, and 3✓/4. At the initial, intermediate, and final configurations, the
program should plot the {b} axes of the rigid body. The program should also
calculate the screw axis S

1

, and the distance ✓
1

following S
1

, that takes the
rigid body from T

1

to the origin, and plot the screw axis S
1

. Test the program
with q = (0, 2, 0)T , ŝ = (0, 0, 1)T , h = 2, ✓ = ⇡, and

T =

2

664

1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

3

775 .

116 Rigid-Body Motions

Chapter 4

Forward Kinematics

The forward kinematics of a robot refers to the calculation of the position and
orientation of its end-e↵ector frame from its joint values. Figure 4.1 illustrates
the forward kinematics problem for a 3R planar open chain. Starting from the
base link, the link lengths are L

1

, L
2

, and L
3

. Choose a fixed frame {0} with
origin located at the base joint as shown, and assume an end-e↵ector frame {4}
has been attached to the tip of the third link. The Cartesian position (x, y)
and orientation � of the end-e↵ector frame as a function of the joint angles
(✓

1

, ✓
2

, ✓
3

) are then given by

x = L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

) + L
3

cos(✓
1

+ ✓
2

+ ✓
3

) (4.1)

y = L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

) + L
3

sin(✓
1

+ ✓
2

+ ✓
3

) (4.2)

� = ✓
1

+ ✓
2

+ ✓
3

. (4.3)

If one is only interested in the (x, y) position of the end-e↵ector, the robot’s task
space is then taken to be the x-y plane, and the forward kinematics would consist
of Equations (4.1)-(4.2) only. If the end-e↵ector’s position and orientation both
matter, the forward kinematics would consist of the three equations (4.1)-(4.3).

While the above analysis can be done using only basic trigonometry, it is
not di�cult to imagine that for more general spatial chains, the analysis can
become considerably more complicated. A more systematic method of deriving
the forward kinematics might involve attaching reference frames to each of the
links; in Figure 4.1 the three link reference frames are respectively labeled {1},
{2}, and {3}. The forward kinematics can then be written as a product of four
homogeneous transformation matrices,

T
04

= T
01

T
12

T
23

T
34

, (4.4)

117

118 Forward Kinematics

{0}

{1}

{2}

{3}

{4} ϕ

x
y()

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1

✓
1

✓
2

✓
3

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1

✓
1

✓
2

✓
3

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the
x̂ and ŷ axes are shown, and the ẑ axes are parallel and out of the page.

where

T
01

=

2

664

cos ✓
1

� sin ✓
1

0 0
sin ✓

1

cos ✓
1

0 0
0 0 1 0
0 0 0 1

3

775 , T
12

=

2

664

cos ✓
2

� sin ✓
2

0 L
1

sin ✓
2

cos ✓
2

0 0
0 0 1 0
0 0 0 1

3

775

T
23

=

2

664

cos ✓
3

� sin ✓
3

0 L
2

sin ✓
3

cos ✓
3

0 0
0 0 1 0
0 0 0 1

3

775 , T
34

=

2

664

1 0 0 L
3

0 1 0 0
0 0 1 0
0 0 0 1

3

775 . (4.5)

Observe that T
34

is constant, and that each remaining T
i�1,i

depends only on
the joint variable ✓

i

.
As an alternative to this approach, let us define M to be the position and

orientation of frame {4} when all joint angles are set to zero (the “home” or
“zero” position of the robot). Then

M =

2

664

1 0 0 L
1

+ L
2

+ L
3

0 1 0 0
0 0 1 0
0 0 0 1

3

775 , (4.6)

Now consider each of the revolute joint axes to be a zero-pitch screw axis. If
✓
1

and ✓
2

are held at their zero position, then the screw axis corresponding to

119

rotating about joint three can be expressed in the {0} frame as

S
3

=

!
3

v
3

�
=

2

6666664

0
0
1
0

�(L
1

+ L
2

)
0

3

7777775
.

You should be able to confirm this by simple visual inspection of Figure 4.1.
When the arm is stretched out straight to the right at its zero configuration,
imagine a turntable rotating with an angular velocity of !

3

= 1 rad/s about
the axis of joint 3. The linear velocity v

3

of the point on the turntable at the
origin of {0} is in the �ŷ

0

direction at a rate of L
1

+L
2

units/s. Algebraically,
v
3

= �!
3

⇥ q
3

, where q
3

is any point on the axis of joint 3 expressed in {0},
e.g., q

3

= (L
1

+ L
2

, 0, 0)T .
The screw axis S

3

can be expressed in se(3) matrix form as

[S
3

] =

[!] v
0 0

�
=

2

664

0 �1 0 0
1 0 0 �(L

1

+ L
2

)
0 0 0 0
0 0 0 0

3

775 .

Therefore, for any ✓
3

, the matrix exponential representation for screw motions
from the previous chapter allows us to write

T
04

= e[S3

]✓

3M (for ✓
1

= ✓
2

= 0). (4.7)

Now, for ✓
1

= 0 and any fixed (but arbitrary) ✓
3

, rotation about joint two can
be viewed as applying a screw motion to the rigid (link two)/(link three) pair,
i.e.,

T
04

= e[S2

]✓

2e[S3

]✓

3M (for ✓
1

= 0), (4.8)

where [S
3

] and M are as defined previously, and

[S
2

] =

2

664

0 �1 0 0
1 0 0 �L

1

0 0 0 0
0 0 0 0

3

775 . (4.9)

Finally, keeping ✓
2

and ✓
3

fixed, rotation about joint one can be viewed as
applying a screw motion to the entire rigid three-link assembly. We can therefore
write, for arbitrary values of (✓

1

, ✓
2

, ✓
3

),

T
04

= e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3M, (4.10)

where

[S
1

] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775 . (4.11)

120 Forward Kinematics

Thus the forward kinematics can be expressed as a product of matrix exponen-
tials, each corresponding to a screw motion. Note that this latter derivation of
the forward kinematics does not make use of any link reference frames; only {0}
and M must be defined.

In this chapter we consider the forward kinematics of general open chains.
One widely used representation for the forward kinematics of open chains re-
lies on the Denavit-Hartenberg parameters (D-H parameters), and this
representation makes use of Equation (4.4). Another representation relies on
the Product of Exponentials (PoE) formula, which corresponds to Equa-
tion (4.10). The advantage of the D-H representation is that it requires the
minimum number of parameters to describe the the robot’s kinematics; for an
n-joint robot, it uses 3n numbers to describe the robot’s structure and n num-
bers to describe the joint values. The PoE representation is not minimal (it
requires 6n numbers to describe the n screw axes, in addition to the n joint
values), but it has advantages over the D-H representation (e.g., no link frames
are necessary) and it is our preferred choice of forward kinematics representa-
tion. The D-H representation, and its relationship to the PoE representation,
is described in Appendix C.

4.1 Product of Exponentials Formula

To use the PoE formula, it is only necessary to assign a stationary frame {s}
(e.g., at the fixed base of the robot, or really anywhere that is convenient to
define a reference frame) and a frame {b} at the end-e↵ector, described by M
when the robot is at its zero position. However, it is not uncommon to define
a frame at each link, typically at the joint axis; these are needed for the D-H
representation and they are useful for displaying a CAD model of the robot
and for defining the mass properties of the link, which we will need starting in
Chapter 8. Thus when we are defining the kinematics of an n-joint robot, we
may either (1) minimally use the frames {s} and {b} if we are only interested in
kinematics, or (2) refer to {s} as frame {0}, use frames {i} for i = 1 . . . n (the
frames for links i at joints i), and use one more frame {n + 1} (corresponding
to {b}) at the end-e↵ector. The frame {n + 1} (i.e., {b}) is fixed relative to
{n}, but it is at a more convenient location to represent the configuration of the
end-e↵ector. In some cases we dispense with frame {n+ 1} and simply refer to
{n} as the end-e↵ector frame {b}.

4.1.1 First Formulation: Screw Axes Expressed in Base Frame

The key concept behind the PoE formula is to regard each joint as applying a
screw motion to all the outward links. To illustrate, consider a general spatial
open chain like the one shown in Figure 4.2, consisting of n one-dof joints that
are connected serially. To apply the PoE formula, you must choose a fixed base
frame and an end-e↵ector frame attached to the last link. Place the robot in
its zero position by setting all joint values to zero, with the direction of positive

4.1. Product of Exponentials Formula 121

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.

displacement (rotation for revolute joints, translation for prismatic joints) for
each joint specified. Let M 2 SE(3) denote the configuration of the end-e↵ector
frame relative to the fixed base frame when the robot is in its zero position.

Now suppose joint n is displaced to some joint value ✓
n

. The end-e↵ector
frame M then undergoes a displacement of the form

T = e[Sn

]✓

nM, (4.12)

where T 2 SE(3) is the new configuration of the end-e↵ector frame, and S
n

=
(!

n

, v
n

) is the screw axis of joint n, as expressed in the fixed base frame. If joint
n is revolute (corresponding to a screw motion of zero pitch), then !

n

2 R3 is a
unit vector in the positive direction of joint axis n; v

n

= �!
n

⇥ q
n

, with q
n

any
arbitrary point on joint axis n as written in coordinates in the fixed base frame;
and ✓

n

is the joint angle. If joint n is prismatic, then !
n

= 0; v
n

2 R3 is a unit
vector in the direction of positive translation; and ✓

n

represents the prismatic
extension/retraction.

If we assume joint n � 1 is also allowed to vary, then this has the e↵ect of
applying a screw motion to link n� 1 (and by extension to link n, since link n
is connected to link n� 1 via joint n). The end-e↵ector frame thus undergoes a
displacement of the form

T = e[Sn�1

]✓

n�1

⇣
e[Sn

]✓

nM
⌘
. (4.13)

Continuing with this reasoning and now allowing all the joints (✓
1

, . . . , ✓
n

) to
vary, it follows that

T (✓) = e[S1

]✓

1 · · · e[Sn�1

]✓

n�1e[Sn

]✓

nM. (4.14)

122 Forward Kinematics

x0

y0
z0

^

y1
L1

L2

^

y2 ^

y3 ^

^
^

z1
^

z2
^

z3
^

x1 ^

x2 ^

x3 ^

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1
✓
1

✓n
✓n�1

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1

✓
1

✓
2

✓
3

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

SNUx446.345 Robot Mechanics and Control, Part II
Midterm Examination

July, 2014

Problem 1

✓
1

✓
2

✓
3

✓n�2

M
e[Sn]✓n

e[Sn]✓nM
e[Sn�1]✓n�1

e[Sn�2]✓n�2

e[Sn�1]✓n�1[Sn]✓nM
e[Sn�2]✓n�2[Sn�1]✓n�1[Sn]✓nM

Tb1b2 = e[S1]✓1e[S2]✓2 · · · e[S5]✓5M.

1

Figure 4.3: A 3R spatial open chain.

This is the product of exponentials formula describing the forward kinematics
of an n-dof open chain. Specifically, we call Equation (4.14) the space form
of the product of exponentials formula, referring to the fact that the screw axes
are expressed in the fixed space frame.

To summarize, to calculate the forward kinematics of an open chain using
the space form of the PoE formula (4.14), we need the following elements:

(i) The end-e↵ector configuration M 2 SE(3) when the robot is at its home
position.

(ii) The screw axes S
1

. . .S
n

, expressed in the fixed base frame, corresponding
to the joint motions when the robot is at its home position.

(iii) The joint variables ✓
1

. . . ✓
n

.

Unlike with the D-H representation, no link reference frames need to be defined.
Further advantages will come to light when we examine the velocity kinematics
in the next chapter.

4.1.2 Examples

We now derive the forward kinematics for some common spatial open chains
using the PoE formula.

Example: 3R Spatial Open Chain

Consider the 3R open chain of Figure 4.3, shown in its home position (all joint
variables set equal to zero). Choose the fixed frame {0} and end-e↵ector frame

4.1. Product of Exponentials Formula 123

{3} as indicated in the figure, and express all vectors and homogeneous trans-
formations in terms of the fixed frame. The forward kinematics will be of the
form

T (✓) = e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3M,

where M 2 SE(3) is the end-e↵ector frame configuration when the robot is in
its zero position. By inspection M can be obtained as

M =

2

664

0 0 1 L
1

0 1 0 0
�1 0 0 �L

2

0 0 0 1

3

775 .

The screw axis S
1

= (!
1

, v
1

) for joint axis 1 is then given by !
1

= (0, 0, 1)
and v

1

= (0, 0, 0) (the fixed frame origin (0,0,0) is a convenient choice for the
point q

1

lying on joint axis 1). To determine the screw axis S
2

for joint axis 2,
observe that joint axis 2 points in the �ŷ

0

axis direction, so that !
2

= (0,�1, 0).
Choose q

2

= (L
1

, 0, 0), in which case v
2

= �!
2

⇥ q
2

= (0, 0,�L
1

). Finally, to
determine the screw axis S

3

for joint axis 3, note that !
3

= (1, 0, 0). Choosing
q
3

= (0, 0,�L
2

), it follows that v
3

= �!
3

⇥ q
3

= (0,�L
2

, 0).
In summary, we have the following 4⇥4 matrix representations for the three

joint screw axes S
1

, S
2

, and S
3

:

[S
1

] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775

[S
2

] =

2

664

0 0 �1 0
0 0 0 0
1 0 0 �L

1

0 0 0 0

3

775

[S
3

] =

2

664

0 0 0 0
0 0 �1 �L

2

0 1 0 0
0 0 0 0

3

775 .

It will be more convenient to list the screw axes in the following tabular form:

i !
i

v
i

1 (0, 0, 1) (0, 0, 0)
2 (0,�1, 0) (0, 0,�L

1

)
3 (1, 0, 0) (0, L

2

, 0)

Example: 6R Spatial Open Chain

We now derive the forward kinematics of the 6R open chain of Figure 4.4. Six-
dof arms play an important role in robotics because they have the minimum

124 Forward Kinematics

L L L

x

y

z

{T}x

y

z

{S}

Figure 4.4: PoE forward kinematics for the 6R open chain.

number of joints allowing the end-e↵ector to move a rigid body in all of its
degrees of freedom, subject only to limits on the robot’s workspace. For this
reason, six-dof robot arms are sometimes called “general purpose manipulators.”

The zero position and the direction of positive rotation for each joint axis
are as shown in the figure. A fixed frame {0} and end-e↵ector frame {6} are
also assigned as shown. The end-e↵ector frame M in the zero position is then

M =

2

664

1 0 0 0
0 1 0 3L
0 0 1 0
0 0 0 1

3

775 (4.15)

The screw axis for joint 1 is in the direction !
1

= (0, 0, 1). The most convenient
choice for point q

1

lying on joint axis 1 is the origin, so that v
1

= (0, 0, 0). The
screw axis for joint 2 is in the ŷ direction of the fixed frame, so !

2

= (0, 1, 0).
Choosing q

2

= (0, 0, 0), we have v
2

= (0, 0, 0). The screw axis for joint 3 is
in the direction !

3

= (�1, 0, 0). Choosing q
3

= (0, 0, 0) leads to v
3

= (0, 0, 0).
The screw axis for joint 4 is in the direction !

4

= (�1, 0, 0). Choosing q
4

=
(0, L, 0) leads to v

4

= (0, 0, L). The screw axis for joint 5 is in the direction
!
5

= (�1, 0, 0); choosing q
5

= (0, 2L, 0) leads to v
5

= (0, 0, 2L). The screw
axis for joint 6 is in the direction !

6

= (0, 1, 0); choosing q
6

= (0, 0, 0) leads
to v

6

= (0, 0, 0). In summary, the screw axes S
i

= (!
i

, v
i

), i = 1, . . . 6 are as
follows:

i !
i

v
i

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (�1, 0, 0) (0, 0, 0)
4 (�1, 0, 0) (0, 0, L)
5 (�1, 0, 0) (0, 0, 2L)
6 (0, 1, 0) (0, 0, 0)

4.1. Product of Exponentials Formula 125

x0 ^

y0 ^

z0
^

z6
^

y6
^x6

^

L1

L2

Figure 4.5: The RRPRRR spatial open chain.

Example: An RRPRRR Spatial Open Chain

In this example we consider the six degree-of-freedom RRPRRR spatial open
chain of Figure 4.5. The end-e↵ector frame in the zero position is given by

M =

2

664

1 0 0 0
0 1 0 L

1

+ L
2

0 0 1 0
0 0 0 1

3

775 .

The screw axes S
i

= (!
i

, v
i

) are listed in the following table:

i !
i

v
i

1 (0, 0, 1) (0, 0, 0)
2 (1, 0, 0) (0, 0, 0)
3 (0, 0, 0) (0, 1, 0)
4 (0, 1, 0) (0, 0, 0)
5 (1, 0, 0) (0, 0, �L

1

)
6 (0, 1, 0) (0, 0, 0)

Note that the third joint is prismatic, so that !
3

= 0 and v
3

is a unit vector in
the direction of positive translation.

Example: Universal Robots’ UR5 6R Robot Arm

The Universal Robots UR5 6R robot arm is shown in Figure 4.6. Each joint
is directly driven by a brushless motor combined with 100:1 zero-backlash har-
monic drive gearing, which greatly increases the torque available at the joint
while reducing its maximum speed.

Figure 4.6 shows the screw axes S
1

. . .S
6

when the robot is at its zero posi-

126 Forward Kinematics

L1= 425 mm

W
1 =

109 m
m

W2 = 82 mm

L2 = 392 mm

H2 = 95 mm

y
^

b

x
^

b

x
^

s

y
^

s

Positive rotation about

the axes is by the

right-hand rule.

W1 is the

distance between

the anti-parallel

axes S1 and S5

y
^

s

z
^

s

z
^

b

H1 = 89 mm

Figure 4.6: Universal Robots’ UR5 6R robot arm (at its zero position, at right).

tion. The end-e↵ector frame {b} in the zero position is given by

M =

2

664

�1 0 0 L
1

+ L
2

0 0 1 W
1

+W
2

0 1 0 H
1

�H
2

0 0 0 1

3

775 .

The screw axes S
i

= (!
i

, v
i

) are listed in the following table:

i !
i

v
i

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (�H

1

, 0, 0)
3 (0, 1, 0) (�H

1

, 0, L
1

)
4 (0, 1, 0) (�H

1

, 0, L
1

+ L
2

)
5 (0, 0, �1) (�W

1

, L
1

+ L
2

, 0)
6 (0, 1, 0) (H

2

�H
1

, 0, L
1

+ L
2

)

As an example of forward kinematics, set ✓
2

= �⇡/2 and ✓
5

= ⇡/2, with all
other joint angles equal to zero. Then the configuration of the end-e↵ector is

T (✓) = e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4e[S5

]✓

5e[S6

]✓

6M

= Ie�[S
2

]⇡/2I2e[S5

]⇡/2IM

= e�[S
2

]⇡/2e[S5

]⇡/2M

since e0 = I. Evaluating, we get

e�[S
2

]⇡/2 =

2

664

0 0 �1 0.089
0 1 0 0
1 0 0 0.089
0 0 0 1

3

775 , e[S5

]⇡/2 =

2

664

0 1 0 0.708
�1 0 0 0.926
0 0 1 0
0 0 0 1

3

775 ,

4.1. Product of Exponentials Formula 127

θ = −π/22

θ = π/25

x^b

z^b

z^b
x^b

z^sx^s

Figure 4.7: (Left) The UR5 at its home position, with the axes of joints
2 and 5 indicated. (Right) The UR5 at joint angles ✓ = (✓

1

, . . . , ✓
6

) =
(0,�⇡/2, 0, 0,⇡/2, 0).

where the linear units are meters, and

T (✓) = e�[S
2

]⇡/2e[S5

]⇡/2M =

2

664

0 �1 0 0.095
1 0 0 0.109
0 0 1 0.988
0 0 0 1

3

775

as shown in Figure 4.7.

4.1.3 Second Formulation: Screw Axes Expressed in End-E↵ector
Frame

The matrix identity eM
�1

PM = M�1ePM (Proposition 3.7) can also be ex-

pressed as MeM
�1

PM = ePM . Beginning with the rightmost term of the pre-
viously derived product of exponentials formula, if we repeatedly apply this

128 Forward Kinematics

identity, after n iterations we obtain

T (✓) = e[S1

]✓

1 · · · e[Sn

]✓

nM

= e[S1

]✓

1 · · ·MeM
�1

[S
n

]M✓

n

= e[S1

]✓

1 · · ·MeM
�1

[S
n�1

]M✓

n�1eM
�1

[S
n

]M✓

n

= MeM
�1

[S
1

]M✓

1 · · · eM
�1

[S
n�1

]M✓

n�1eM
�1

[S
n

]M✓

n

= Me[B1

]✓

1 · · · e[Bn�1

]✓

n�1e[Bn

]✓

n , (4.16)

where each [B
i

] = M�1[S
i

]M = [Ad
M

�1]S
i

, i = 1, . . . , n. Equation (4.16) is an
alternative form of the product of exponentials formula, representing the joint
axes as screw axes B

i

in the end-e↵ector (body) frame when the robot is at
its zero position. We call Equation (4.16) the body form of the product of
exponentials formula.

It is worth thinking about the order of the transformations expressed in the
space form PoE formula (Equation (4.14)) and in the body form formula (Equa-
tion (4.16)). In the space form, M is first transformed by the most distal joint,
progressively moving inward to more proximal joints. Note that the fixed space-
frame representation of the screw axis for a more proximal joint is not a↵ected
by the joint displacement at a distal joint (e.g., joint three’s displacement does
not a↵ect joint two’s screw axis representation in the space frame). In the body
form, M is first transformed by the first joint, progressively moving outward to
more distal joints. The body-frame representation of the screw axis for a more
distal joint is not a↵ected by the joint displacement at a proximal joint (e.g.,
joint two’s displacement does not a↵ect joint three’s screw axis representation
in the body frame.) Therefore, it makes sense that we need only determine
the screw axes at the robot’s zero position: any S

i

is una↵ected by more distal
transformations, and any B

i

is una↵ected by more proximal transformations.

Example: 6R Spatial Open Chain

We now express the forward kinematics for the same 6R open chain of Figure 4.4
in the second form

T (✓) = Me[B1

]✓

1e[B2

]✓

2 · · · e[B6

]✓

6 .

Assume the same fixed and end-e↵ector frames and zero position as the previous
example. M is still the same as in Equation (4.15), obtained as the end-e↵ector
frame as seen from the fixed frame with the chain in its zero position. The
screw axis for each joint axis, however, is now expressed with respect to the
end-e↵ector frame in its zero position:

i !
i

v
i

1 (0, 0, 1) (�3L, 0, 0)
2 (0, 1, 0) (0, 0, 0)
3 (�1, 0, 0) (0, 0,�3L)
4 (�1, 0, 0) (0, 0,�2L)
5 (�1, 0, 0) (0, 0,�L)
6 (0, 1, 0) (0, 0, 0)

4.1. Product of Exponentials Formula 129

x^s

z^s

W1 = 45 mm

L3 = 60 mm

L2 = 300 mm

L1 = 550 mm

axis 4

x^b

z^b

y^by^s and axes are aligned and out of the page.
Axes 1, 2, and 3 intersect at the origin of {s}.
Axes 5, 6, and 7 intersect at a common point
60 mm from the origin of {b}. Axes 1, 3, 5,
and 7 are aligned with , and axes 2, 4, and 6 are
out of the page at the zero configuration. Positive
rotation about the axes is by the right-hand rule.

z^s

xs

zs

^

^

xb

zb

^

^

Shoulder
J1,J2,J3

Wrist
J5,J6,J7

Elbow
J4

axis 4

W1 = 45mm

L3 = 60mm

L2 = 300mm

L1 = 550mm

Figure 4.8: Barrett Technology’s WAM 7R robot arm at its zero configuration
(right).

Example: Barrett Technology’s WAM 7R Robot Arm

Barrett Technology’s WAM 7R robot arm is shown in Figure 4.8. The extra
(seventh) joint means that the robot is redundant for the task of positioning its
end-e↵ector frame in SE(3)—in general, for a given end-e↵ector configuration
in the robot’s workspace, there is a one-dimensional set of joint variables in
the robot’s seven-dimensional joint space that achieves that configuration. This
extra degree of freedom can be used for obstacle avoidance or to optimize some
objective function, such as minimizing the motor power needed to hold the robot
at that configuration.

Also, some of the joints of the WAM are driven by motors placed at the
base of the robot, reducing the robot’s moving mass. Torques are transferred

130 Forward Kinematics

from the motors to the joints by cables winding around drums at the joints and
motors. Because the moving mass is reduced, the motor torque requirements
are decreased, allowing lower (cable) gearing ratios and high speeds. This design
is in contrast to the design of the UR5, where the motor and harmonic drive
gearing for each joint are directly at the joint.

Figure 4.8 illustrates the WAM’s end-e↵ector frame screw axes B
1

. . .B
7

when the robot is at its zero position. The end-e↵ector frame {b} in the zero
position is given by

M =

2

664

1 0 0 0
0 1 0 0
0 0 1 L

1

+ L
2

+ L
3

0 0 0 1

3

775 .

The screw axes B
i

= (!
i

, v
i

) are listed in the following table:

i !
i

v
i

1 (0, 0, 1) (0, 0, 0)
2 (0, 1, 0) (L

1

+ L
2

+ L
3

, 0, 0)
3 (0, 0, 1) (0, 0, 0)
4 (0, 1, 0) (L

2

+ L
3

, 0, W
1

)
5 (0, 0, 1) (0, 0, 0)
6 (0, 1, 0) (L

3

, 0, 0)
7 (0, 0, 1) (0, 0, 0)

Figure 4.9 shows the WAM arm with ✓
2

= 45�, ✓
4

= �45�, ✓
6

= �90�, and
all other joint angles equal to zero, giving

T (✓) = Me[B2

]⇡/4e�[B
4

]⇡/4e�[B
6

]⇡/2 =

2

664

0 0 �1 0.3157
0 1 0 0
1 0 0 0.6571
0 0 0 1

3

775 .

4.2 The Universal Robot Description Format

The Universal Robot Description Format (URDF) is an XML (eXtensible
Markup Language) file format used by the Robot Operating System (ROS) to
describe the kinematics, inertial properties, and link geometry of robots. A
URDF file describes the joints and links of a robot:

• Joints. Joints connect two links: a parent link and a child link. A
few of the possible joint types include prismatic, revolute (including joint
limits), continuous (revolute without joint limits), and fixed (a virtual
joint that does not permit any motion). Each joint has an origin frame
that defines the position and orientation of the child link frame relative
to the parent link frame when the joint variable is zero. The origin is

4.2. The Universal Robot Description Format 131

θ = −π/44

x^s

z^s

x^b

z^b

θ = −π/26

θ = π/42

x^b

z^b

Figure 4.9: (Left) The WAM at its home configuration, with the axes of
joints 2, 4, and 6 indicated. (Right) The WAM at ✓ = (✓

1

, . . . , ✓
7

) =
(0,⇡/4, 0,�⇡/4, 0,�⇡/2, 0).

on the joint’s axis. Each joint has an axis x-y-z unit vector, expressed in
the child link’s frame, in the direction of positive rotation for a revolute
joint or positive translation for a prismatic joint.

• Links. While joints fully describe the kinematics of a robot, links define
the mass properties of the links. These are necessary starting in Chapter 8,
when we begin to study the dynamics of robots. The elements of a link
include its mass; an origin frame that defines the position and orientation
of a frame at the link’s center of mass relative to the link’s joint frame
described above; and an inertia matrix, relative to the link’s center of
mass frame, specified by the six elements of the inertia matrix on or above
the diagonal. (As we will see in Chapter 8, the inertia matrix for a rigid
body is a 3⇥3 symmetric positive-definite matrix. Since the inertia matrix
is symmetric, it is only necessary to define the terms on and above the
diagonal.)

Note that most links have two frames rigidly attached: a first frame at the joint
(defined by the joint element that connects the link to its parent) and a second
frame at the link’s center of mass (defined by the link element, relative to the
first frame).

A URDF file can represent any robot with a tree structure. This includes

132 Forward Kinematics

base link,
L0

J1 L1

J2
J3

J4

J5
L2

L3 L4

L5

L1

L5

L2

L3

L4

L0
J1

J2

J3

J4

J5

parent: J1’s parent link, L0
child: J1’s child link, L1
origin: the x-y-z and roll-pitch-yaw
 of the L1 frame relative to the
 L0 frame when J1 is zero
axis: the x-y-z unit vector along the
 rotation axis in the L1 frame

{
mass: link5’s mass
origin: the x-y-z and roll-pitch-yaw
 of a frame at the center of
 mass of L5, relative to L5
 frame
inertia: six unique entries of
 inertia matrix in CM frame

{
Figure 4.10: A five-link robot represented as a tree, where nodes of the tree are
the links and the edges of the tree are the joints.

serial chain robot arms and robot hands, but not a Stewart platform or other
mechanisms with closed loops. An example robot with a tree structure is shown
in Figure 4.10.

The orientation of a frame {b} relative to a frame {a} is represented using
roll-pitch-yaw coordinates: first, roll about the fixed x̂

a

-axis; then pitch about
the fixed ŷ

a

-axis; then yaw about the fixed ẑ
a

-axis.
The kinematics and mass properties of the UR5 robot arm (Figure 4.11) are

defined in the URDF file below, which demonstrates the syntax of the joint’s el-
ements parent, child, origin, and axis, and the link’s elements mass, origin,
and inertia. A URDF requires a frame defined at every joint, so we define
frames {1} to {6}, in addition to the fixed base frame {0} (i.e., {s}) and the end-
e↵ector frame {7} (i.e., {b}). Figure 4.11 gives the extra information needed to
fully write the URDF.

Although the joint types in the URDF are defined as “continuous,” the UR5
joints do in fact have joint limits; they are omitted here for simplicity.

The UR5 URDF file (kinematics and inertial properties only).

<?xml version="1.0" ?>

4.2. The Universal Robot Description Format 133

{s}

{b}

{1}

{2}

{3}

{4}{5}

{6}

x^

y^

x^
y^

x^
y^

z^
y^

89.159 mm
+z

135.85 mm +y

425 mm +x

119.7 mm

 –y

392.25 mm +x

93 mm
 +y

94.65 mm
 –z

82.3 mm
 +y

{s}

{b}

{1}

{2}

{3}

{4}
{5}

{6}

Figure 4.11: The orientations of the frames {s} (also written {0}), {b} (also
written {7}), and {1} through {6} are illustrated on the translucent UR5. The
frames {s} and {1} are aligned with each other; frames {2} and {3} are aligned
with each other; and frames {4}, {5}, and {6} are aligned with each other.
Therefore, only the axes of frames {s}, {2}, {4}, and {b} are labeled. Just
below the image of the robot is a skeleton indicating how the frames are o↵set
from each other, including the distance and the direction (expressed in the {s}
frame).

<robot name="ur5">

<!-- ********** KINEMATIC PROPERTIES (JOINTS) ********** -->

<joint name="world_joint" type="fixed">

<parent link="world"/>

<child link="base_link"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.0"/>

</joint>

<joint name="joint1" type="continuous">

<parent link="base_link"/>

<child link="link1"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.089159"/>

<axis xyz="0 0 1"/>

134 Forward Kinematics

</joint>

<joint name="joint2" type="continuous">

<parent link="link1"/>

<child link="link2"/>

<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.13585 0.0"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint3" type="continuous">

<parent link="link2"/>

<child link="link3"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 -0.1197 0.425"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint4" type="continuous">

<parent link="link3"/>

<child link="link4"/>

<origin rpy="0.0 1.570796325 0.0" xyz="0.0 0.0 0.39225"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="joint5" type="continuous">

<parent link="link4"/>

<child link="link5"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.093 0.0"/>

<axis xyz="0 0 1"/>

</joint>

<joint name="joint6" type="continuous">

<parent link="link5"/>

<child link="link6"/>

<origin rpy="0.0 0.0 0.0" xyz="0.0 0.0 0.09465"/>

<axis xyz="0 1 0"/>

</joint>

<joint name="ee_joint" type="fixed">

<origin rpy="-1.570796325 0 0" xyz="0 0.0823 0"/>

<parent link="link6"/>

<child link="ee_link"/>

</joint>

<!-- ********** INERTIAL PROPERTIES (LINKS) ********** -->

<link name="world"/>

<link name="base_link">

<inertial>

<mass value="4.0"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.00443333156" ixy="0.0" ixz="0.0"

iyy="0.00443333156" iyz="0.0" izz="0.0072"/>

</inertial>

</link>

<link name="link1">

<inertial>

<mass value="3.7"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.010267495893" ixy="0.0" ixz="0.0"

iyy="0.010267495893" iyz="0.0" izz="0.00666"/>

</inertial>

</link>

<link name="link2">

<inertial>

4.3. Summary 135

<mass value="8.393"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.28"/>

<inertia ixx="0.22689067591" ixy="0.0" ixz="0.0"

iyy="0.22689067591" iyz="0.0" izz="0.0151074"/>

</inertial>

</link>

<link name="link3">

<inertial>

<mass value="2.275"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.25"/>

<inertia ixx="0.049443313556" ixy="0.0" ixz="0.0"

iyy="0.049443313556" iyz="0.0" izz="0.004095"/>

</inertial>

</link>

<link name="link4">

<inertial>

<mass value="1.219"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"

iyy="0.111172755531" iyz="0.0" izz="0.21942"/>

</inertial>

</link>

<link name="link5">

<inertial>

<mass value="1.219"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.111172755531" ixy="0.0" ixz="0.0"

iyy="0.111172755531" iyz="0.0" izz="0.21942"/>

</inertial>

</link>

<link name="link6">

<inertial>

<mass value="0.1879"/>

<origin rpy="0 0 0" xyz="0.0 0.0 0.0"/>

<inertia ixx="0.0171364731454" ixy="0.0" ixz="0.0"

iyy="0.0171364731454" iyz="0.0" izz="0.033822"/>

</inertial>

</link>

<link name="ee_link"/>

</robot>

Beyond the properties described above, a URDF can describe other prop-
erties of a robot, such as its visual appearance (including CAD models of the
links) as well as simplified representations of link geometries that can be used
for collision detection in motion planning algorithms.

4.3 Summary

• Given an open chain with a fixed reference frame {s} and a reference
frame {b} attached to some point on its last link—this frame is denoted
the end-e↵ector frame—the forward kinematics is the mapping T (✓)
from the joint values ✓ to the position and orientation of {b} in {s}.

136 Forward Kinematics

• In the Denavit-Hartenberg representation, the forward kinematics of
an open chain is described in terms of relative displacements between
reference frames attached to each link. If the link frames are sequentially
labeled {0}, . . . , {n + 1}, where {0} is the fixed frame {s}, {i} is a frame
attached to link i at joint i (i = 1 . . . n), and {n + 1} is the end-e↵ector
frame {b}, then the forward kinematics is expressed as

T
0,n+1

(✓) = T
01

(✓
1

) · · ·T
n�1,n

(✓
n

)T
n,n+1

where ✓
i

denotes the joint i variable and T
n,n+1

indicates the (fixed) con-
figuration of the end-e↵ector frame in {n}. If the end-e↵ector frame {b}
is chosen to be coincident with {n}, then we can dispense with the frame
{n+ 1}.

• The Denavit-Hartenberg convention requires that reference frames as-
signed to each link obey a strict convention (see Appendix C). Following
this convention, the link frame transformation T

i�1,i

between link frames
{i � 1} and {i} can be parametrized using only four parameters, the
Denavit-Hartenberg parameters. Three of these describe the kine-
matic structure, while the fourth is the joint value. Four numbers is the
minimum needed to represent the displacement between two link frames.

• The forward kinematics can also be expressed as the following product
of exponentials (the space form),

T (✓) = e[S1

]✓

1 · · · e[Sn

]✓

nM,

where S
i

= (!
i

, v
i

) denotes the screw axis associated with positive motion
along joint i expressed in fixed frame coordinates {s}, ✓

i

is the joint i
variable, and M 2 SE(3) denotes the position and orientation of the end-
e↵ector frame {b} when the robot is in its zero position. It is not necessary
to define individual link frames; it is only necessary to define M and the
screw axes S

1

, . . . ,S
n

.

• The product of exponentials formula can also be written in the equivalent
body form,

T (✓) = Me[B1

]✓

1 · · · e[Bn

]✓

n ,

where [B
i

] = [Ad
M

�1]S
i

, i = 1, . . . , n. B
i

= (!
i

, v
i

) is the screw axis
corresponding to joint axis i, expressed in {b}, with the robot in its zero
position.

• The Universal Robot Description Format (URDF) is a file format, used
by the Robot Operating System and other software, for representing the
kinematics, inertial properties, visual properties, and other information
for general tree-like robot mechanisms, including serial chains. A URDF
file includes descriptions of joints, which connect a parent link and a child
link and fully specify the kinematics of the robot, as well as descriptions
of links, which specify inertial properties.

4.4. Software 137

4.4 Software

T = FKinBody(M,Blist,thetalist)
Computes the end-e↵ector frame given the zero position of the end-e↵ector M,
the list of joint screws expressed in the end-e↵ector frame Blist, and the list of
joint values thetalist.

T = FKinSpace(M,Slist,thetalist)
Computes the end-e↵ector frame given the zero position of the end-e↵ector M,
the list of joint screws expressed in the fixed space frame Slist, and the list of
joint values thetalist.

Notes and References

The product of exponentials formula is first presented by Brockett in [14]. Com-
putational aspects of the product of exponentials formula are also discussed in
[95].

138 Forward Kinematics

4.5 Exercises

1. Familiarize yourself with the functions FKinBody and FKinFixed in your
favorite programming language. Can you make these functions more computa-
tionally e�cient? If so, indicate how. If not, explain why not.

l1 l2

l0

θ1

θ2

θ3

θ4

x0

y0

z0

xb

yb

zb

{0}

{b}

Figure 4.12: An RRRP SCARA robot for performing pick-and-place operations.

2. The RRRP SCARA robot of Figure 4.12 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes S

i

in {0}, and the screw axes B
i

in {b}. For `
0

= `
1

= `
2

= 1 and the joint
variable values ✓ = (0,⇡/2,�⇡/2, 1), use both the FKinFixed and the FKinBody
functions to find the end-e↵ector configuration T 2 SE(3). Confirm that they
agree with each other.

3. Determine the end-e↵ector frame screw axes B
i

for the 3R robot in Figure 4.3.

4. Determine the end-e↵ector frame screw axes B
i

for the RRPRRR robot in
Figure 4.5.

5. Determine the end-e↵ector frame screw axes B
i

for the UR5 robot in Fig-
ure 4.6.

6. Determine the space frame screw axes S
i

for the WAM robot in Figure 4.8.

4.5. Exercises 139

h

L1
L2 L3 L4

θ1

θ2

θ3 θ4 θ5

θ6

x0

y0
z0

xb

yb

zb

{0}

{b}

Figure 4.13: A PRRRRR spatial open chain.

7. The PRRRRR spatial open chain of Figure 4.13 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes S

i

in
{0}, and the screw axes B

i

in {b}.

θ

θ

θ

θ

θ

θ

L

L

L

L

L

L

L

y
0

z0
x! xb

yb

zb

{0} {b}

Figure 4.14: A spatial RRRRPR open chain.

8. The spatial RRRRPR open chain of Figure 4.14 is shown in its zero position,
with fixed and end-e↵ector frames chosen as shown. Determine the end-e↵ector
zero position configuration M , the screw axes S

i

in {0}, and the screw axes B
i

in {b}.

9. The spatial RRPPRR open chain of Figure 4.15 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes S

i

in
{0}, and the screw axes B

i

in {b}.

10. The URRPR spatial open chain of Figure 4.16 is shown in its zero position.

140 Forward Kinematics

L

L

L

LL

x0

y0

z0

xb

yb
zb

θ1

θ2

L+θ3

L+θ4

θ5

θ6

{0}

{b}

Figure 4.15: A spatial RRPPRR open chain with prescribed fixed and end-
e↵ector frames.

Determine the end-e↵ector zero position configuration M , the screw axes S
i

in
{0}, and the screw axes B

i

in {b}.

11. The spatial RPRRR open chain of Figure 4.17 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes S

i

in
{0}, and the screw axes B

i

in {b}.

12. The RRPRRR spatial open chain of Figure 4.18 is shown in its zero position
(all joints lie on the same plane). Determine the end-e↵ector zero position
configuration M , the screw axes S

i

in {0}, and the screw axes B
i

in {b}. Setting
✓
5

= ⇡ and all other joint variables to zero, find T
06

and T
60

.

13. The spatial RRRPRR open chain of Figure 4.19 is shown in its zero position.
Determine the end-e↵ector zero position configuration M , the screw axes S

i

in
{0}, and the screw axes B

i

in {b}.

14. The RPH robot of Figure 4.20 is shown in its zero position. Determine the
end-e↵ector zero position configuration M , the screw axes S

i

in {s}, and the
screw axes B

i

in {b}. Use both the FKinFixed and the FKinBody functions to
find the end-e↵ector configuration T 2 SE(3) when ✓ = (⇡/2, 3,⇡). Confirm
that they agree with each other.

15. The HRR robot in Figure 4.21 is shown in its zero position. Determine the
end-e↵ector zero position configuration M , the screw axes S

i

in {0}, and the
screw axes B

i

in {b}.

16. The forward kinematics of a four-dof open chain in its zero position is

4.5. Exercises 141

1θ2

θ3

θ4

θ5
θ6

L

θ

2L

L

L

L

L

{0}
x!

y! z!

{b}

xb

yb zb

Figure 4.16: A URRPR spatial open chain robot.

written in the following exponential form:

T (✓) = e[A1

]✓

1e[A2

]✓

2Me[A3

]✓

3e[A4

]✓

4 .

Suppose the manipulator’s zero position is redefined to

(✓
1

, ✓
2

, ✓
3

, ✓
4

) = (↵
1

,↵
2

,↵
3

,↵
4

).

Defining ✓0
i

= ✓
i

� ↵
i

, i = 1, ..., 4, the forward kinematics can then be written

T
04

(✓0
1

, ✓0
2

, ✓0
3

, ✓0
4

) = e[A
0
1

]✓

0
1e[A

0
2

]✓

0
2M 0e[A

0
3

]✓

0
3e[A

0
4

]✓

0
4 .

Find M 0 and each of the A0
i

.

17. Figure 4.22 shows a snake robot with end-e↵ectors at each end. Reference
frames {b

1

} and {b
2

} are attached to the two end-e↵ectors as shown.
(a) Suppose the end-e↵ector 1 is grasping a tree (which ca be thought of as
ground), and end e↵ector 2 is free to move. Assume the robot is in its zero

142 Forward Kinematics

1 11

1

{0} {b}

x0

y0z0

xb

ybzb

θ1

θ2

θ3

θ4

θ5

Figure 4.17: An RPRRR spatial open chain.

θ

θ
θ θ

θ

θ

{0}

{b}

x!
y!

z!

xb
yb

zb

Figure 4.18: An RRPRRR spatial open chain.

configuration. Then Tb
1

b
2

2 SE(3) can be expressed in the following product
of exponentials form:

Tb
1

b
2

= e[S1

]✓

1e[S2

]✓

2 · · · e[S5

]✓

5M.

Find S
3

,S
5

, and M .
(b) Now suppose end-e↵ector 2 is rigidly grasping a tree, and end-e↵ector 1 is
free to move. Then Tb

2

b
1

2 SE(3) can be expressed in the following product
of exponentials form:

Tb
2

b
1

= e[A5

]✓

5e[A4

]✓

4e[A3

]✓

3Ne[A2

]✓

2e[A1

]✓

1 .

Find A
2

,A
4

, and N .

4.5. Exercises 143

θ

θ

θ

θ

θ

θ

y
0

z0

1 1 1 1

1

1

x0

xb

yb

zb

{0}

{b}

Figure 4.19: A spatial RRRPRR open chain with prescribed fixed and end-
e↵ector frames.

y^sx^s

z^s

θ3
θ1

θ2

y^b

x^b

z^b

pitch h = 0.1 m/rad

L 1 L 3

L 2

L 0

Figure 4.20: An RPH open chain shown at its zero position. All arrows
along/about the joint axes are drawn in the positive direction (i.e., in the di-
rection of increasing joint value). The pitch of the screw joint is 0.1 m/rad,
i.e., it advances linearly by 0.1 m for every radian rotated. The link lengths are
L
0

= 4, L
1

= 3, L
2

= 2, and L
3

= 1 (figure not drawn to scale).

18. The two identical PUPR open chains of Figure 4.23 are shown in their zero
position.
(a) In terms of the given fixed frame {A} and end-e↵ector frame {a}, the forward
kinematics for the robot on the left (robot A) can be expressed in the following
product of exponentials form:

T
Aa

= e[S1

]✓

1e[S2

]✓

2 · · · e[S5

]✓

5M
a

.

Find S
2

and S
4

.
(b) Suppose the end-e↵ector of robot A is inserted into the end-e↵ector of robot
B (so that the origins of the end-e↵ectors coincide); the two robots then form a
single-loop closed chain. Then the configuration space of the single-loop closed

144 Forward Kinematics

L
1

L
2

L3

x0 y0

z0

xb yb

zb

θ1

θ2

θ3

{0}

{b}

Figure 4.21: HRR robot. Denote the pitch of the screw joint by h.

{b2}

{b1}

L

L

L

L L L

x

y
z

x

y

z

θ θ

θ

θ

θ

Figure 4.22: Snake robot

4.5. Exercises 145

chain can be expressed in the form

e�[B
5

]�

5e�[B
4

]�

4e�[B
3

]�

3e�[B
2

]�

2e�[B
1

]�

1e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4e[S5

]✓

5 = M,

for some constant M 2 SE(3) and B
i

= (!
i

, v
i

), i = 1, · · · , 5. Find B
3

,B
5

and
M . (Hint: given any A 2 Rn⇥n, (eA)�1 = e�A).

Figure 4.23: Two PUPR open chains.

19. The RRPRR spatial open chain of Figure 4.24 is shown in its zero position.
(a) The forward kinematics can be expressed in the form

T
sb

= M
1

e[A1

]✓

1M
2

e[A2

]✓

2 · · ·M
5

e[A5

]✓

5 .

Find M
2

,M
3

,A
2

, and A
3

.
(b) Expressing the forward kinematics in the form

T
sb

= e[S1

]✓

1e[S2

]✓

2 · · · e[S5

]✓

5M,

find M and S
1

, . . . ,S
5

in terms of M
1

, . . . ,M
5

, A
1

, . . . ,A
5

appearing in (a).

20. The spatial PRRPRR open chain of Figure 4.25 is shown in its zero po-
sition, with space and end-e↵ector frames chosen as shown. Derive its forward
kinematics in the form

T
0n

= e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4e[S5

]✓

5Me[S6

]✓

6

where M 2 SE(3).

146 Forward Kinematics

{s} {b}

Figure 4.24: A spatial RRPRR open chain.

θ1

θ2

θ3

θ4θ5θ6

L

L
L

L

L

LL

L

L

L

{0}

{b}

x0

y0
z0

xb

yb

zb

Figure 4.25: A spatial PRRPRR open chain.

21. (Refer to Appendix C.) For each T 2 SE(3) below, find, if they exist,
values for the four parameters (↵, a, d,�) that satisfy

T = Rot(x̂,↵) Trans(x̂, a) Trans(ẑ, d)Rot(ẑ,�).

4.5. Exercises 147

(a) T =

2

664

0 1 1 3
1 0 0 0
0 1 0 1
0 0 0 1

3

775.

(b) T =

2

664

cos� sin� 0 1
sin� � cos� 0 0
0 0 �1 �2
0 0 0 1

3

775.

(c) T =

2

664

0 �1 0 �1
0 0 �1 0
1 0 0 2
0 0 0 1

3

775.

148 Forward Kinematics

Chapter 5

Velocity Kinematics and
Statics

In the previous chapter we saw how to calculate the robot end-e↵ector frame’s
position and orientation for a given set of joint positions. In this chapter we
examine the related problem of calculating the end-e↵ector’s twist from a given
set of joint positions and velocities.

Before we get to a representation of the end-e↵ector twist as V 2 R6 starting
in Section 5.1, let us consider the case where the end-e↵ector configuration is
represented by a minimal set of coordinates x 2 Rm and the velocity is given
by ẋ 2 Rm. In this case, the forward kinematics can be written as

x(t) = f(✓(t)),

where ✓ 2 Rn is a set of joint variables. By the chain rule, the time derivative
at time t is

ẋ =
@f

@✓
(✓)✓̇

= J(✓)✓̇,

where J(✓) 2 Rm⇥n is called the Jacobian. The Jacobian matrix represents
the linear sensitivity of the end-e↵ector velocity ẋ to the joint velocity ✓̇, and it
is a function of the joint variables ✓.

To provide a concrete example, consider a 2R planar open chain (left side of
Figure 5.1) with forward kinematics given by

x
1

= L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

)

x
2

= L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

).

Di↵erentiating both sides with respect to time yields

ẋ
1

= �L
1

✓̇
1

sin ✓
1

� L
2

(✓̇
1

+ ✓̇
2

) sin(✓
1

+ ✓
2

)

ẋ
2

= L
1

✓̇
1

cos ✓
1

+ L
2

(✓̇
1

+ ✓̇
2

) cos(✓
1

+ ✓
2

),

149

150 Velocity Kinematics and Statics

θ = 1
.
1

θ = −1
.
2

θ = 1
.
2

θ = −1
.
1

θ1

θ2

L1

L2
x2
^

x1
^

Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when ✓̇

1

= 1 (and ✓̇
2

= 0) and when ✓̇
2

= 1
(and ✓̇

1

= 0), respectively.

which can be rearranged into an equation of the form ẋ = J(✓)✓̇:

ẋ
1

ẋ
2

�
=

�L

1

sin ✓
1

� L
2

sin(✓
1

+ ✓
2

) �L
2

sin(✓
1

+ ✓
2

)
L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

) L
2

cos(✓
1

+ ✓
2

)

�
✓̇
1

✓̇
2

�
. (5.1)

Writing the two columns of J(✓) as J
1

(✓) and J
2

(✓), and the tip velocity ẋ as
v
tip

, Equation (5.1) can be written

v
tip

= J
1

(✓)✓̇
1

+ J
2

(✓)✓̇
2

.

As long as J
1

(✓) and J
2

(✓) are not collinear, it is possible to generate a tip
velocity v

tip

in any arbitrary direction in the x
1

-x
2

plane by choosing appropriate
joint velocities ✓̇

1

and ✓̇
2

. Since J
1

(✓) and J
2

(✓) depend on the joint values ✓
1

and ✓
2

, one may ask if there are any configurations at which J
1

(✓) and J
2

(✓)
become collinear. For our example the answer is yes: if ✓

2

is 0� or 180�, then
regardless of the value of ✓

1

, J
1

(✓) and J
2

(✓) will be collinear, and the Jacobian
J(✓) becomes a singular matrix. Such configurations are called singularities;
they are characterized by the robot tip being unable to generate velocities in
certain directions.

Now let’s plug in L
1

= L
2

= 1 and consider the robot at two di↵erent
nonsingular postures: ✓ = (0,⇡/4) and ✓ = (0, 3⇡/4). The Jacobians J(✓) at
these two configurations are

J(

0
⇡/4

�
) =

�0.71 �0.71
1.71 0.71

�
, J(

0

3⇡/4

�
) =

�0.71 �0.71
0.29 �0.71

�
.

The right side of Figure 5.1 illustrates the robot at the ✓
2

= ⇡/4 configuration.
Column i of the Jacobian matrix, J

i

(✓), corresponds to the tip velocity when
✓̇
i

= 1 and the other joint velocity is zero. These tip velocities (and therefore
Jacobian columns) are indicated in Figure 5.1.

The Jacobian can be used to map bounds on the rotational speed of the joints
to bounds on v

tip

, as illustrated in Figure 5.2. Instead of mapping a polygon
of joint velocities through the Jacobian as in Figure 5.2, we could instead map

151

θ
.
2

θ
.
1

x. 2

x.1

J(θ)

A

A

B

B

C

C

D

D

Figure 5.2: Mapping the set of possible joint velocities, represented as a square
in the ✓̇

1

-✓̇
2

space, through the Jacobian to find the parallelogram of possible
end-e↵ector velocities. The extreme points A, B, C, and D in the joint velocity
space map to the extreme points A, B, C, and D in the end-e↵ector velocity
space.

a unit circle of joint velocities in the ✓
1

-✓
2

plane. This circle represents an
“iso-e↵ort” contour in the joint velocity space, where total actuator e↵ort is
considered to be the sum of squares of the joint velocities. This circle maps
through the Jacobian to an ellipse in the space of tip velocities, and this ellipse
is referred to as the manipulability ellipsoid.1 Figure 5.3 shows examples of
this mapping for the two di↵erent postures of the 2R arm. As the manipulator
configuration approaches a singularity, the ellipse collapses to a line segment,
since the ability of the tip to move in one direction is lost.

Using the manipulability ellipsoid, one can quantify how close a given pos-
ture is to a singularity. For example, we can compare the lengths of the major
and minor principal semi-axes of the manipulability ellipsoid, respectively de-
noted `

max

and `
min

. The closer the ellipsoid is to a circle—meaning the ratio
`
max

/`
min

is small, close to 1—the more easily the tip can move in arbitrary
directions, and thus the more removed it is from a singularity.

The Jacobian also plays a central role in static analysis. Suppose an external
force is applied to the robot tip. What are the joint torques required to resist
this external force?

This question can be answered via a conservation of power argument. As-
suming there is no power loss due to joint friction, and that the robot is at
equilibrium (no power is used to move the robot), the power measured at the
robot’s tip must equal the power generated at the joints. Denoting the tip
force vector generated by the robot as f

tip

and the joint torque vector by ⌧ ,

1
A two-dimensional ellipsoid, as in our example, is commonly referred to as an ellipse.

152 Velocity Kinematics and Statics

J(θ)

θ
.
2

θ
.
1

x.1

x. 2

x.1

x. 2

Figure 5.3: Manipulability ellipsoids for two di↵erent postures of the 2R planar
open chain.

conservation of power then requires that

fT

tip

v
tip

= ⌧T ✓̇,

for all arbitrary joint velocities ✓̇. Since v
tip

= J(✓)✓̇, the equality

fT

tip

J(✓)✓̇ = ⌧T ✓̇

must hold for all possible ✓̇.2 This can only be true if

⌧ = JT (✓)f
tip

. (5.2)

The joint torque ⌧ needed to create the tip force f
tip

is calculated from the
equation above.

2
Since the robot is at equilibrium, the joint velocity

˙✓ is technically zero. This can be

considered the limiting case as

˙✓ approaches zero. To be more formal, we could invoke the

“principle of virtual work” which deals with infinitesimal joint displacements instead of joint

velocities.

153

τ2

τ 1

f2

f1

AB

C D

J (θ)−T A

B

C

D

Figure 5.4: Mapping joint torque bounds to tip force bounds.

For our two-link planar chain example, J(✓) is a square matrix dependent
on ✓. If the configuration ✓ is not a singularity, then both J(✓) and its tranpose
are invertible, and Equation (5.2) can be written

f
tip

= ((J(✓))T)�1⌧ = J�T (✓)⌧. (5.3)

Using the equation above, one can now determine, under the same static equilib-
rium assumption, what input torques are needed to generate a desired tip force,
e.g., to determine the joint torques needed for the robot tip to push against
a wall with a specified normal force. For a given posture ✓ of the robot at
equilibrium, and given a set of joint torque limits such as

�1 Nm ⌧
1

 1 Nm

�1 Nm ⌧
2

 1 Nm,

Equation (5.3) can be used to generate the set of all possible tip forces as shown
in Figure 5.4.

Similar to the manipulability ellipsoid, a force ellipsoid can be drawn by
mapping a unit circle “iso-e↵ort” contour in the ⌧

1

-⌧
2

plane to an ellipsoid in the
f
1

-f
2

tip force plane via the Jacobian transpose inverse J�T (✓) (see Figure 5.5).
This illustrates how easily the robot can generate forces in di↵erent directions.
As evident from the manipulability and force ellipsoids, if it is easy to generate a
tip velocity in a given direction, then it is di�cult to generate force in that same
direction, and vice-versa (Figure 5.6). In fact, for a given robot configuration,
the principal axes of the manipulability ellipsoid and force ellipsoid are identical,
and the lengths of the principal semi-axes of the force ellipsoid are the reciprocals
of the lengths of the principal semi-axes of the manipulability ellipsoid.

At a singularity, the manipulability ellipsoid collapses to a line segment.
The force ellipsoid, on the other hand, becomes infinitely long in a direction
orthogonal to the manipulability ellipsoid line segment (i.e., the direction of the

154 Velocity Kinematics and Statics

τ2

τ 1
J (θ)−T

f2

f1

f2

f1

Figure 5.5: Force ellipsoids for two di↵erent postures of the 2R planar open
chain.

aligned links) and skinny in the orthogonal direction. Consider, for example,
carrying a heavy suitcase with your arm. It is much easier if your arm hangs
straight down in gravity (with your elbow fully straightened, at a singularity),
because the force you must support passes directly through your joints, there-
fore requiring no torques about the joints. Only the joint structure bears the
load, not muscles generating torques. Unlike the manipulability ellipsoid, which
loses dimension at a singularity and therefore its area drops to zero, the force
ellipsoid’s area goes to infinity. (Assuming the joints can support the load!)

In this chapter we present methods for deriving the Jacobian for general open
chains, where the configuration of the end-e↵ector is expressed as T 2 SE(3)
and its velocity is expressed as a twist V in the fixed base frame or the end-
e↵ector body frame. We also examine how the Jacobian can be used for velocity
and static analysis, including identifying kinematic singularities and determining
the manipulability and force ellipsoids. Later chapters on inverse kinematics,
motion planning, dynamics, and control make extensive use of the Jacobian and
related notions introduced in this chapter.

5.1. Manipulator Jacobian 155

f2

f1x.1

x. 2

f2

f1x.1

x. 2

Figure 5.6: Left column: Manipulability ellipsoids at two di↵erent arm config-
urations. Right column: Force ellipsoids at the same two arm configurations.

5.1 Manipulator Jacobian

In the 2R planar open chain example, we saw that for any joint configuration ✓,
the tip velocity vector v

tip

and joint velocity vector ✓̇ are linearly related via the
Jacobian matrix J(✓), i.e., v

tip

= J(✓)✓̇. The tip velocity v
tip

depends on the
coordinates of interest for the tip, which in turn determines the specific form of
the Jacobian. For example, in the most general case, v

tip

can be taken to be the
six-dimensional twist of the end-e↵ector frame, while for pure orienting devices
like a wrist, v

tip

is usually taken to be the angular velocity of the end-e↵ector
frame. Other choices for v

tip

lead to di↵erent formulations for the Jacobian.
We begin with the general case where v

tip

is taken to be the six-dimensional
end-e↵ector twist expressed in the fixed frame.

5.1.1 Space Jacobian

In this section we derive the relationship between an open chain’s joint velocity
vector ✓̇ and the end-e↵ector’s spatial twist V

s

. We first recall a few basic
properties from linear algebra and linear di↵erential equations: (i) if A,B 2

156 Velocity Kinematics and Statics

Rn⇥n are both invertible, then (AB)�1 = B�1A�1; (ii) if A 2 Rn⇥n is constant
and ✓(t) is a scalar function of t, then d

dt

eA✓ = AeA✓ ✓̇ = eA✓A✓̇; (iii) (eA✓)�1 =
e�A✓.

Consider an n-link open chain whose forward kinematics is expressed in the
following product of exponentials form:

T (✓
1

, . . . , ✓
n

) = e[S1

]✓

1e[S2

]✓

2 · · · e[Sn

]✓

nM. (5.4)

The spatial twist V
s

is given by [V
s

] = Ṫ T�1, where

Ṫ =

✓
d

dt
e[S1

]✓

1

◆
· · · e[Sn

]✓

nM + e[S1

]✓

1

✓
d

dt
e[S2

]✓

2

◆
· · · e[Sn

]✓

nM + . . .

= [S
1

]✓̇
1

e[S1

]✓

1 · · · e[Sn

]✓

nM + e[S1

]✓

1 [S
2

]✓̇
2

e[S2

]✓

2 · · · e[Sn

]✓

nM + . . .

Also,
T�1 = M�1e�[S

n

]✓

n · · · e�[S
1

]✓

1 .

Calculating Ṫ T�1,

[V
s

] = [S
1

]✓̇
1

+ e[S1

]✓

1 [S
2

]e�[S
1

]✓

1 ✓̇
2

+ e[S1

]✓

1e[S2

]✓

2 [S
3

]e�[S
2

]✓

2e�[S
1

]✓

1 ✓̇
3

+

The above can also be expressed in vector form by means of the adjoint mapping:

V
s

= S
1|{z}

V
s1

✓̇
1

+Ad
e

[S
1

]✓

1

(S
2

)| {z }
V

s2

✓̇
2

+Ad
e

[S
1

]✓

1

e

[S
2

]✓

2

(S
3

)| {z }
V

s3

✓̇
3

+ . . . (5.5)

Observe that V
s

is a sum of n spatial twists of the form

V
s

= V
s1

(✓)✓̇
1

+ . . .+ V
sn

(✓)✓̇
n

, (5.6)

where each V
si

(✓) = (!
si

(✓), v
si

(✓)) depends explictly on the joint values ✓ 2 Rn

for i = 2, . . . , n. In matrix form,

V
s

=
⇥
V
s1

(✓) V
s2

(✓) · · · V
sn

(✓)
⇤
2

64
✓̇
1

...
✓̇
n

3

75

= J
s

(✓)✓̇.

(5.7)

The matrix J
s

(✓) is said to be the Jacobian in fixed (space) frame coordinates,
or more simply the space Jacobian.

Definition 5.1. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = e[S1

]✓

1 · · · e[Sn

]✓

nM. (5.8)

The space Jacobian J
s

(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to the
end-e↵ector spatial twist V

s

via

V
s

= J
s

(✓)✓̇. (5.9)

5.1. Manipulator Jacobian 157

θ1 θ2 θ3

θ4

L1

L2

q
1 q

2
q

3

Figure 5.7: Space Jacobian for a spatial RRRP chain.

The ith column of J
s

(✓) is

V
si

(✓) = Ad
e

[S
1

]✓

1 ···e[Si�1

]✓

i�1

(S
i

), (5.10)

for i = 2, . . . , n, with the first column V
s1

(✓) = S
1

. ⇤

To understand the physical meaning behind the columns of J
s

(✓), observe
that the ith column is of the form Ad

T

i�1

(S
i

), where T
i�1

= e[S1

]✓

1 · · · e[Si�1

]✓

i�1 ;
recall that S

i

is the screw axis describing the ith joint axis in terms of the fixed
frame with the robot in its zero position. Ad

T

i�1

(S
i

) is therefore the screw
axis describing the ith joint axis after it undergoes the rigid body displacement
T
i�1

. Physically this is the same as moving the first i� 1 joints from their zero
position to the current values ✓

1

, . . . , ✓
i�1

. Therefore, the ith column V
si

(✓) of
J
s

(✓) is simply the screw vector describing joint axis i, expressed in fixed frame
coordinates, as a function of the joint variables ✓

1

, . . . , ✓
i�1

.
In summary, the procedure for determining the columns V

si

of J
s

(✓) is similar
to the procedure for deriving the joint screws S

i

in the product of exponentials
formula e[S1

]✓

1 · · · e[Sn

]✓

nM : each column V
si

(✓) is the screw vector describing
joint axis i, expressed in fixed frame coordinates, but for arbitrary ✓ rather than
✓ = 0.

Example: Space Jacobian for a Spatial RRRP Chain

We now illustrate the procedure for finding the space Jacobian for the spatial
RRRP chain of Figure 5.7. Denote the ith column of J

s

(✓) by V
si

= (!
si

, v
si

).
The [Ad

T

i�1

] matrices are implicit in our calculations of the screw axes of the
displaced joint axes.

• Observe that !
s1

is constant and in the ẑ
s

-direction: !
s1

= (0, 0, 1). Pick-
ing q

1

to be the origin, v
s1

= (0, 0, 0).

158 Velocity Kinematics and Statics

s

q1
qw

L1

L2

T1
T2

T3

T4

T5

T6

Figure 5.8: Space Jacobian for the spatial RRPRRR chain.

• !
s2

is also constant in the ẑ
s

-direction, so !
s2

= (0, 0, 1). Pick q
2

to be
the point (L

1

c
1

, L
1

s
1

, 0), where c
1

= cos ✓
1

, s
1

= sin ✓
1

. Then v
s2

=
�!

2

⇥ q
2

= (L
1

s
1

,�L
1

c
1

, 0).

• The direction of !
s3

is always fixed in the ẑ
s

-direction regardless of the
values of ✓

1

and ✓
2

, so !
s3

= (0, 0, 1). Picking q
3

= (L
1

c
1

+ L
2

c
12

, L
1

s
1

+
L
2

s
12

, 0), where c
12

= cos(✓
1

+ ✓
2

), s
12

= sin(✓
1

+ ✓
2

), it follows that
v
s3

= (L
1

s
1

+ L
2

s
12

,�L
1

c
1

� L
2

c
12

, 0).

• Since the final joint is prismatic, !
s4

= (0, 0, 0), and the joint axis direction
is given by v

s4

= (0, 0, 1).

The space Jacobian is therefore

J
s

(✓) =

2

6666664

0 0 0 0
0 0 0 0
1 1 1 0
0 L

1

s
1

L
1

s
1

+ L
2

s
12

0
0 �L

1

c
1

�L
1

c
1

� L
2

c
12

0
0 0 0 1

3

7777775
.

Example: Space Jacobian for Spatial RRPRRR Chain

We now derive the space Jacobian for the spatial RRPRRR chain of Figure 5.8.
The base frame is chosen as shown in the figure.

• The first joint axis is in the direction !
s1

= (0, 0, 1). Picking q
1

=
(0, 0, L

1

), we get v
s1

= �!
1

⇥ q
1

= (0, 0, 0).

• The second joint axis is in the direction !
s2

= (�c
1

,�s
1

, 0). Picking
q
2

= (0, 0, L
1

), we get v
s2

= �!
2

⇥ q
2

= (L
1

s
1

,�L
1

c
1

, 0).

5.1. Manipulator Jacobian 159

• The third joint is prismatic, so !
s3

= (0, 0, 0). The direction of the pris-
matic joint axis is given by

v
s3

= Rot(ẑ, ✓
1

)Rot(x̂,�✓
2

)

2

4
0
1
0

3

5 =

2

4
�s

1

c
2

c
1

c
2

�s
2

3

5 .

• Now consider the wrist portion of the chain. The wrist center is located
at the point

q
w

=

2

4
0
0
L
1

3

5+Rot(ẑ, ✓
1

)Rot(x̂,�✓
2

)

2

4
0

L
1

+ ✓
3

0

3

5 =

2

4
�(L

2

+ ✓
3

)s
1

c
2

(L
2

+ ✓
3

)c
1

c
2

L
1

� (L
2

+ ✓
3

)s
2

3

5 .

Observe that the directions of the wrist axes depend on ✓
1

, ✓
2

, and the
preceding wrist axes. These are

!
s4

= Rot(ẑ, ✓
1

)Rot(x̂,�✓
2

)

2

4
0
0
1

3

5 =

2

4
�s

1

s
2

c
1

s
2

c
2

3

5

!
s5

= Rot(ẑ, ✓
1

)Rot(x̂,�✓
2

)Rot(ẑ, ✓
4

)

2

4
�1
0
0

3

5 =

2

4
�c

1

c
4

+ s
1

c
2

s
4

�s
1

c
4

� c
1

c
2

s
4

s
2

s
4

3

5

!
s6

= Rot(ẑ, ✓
1

)Rot(x̂,�✓
2

)Rot(ẑ, ✓
4

)Rot(x̂,�✓
5

)

2

4
0
1
0

3

5

=

2

4
�c

5

(s
1

c
2

c
4

+ c
1

s
4

) + s
1

s
2

s
5

c
5

(c
1

c
2

c
4

� s
1

s
4

)� c
1

s
2

s
5

�s
2

c
4

c
5

� c
2

s
5

3

5 .

The space Jacobian can now be computed and written in matrix form as follows:

J
s

(✓) =

!
s1

!
s2

0 !
s4

!
s5

!
s6

0 �!
s2

⇥ q
2

v
s3

�!
s4

⇥ q
w

�!
s5

⇥ q
w

�!
s6

⇥ q
w

�
.

Note that we were able to obtain the entire Jacobian directly, without having
to explicitly di↵erentiate the forward kinematic map.

5.1.2 Body Jacobian

In the previous section we derived the relationship between the joint rates and
[V

s

] = Ṫ T�1, the end-e↵ector’s twist expressed in fixed frame coordinates. Here
we derive the relationship between the joint rates and [V

b

] = T�1Ṫ , the end-
e↵ector twist in end-e↵ector frame coordinates. For this purpose it will be
more convenient to express the forward kinematics in the alternate product of
exponentials form:

T (✓) = Me[B1

]✓

1e[B2

]✓

2 · · · e[Bn

]✓

n . (5.11)

160 Velocity Kinematics and Statics

Computing Ṫ ,

Ṫ = Me[B1

]✓

1 · · · e[Bn�1

]✓

n�1(
d

dt
e[Bn

]✓

n) +Me[B1

]✓

1 · · · (d
dt

e[Bn�1

]✓

n�1)e[Bn

]✓

n + . . .

= Me[B1

]✓

1 · · · e[Bn

]✓

n [B
n

]✓̇
n

+Me[B1

]✓

1 · · · e[Bn�1

]✓

n�1 [B
n�1

]e[Bn

]✓

n ✓̇
n�1

+ . . .

+Me[B1

]✓

1 [B
1

]e[B2

]✓

2 · · · e[Bn

]✓

n ✓̇
1

.

Also,
T�1 = e�[B

n

]✓

n · · · e�[B
1

]✓

1M�1.

Evaluating T�1Ṫ ,

[V
b

] = [B
n

]✓̇
n

+ e�[B
n

]✓

n [B
n�1

]e[Bn

]✓

n ✓̇
n�1

+ . . .

+e�[B
n

]✓

n · · · e�[B
2

]✓

2 [B
1

]e[B2

]✓

2 · · · e[Bn

]✓

n ✓̇
1

,

or in vector form,

V
b

= B
n|{z}

V
bn

✓̇
n

+Ad
e

�[B
n

]✓

n

(B
n�1

)| {z }
V

b,n�1

✓̇
n�1

+ . . .+Ad
e

�[B
n

]✓

n ···e�[B
2

]✓

2

(B
1

)| {z }
V

b1

✓̇
1

. (5.12)

V
b

can therefore be expressed as a sum of n body twists, i.e.,

V
b

= V
b1

(✓)✓̇
1

+ . . .+ V
bn

(✓)✓̇
n

, (5.13)

where each V
bi

(✓) = (!
bi

(✓), v
bi

(✓)) depends explictly on the joint values ✓ for
i = 1, . . . , n� 1. In matrix form,

V
b

=
⇥
V
b1

(✓) V
b2

(✓) · · · V
bn

(✓)
⇤
2

64
✓̇
1

...
✓̇
n

3

75

= J
b

(✓)✓̇.

(5.14)

The matrix J
b

(✓) is the Jacobian in the end-e↵ector (or body) frame coordinates,
or more simply the body Jacobian.

Definition 5.2. Let the forward kinematics of an n-link open chain be expressed
in the following product of exponentials form:

T = Me[B1

]✓

1 · · · e[Bn

]✓

n . (5.15)

The body Jacobian J
b

(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to the
end-e↵ector twist V

b

= (!
b

, v
b

) via

V
b

= J
b

(✓)✓̇. (5.16)

The ith column of J
b

(✓) is

V
bi

(✓) = Ad
e

�[B
n

]✓

n ···e�[B
i+1

]✓

i+1

(B
i

), (5.17)

for i = n� 1, . . . , 1, with V
bn

(✓) = B
n

. ⇤

5.1. Manipulator Jacobian 161

Analogous to the columns of the space Jacobian, a similar physical interpre-
tation can be given to the columns of J

b

(✓): each column V
bi

(✓) = (!
bi

(✓), v
bi

(✓))
of J

b

(✓) is the screw vector for joint axis i, expressed in coordinates of the end-
e↵ector frame rather than the fixed frame. The procedure for determining the
columns of J

b

(✓) is similar to the procedure for deriving the forward kinemat-
ics in the product of exponentials form Me[B1

]✓

1 · · · e[Bn

]✓

n , the only di↵erence
being that each of the end-e↵ector frame joint screws V

bi

(✓) are expressed for
arbitrary ✓ rather than ✓ = 0.

5.1.3 Relationship between the Space and Body Jacobian

Denoting the fixed frame by {s} and the end-e↵ector frame by {b}, the forward
kinematics can be written T

sb

(✓). The twist of the end-e↵ector frame can be
written in terms of the fixed and end-e↵ector frame coordinates as

[V
s

] = Ṫ
sb

T�1

sb

[V
b

] = T�1

sb

Ṫ
sb

,

with V
s

and V
b

related by V
s

= Ad
T

sb

(V
b

) and V
b

= Ad
T

bs

(V
s

). V
s

and V
b

are
also related to their respective Jacobians via

V
s

= J
s

(✓)✓̇ (5.18)

V
b

= J
b

(✓)✓̇. (5.19)

Equation (5.18) can therefore be written

Ad
T

sb

(V
b

) = J
s

(✓)✓̇. (5.20)

Applying [Ad
T

bs

] to both sides of Equation (5.20), and using the general prop-
erty [Ad

X

][Ad
Y

] = [Ad
XY

] of the adjoint map, we obtain

Ad
T

bs

(Ad
T

sb

(V
b

)) = Ad
T

bs

T

sb

(V
b

) = V
b

= Ad
T

bs

(J
s

(q)✓̇).

Since we also have V
b

= J
b

(✓)✓̇ for all ✓̇, it follows that J
s

(✓) and J
b

(✓) are
related by

J
b

(✓) = Ad
T

bs

(J
s

(✓)) = [Ad
T

bs

]J
s

(✓). (5.21)

The space Jacobian can in turn be obtained from the body Jacobian via

J
s

(✓) = Ad
T

sb

(J
b

(✓)) = [Ad
T

sb

]J
b

(✓). (5.22)

The fact that the space and body Jacobians, and space and body twists, are
similarly related by the adjoint map should not be surprising, since each column
of the space and body Jacobian corresponds to a twist.

One of the important implications of Equations (5.21) and (5.22) is that
J
b

(✓) and J
s

(✓) always have the same rank; this is shown explicitly in the later
section on singularity analysis.

162 Velocity Kinematics and Statics

5.1.4 Alternative Notions of the Jacobian

The space and body Jacobians derived above are matrices that relate joint
rates to the twist of the end-e↵ector. There exist alternative notions of the
Jacobian that are based on a representation of the end-e↵ector configuration
using a minimum set of coordinates q. Such representations are particularly
relevant when the task space is considered to be a subspace of SE(3). For
example, the configuration of the end-e↵ector of a planar robot could be treated
as q = (x, y, ✓) 2 R3 instead of as an element of SE(2).

When using a minimum set of coordinates, the end-e↵ector velocity is not
given by a twist V but by the time derivative of the coordinates q̇, and the Jaco-
bian J

a

in the velocity kinematics q̇ = J
a

(✓)✓̇ is sometimes called the analytic
Jacobian, as opposed to the geometric Jacobian in space and body form, as
described above.

For an SE(3) task space, a typical choice of the minimal coordinates q 2 R6

includes three coordinates for the origin of the end-e↵ector frame in the fixed
base frame, and three coordinates for the orientation of the end-e↵ector frame
in the fixed base frame. Example coordinates for the orientation include Euler
angles (see Appendix B) and exponential coordinates for rotation.

Example: Analytic Jacobian with Exponential Coordinates for Rotation

In this example, we find the relationship between the geometric Jacobian J
b

in
the body frame and an analytic Jacobian J

a

that uses exponential coordinates
r = !̂✓ to represent orientation. (Recall that k!̂k = 1 and ✓ 2 [0,⇡].)

First, consider an open chain with n joints with body Jacobian

V
b

= J
b

(✓)✓̇,

where J
b

(✓) 2 R6⇥n. The angular and linear velocity components of V
b

=
(!

b

, v
b

) can be written explicitly as

V
b

=

!
b

v
b

�
= J

b

(✓)✓̇ =

J
!

(✓)
J
v

(✓)

�
✓̇,

where J
!

is the 3⇥ n matrix corresponding to the top three rows of J
b

and J
v

is the 3⇥ n matrix corresponding to the bottom three rows of J
b

.
Now suppose our minimal set of coordinates q 2 R6 is given by q = (r, x),

where x 2 R3 is the position of the origin of the end-e↵ector frame and r = !̂✓ 2
R3 is the exponential coordinate representation for the rotation. The coordinate
time-derivative ẋ is related to v

b

by a rotation to get v
b

in the fixed coordinates,

ẋ = R
sb

(✓)v
b

= R
sb

(✓)J
v

(✓)✓̇,

where R
sb

(✓) = e[r] = e[!̂]✓.
The time-derivative ṙ is related to the body angular velocity !

b

by

!
b

= A(r)ṙ

A(r) = I � 1� cos krk
krk2 [r] +

krk � sin krk
krk3 [r]2.

5.2. Statics of Open Chains 163

(The derivation of this formula is explored in Exercise 10.) Provided the matrix
A(r) is invertible, ṙ can be obtained from !

b

as

ṙ = A�1(r)!
b

= A�1(r)J
!

(✓)✓̇.

Putting these together,

q̇ =

ṙ
ẋ

�
=

A�1(r) 0

0 R
sb

�
!
b

v
b

�
, (5.23)

i.e., the analytic Jacobian J
a

is related to the body Jacobian J
b

by

J
a

(✓) =

A�1(r) 0

0 R
sb

(✓)

�
J
!

(✓)
J
v

(✓)

�
=

A�1(r) 0

0 R
sb

(✓)

�
J
b

(✓). (5.24)

5.1.5 Inverse Velocity Kinematics

The sections above answer the question “What twist results from a given set
of joint velocities?” The answer, written independently of the frame in which
twists are represented, is given by

V = J(✓)✓̇.

Often we are interested in the inverse question: given a desired twist V, what
joint velocities ✓̇ are needed? This is a question of inverse velocity kinematics,
which is discussed in more detail in Chapter 6.3. In brief, if J(✓) is square (the
number of joints n is equal to six, the number of elements of a twist) and full
rank, then ✓̇ = J�1(✓)V. If n 6= 6 or the robot is at a singularity, however,
then J(✓) is not invertible. In the case n < 6, arbitrary twists V cannot be
achieved—the robot does not have enough joints. If n > 6, then we call the
robot redundant. In this case, a desired twist V places six constraints on the
joint rates, and the remaining n� 6 freedoms correspond to internal motions of
the robot that are not evident in the motion of the end-e↵ector. As an example,
if you consider your arm, from your shoulder to your palm, as a seven-joint open
chain, when you place your palm at a fixed configuration in space (e.g., on the
surface of a table), you still have one internal degree of freedom, corresponding
to the position of your elbow.

5.2 Statics of Open Chains

Using our familiar principle of conservation of power,

power at the joints = (power to move the robot) + (power at end-e↵ector),

and considering the robot to be at static equilibrium (no power used to move the
robot), we can equate the power at the joints to the power at the end-e↵ector3,

⌧T ✓̇ = FT

b

V
b

,

3
We are considering the limiting case as

˙✓ goes to zero, consistent with our assumption

that the robot is at equilibrium.

164 Velocity Kinematics and Statics

where ⌧ is the set of joint torques. Using the identity V
b

= J
b

(✓)✓̇, we get

⌧ = JT

b

(✓)F
b

relating the joint torques to the wrench written in the end-e↵ector frame. Sim-
ilarly,

⌧ = JT

s

(✓)F
s

in the fixed space frame. Leaving out the choice of the frame, we can simply
write

⌧ = JT (✓)F . (5.25)

Thus if we are given a desired end-e↵ector wrench F and the joint angles ✓,
and we want the robot to resist an externally-applied wrench �F in order to
stay at equilibrium, we can calculate the joint torques ⌧ needed to generate the
opposing wrench F .4 This is important in force control of a robot, for example.

One could also ask the opposite question, namely, what is the end-e↵ector
wrench generated by a given set of joint torques? If JT is a 6 ⇥ 6 invertible
matrix, then clearly F = J�T (✓)⌧ . However, if the number of joints n is not
equal to six, then JT is not invertible, and the question is not well posed.

If the robot is redundant (n > 6), then even if the end-e↵ector is embedded in
concrete, the robot is not immobilized and the joint torques may cause internal
motions of the links. The static equilibrium assumption is no longer satisfied,
and we need dynamics to know what will happen to the robot.

If n 6 and JT 2 Rn⇥6 has rank n, then embedding the end-e↵ector in
concrete will immobilize the robot. If n < 6, however, no matter what ⌧ we
choose, the robot does not actively generate forces in the 6�n wrench directions
defined by the null space of JT ,

Null(JT (✓)) = {F | JT (✓)F = 0},

since no actuators act in these directions. The robot can, however, resist ar-
bitrary externally-applied wrenches in the space Null(JT (✓)) without moving,
due to the lack of joints that would allow motions due to these forces. As an
example, consider a motorized rotating door with a single revolute joint (n = 1)
and an end-e↵ector frame at the doorknob. The door can only actively gener-
ate a force at the knob that is tangent to the allowed circle of motion of the
knob (defining a single direction in the wrench space), but it can resist arbitrary
wrenches in the orthogonal five-dimensional wrench space without moving.

5.3 Singularity Analysis

The Jacobian allows us to identify postures at which the robot’s end-e↵ector
loses the ability to move instantaneously in one or more directions. Such a

4
If the robot has to support itself against gravity to maintain static equilibrium, these

torques ⌧ must be added to the torques that o↵set gravity.

5.3. Singularity Analysis 165

posture is called a kinematic singularity, or simply a singularity. Math-
ematically a singular posture is one in which the Jacobian J(✓) fails to be of
maximal rank. To understand why, consider the body Jacobian J

b

(✓), whose
columns are denoted V

bi

, i = 1, . . . , n. Then

V
b

=
⇥
V
b1

(✓) V
b2

(✓) · · · V
bn

(✓)
⇤
2

64
✓̇
1

...
✓̇
n

3

75

= V
b1

(✓)✓̇
1

+ . . .+ V
bn

(✓)✓̇
n

.

Thus, the tip frame can achieve twists that are linear combinations of the V
bi

.
As long as n � 6, the maximum rank that J

b

(✓) can attain is six. Singular
postures correspond to those values of ✓ at which the rank of J

b

(✓) drops below
the maximum possible value; at such postures the tip frame loses the ability
to generate instantaneous spatial velocities in in one or more dimensions. The
loss of mobility at a singularity is accompanied by the ability to resist arbitrary
wrenches in the direction corresponding to the lost mobility.

The mathematical definition of a kinematic singularity is independent of the
choice of body or space Jacobian. To see why, recall the relationship between
J
s

(✓) and J
b

(✓): J
s

(✓) = Ad
T

sb

(J
b

(✓)) = [Ad
T

sb

]J
b

(✓), or more explicitly,

J
s

(✓) =

R

sb

0
[p

sb

]R
sb

R
sb

�
J
b

(✓).

We now claim that the matrix [Ad
T

sb

] is always invertible. This can be estab-
lished by examining the linear equation

R

sb

0
[p

sb

]R
sb

R
sb

�
x
y

�
= 0.

Its unique solution is x = y = 0, implying that the matrix [Ad
T

sb

] is invertible.
Since multiplying any matrix by an invertible matrix does not change its rank,
it follows that

rank J
s

(✓) = rank J
b

(✓),

as claimed; singularities of the space and body Jacobian are one and the same.

Kinematic singularities are also independent of the choice of the fixed frame
and the end-e↵ector frame. Choosing a di↵erent fixed frame is equivalent to
simply relocating the robot arm, which should have absolutely no e↵ect on
whether a particular posture is singular or not. This obvious fact can be verified
by referring to Figure 5.9(a). The forward kinematics with respect to the original
fixed frame is denoted T (✓), while the forward kinematics with respect to the
relocated fixed frame is denoted T 0(✓) = PT (✓), where P 2 SE(3) is constant.

166 Velocity Kinematics and Statics

T(θ)

T(θ)

P

T'(θ) = P•T(θ)

(a)

T(θ)

Q

T'(θ) = T(θ)•Q

(b)

Figure 5.9: Kinematic singularities are invariant with respect to choice of fixed
and end-e↵ector frames. (a) Choosing a di↵erent fixed frame, which is equivalent
to relocating the base of the robot arm; (b) Choosing a di↵erent end-e↵ector
frame.

Then the body Jacobian of T 0(✓), denoted J 0
b

(✓), is obtained from T 0�1Ṫ 0. A
simple calculation reveals that

T 0�1Ṫ 0 = (T�1P�1)(PṪ) = T�1Ṫ ,

i.e., J 0
b

(✓) = J
b

(✓), so that the singularities of the original and relocated robot
arms are the same.

To see that singularities are independent of the end-e↵ector frame, refer to
Figure 5.9(b), and suppose the forward kinematics for the original end-e↵ector
frame is given by T (✓), while the forward kinematics for the relocated end-
e↵ector frame is T 0(✓) = T (✓)Q, whereQ 2 SE(3) is constant. This time looking
at the space Jacobian—recall that singularities of J

b

(✓) coincide with those of
J
s

(✓)—let J 0
s

(✓) denote the space Jacobian of T 0(✓). A simple calculation reveals
that

Ṫ 0T 0�1 = (ṪQ)(Q�1T�1) = Ṫ T�1,

i.e., J 0
s

(✓) = J
s

(✓), so that kinematic singularities are invariant with respect to
choice of end-e↵ector frame.

In the remainder of this section we consider some common kinematic singu-
larities that occur in six-dof open chains with revolute and prismatic joints. We
now know that either the space or body Jacobian can be used for our analysis;
we use the space Jacobian in the examples below.

Case I: Two Collinear Revolute Joint Axes

The first case we consider is one in which two revolute joint axes are collinear
(see Figure 5.10(a)). Without loss of generality these joint axes can be labeled

5.3. Singularity Analysis 167

(a)

x

y
z

q1 q3q2

(b)

Figure 5.10: (a) A kinematic singularity in which two joint axes are collinear;
(b) A kinematic singularity in which three revolute joint axes are parallel and
coplanar.

1 and 2. The corresponding columns of the Jacobian are

V
s1

(✓) =

!
s1

�!
s1

⇥ q
1

�
, V

s2

(✓) =

!
s2

�!
s2

⇥ q
2

�

Since the two joint axes are collinear, we must have !
s1

= ±!
s2

; let us assume
the positive sign. Also, !

si

⇥ (q
1

� q
2

) = 0 for i = 1, 2. Then V
s1

= V
s2

,
which implies that V

s1

and V
s2

lie on the same line in six-dimensional space.
Therefore, the set {V

s1

,V
s2

, . . . ,V
s6

} cannot be linearly independent, and the
rank of J

s

(✓) must be less than six.

Case II: Three Coplanar and Parallel Revolute Joint Axes

The second case we consider is one in which three revolute joint axes are par-
allel, and also lie on the same plane (three coplanar axes—see Figure 5.10(b)).
Without loss of generality we label these as joint axes 1, 2, and 3. In this case
we choose the fixed frame as shown in the figure; then

J
s

(✓) =

!
s1

!
s1

!
s1

· · ·
0 �!

s1

⇥ q
2

�!
s1

⇥ q
3

· · ·

�

and since q
2

and q
3

are points on the same unit axis, it is not di�cult to verify
that the above three vectors cannot be linearly independent.

Case III: Four Revolute Joint Axes Intersecting at a Common Point

Here we consider the case where four revolute joint axes intersect at a common
point (Figure 5.11). Again, without loss of generality label these axes from 1
to 4. In this case we choose the fixed frame origin to be the common point of

168 Velocity Kinematics and Statics

A1

A2

A3

A4

Figure 5.11: A kinematic singularity in which four revolute joint axes intersect
at a common point.

intersection, so that q
1

= . . . = q
4

= 0. In this case

J
s

(✓) =

!
s1

!
s2

!
s3

!
s4

· · ·
0 0 0 0 · · ·

�
.

The first four columns clearly cannot be linearly independent; one can be writ-
ten as a linear combination of the other three. Such a singularity occurs, for
example, when the wrist center of an elbow-type robot arm is directly above
the shoulder.

Case IV: Four Coplanar Revolute Joints

Here we consider the case in which four revolute joint axes are coplanar. Again,
without loss of generality label these axes from 1 to 4. Choose a fixed frame
such that the joint axes all lie on the x-y plane; in this case the unit vector
!
si

2 R3 in the direction of joint axis i is of the form

!
si

=

2

4
!
six

!
siy

0

3

5 .

Similarly, any reference point q
i

2 R3 lying on joint axis i is of the form

q
i

=

2

4
q
ix

q
iy

0

3

5 ,

and subsequently

v
si

= �!
si

⇥ q
i

=

2

4
0
0

!
siy

q
ix

� !
six

q
iy

3

5 .

5.4. Manipulability 169

The first four columns of the space Jacobian J
s

(✓) are

2

6666664

!
s1x

!
s2x

!
s3x

!
s4x

!
s1y

!
s2y

!
s3y

!
s4y

0 0 0 0
0 0 0 0
0 0 0 0

!
s1y

q
1x

� !
s1x

q
1y

!
s2y

q
2x

� !
s2x

q
2y

!
s3y

q
3x

� !
s3x

q
3y

!
s4y

q
4x

� !
s4x

q
4y

3

7777775
.

which clearly cannot be linearly independent.

Case V: Six Revolute Joints Intersecting a Common Line

The final case we consider is six revolute joint axes intersecting a common line.
Choose a fixed frame such that the common line lies along the ẑ-axis, and select
the intersection between this common line and joint axis i as the reference point
q
i

2 R3 for axis i; each q
i

is thus of the form q
i

= (0, 0, q
iz

), and

v
si

= �!
si

⇥ q
i

= (!
siy

q
iz

,�!
six

q
iz

, 0)

i = 1, . . . , 6. The space Jacobian J
s

(✓) thus becomes

J
s

(✓) =

2

6666664

!
s1x

!
s2x

!
s3x

!
s4x

!
s5x

!
s6x

!
s1y

!
s2y

!
s3y

!
s4y

!
s5y

!
s6y

!
s1z

!
s2z

!
s3z

!
s4z

!
s5z

!
s6z

!
s1y

q
1z

!
s2y

q
2z

!
s3y

q
3z

!
s4y

q
4z

!
s5y

q
5z

!
s6y

q
6z

�!
s1x

q
1z

�!
s2x

q
2z

�!
s3x

q
3z

�!
s4x

q
4z

�!
s5x

q
5z

�!
s6x

q
6z

0 0 0 0 0 0

3

7777775
,

which is clearly singular.

5.4 Manipulability

In the previous section we saw that at a kinematic singularity, a robot’s end-
e↵ector loses the ability to move or rotate in one or more directions. A kinematic
singularity is a binary proposition—a particular configuration is either kinemat-
ically singular, or it is not—and it is reasonable to ask whether it is possible to
quantify the proximity of a particular configuration to a singularity. The answer
is yes; in fact, one can even do better and quantify not only the proximity to a
singularity, but also determine the directions in which the end-e↵ector’s ability
to move is diminished, and to what extent. The manipulability ellipsoid
allows one to geometrically visualize the directions in which the end-e↵ector
moves with least e↵ort and with greatest e↵ort.

Manipulability ellipsoids are illustrated for a 2R planar arm in Figure 5.3.
The Jacobian is given by Equation (5.1).

For a general n-joint open chain and a task space with coordinates q 2
Rm, where m n, the manipulability ellipsoid corresponds to the end-e↵ector

170 Velocity Kinematics and Statics

v1v2

v3

λ1λ2

λ3

Figure 5.12: An ellipsoid visualization of q̇TA�1q̇ = 1 in the q̇ space R3, where
the principal semi-axis lengths are the square roots of the eigenvalues �

i

of A
and the directions of the principal semi-axes are the eigenvectors v

i

.

velocities for joint rates ✓̇ satisfying k✓̇k = 1, a unit sphere in the n-dimensional
joint velocity space.5 Assuming J is invertible, the unit joint velocity condition
can be written

1 = ✓̇T ✓̇

= (J�1q̇)T (J�1q̇)

= q̇TJ�TJ�1q̇

= q̇T (JJT)�1q̇ = q̇TA�1q̇. (5.26)

If J is full rank (rank m), the matrix A = JJT 2 Rm⇥m is square, symmetric,
and positive definite, as is A�1.

Consulting a textbook on linear algebra, we see that for any symmetric
positive-definite A�1 2 Rm⇥m, the set of vectors q̇ 2 Rm satisfying

q̇TA�1q̇ = 1

defines an ellipsoid in the m-dimensional space. Letting v
i

and �
i

be the eigen-
vectors and eigenvalues of A, the directions of the principal axes of the ellipsoid
are v

i

and the lengths of the principal semi-axes are
p
�
i

, as illustrated in Fig-
ure 5.12. Furthermore, the volume V of the ellipsoid is proportional to the
product of the semi-axis lengths,

V is proportional to
p
�
1

�
2

. . .�
m

=
p
det(A) =

q
det(JJT).

For the geometric Jacobian J (either J
b

in the end-e↵ector frame or J
s

in
the fixed frame), we can express the 6⇥ n Jacobian as

J(✓) =

J
!

(✓)
J
v

(✓)

�
,

5
A two-dimensional ellipsoid is often referred to as an “ellipse,” and an ellipsoid in more

than three dimensions is often referred to as a “hyperellipsoid,” but here we use the term

“ellipsoid” independent of the dimension. Similarly, we refer to a “sphere” independent of

the dimension, instead of using “circle” for two dimensions and “hypersphere” for more than

three dimensions.

5.4. Manipulability 171

where J
!

is the top three rows of J and J
v

is the bottom three rows of J . It
makes sense to separate the two, because the units of angular velocity and lin-
ear velocity are di↵erent. This leads to two three-dimensional manipulability
ellipsoids, one for angular velocities and one for linear velocities. The manipu-
lability ellipsoids are given by principal semi-axes aligned with the eigenvectors
of A with lengths given by the square roots of the eigenvalues, where A = J

!

JT

!

for the angular velocity manipulability ellipsoid and A = J
v

JT

v

for the linear
velocity manipulability ellipsoid.

When calculating the linear velocity manipulability ellipsoid, it generally
makes more sense to use the body Jacobian J

b

instead of the space Jacobian J
s

,
since we are usually interested in the linear velocity of a point at the origin of
the end-e↵ector frame, rather than the linear velocity of a point at the origin of
the fixed space frame.

Apart from the geometry of the manipulability ellipsoid, it can be useful to
assign a single scalar measure defining how easily the robot can move at a given
posture, or how close it is to a singularity. One measure is the ratio between
the longest and shortest semi-axes of the manipulability ellipsoid,

µ
1

(A) =

p
�
max

(A)p
�
min

(A)
=

s
�
max

(A)

�
min

(A)
� 1,

where A = JJT . When µ
1

(A) is low, close to one, then the manipulability
ellipsoid is nearly spherical or isotropic, meaning that it is equally easy to
move in any direction. This is generally a desirable situation. As the robot
approaches a singularity, µ

1

(A) goes to infinity.
A similar measure µ

2

(A) is just the square of µ
1

(A), also known as the
condition number of the matrix A = JJT ,

µ
2

(A) =
�
max

(A)

�
min

(A)
� 1.

Again, smaller values, close to one, are preferred. The condition number of a
matrix is commonly used to characterize the sensitivity of the result of a matrix
multiplication by a vector to small errors in the vector.

A final measure is simply proportional to the volume of the manipulability
ellipsoid,

µ
3

(A) =
p
�
1

�
2

. . . =
p
det(A).

In this case, unlike the first two measures, a larger value is better.
Just like the manipulability ellipsoid, a force ellipsoid can be drawn for joint

torques ⌧ satisfying k⌧k = 1. Beginning from ⌧ = JT (✓)F , we arrive at similar
results as above, except now the ellipsoid satisfies

1 = fTJJT f = fTB�1f,

where B = (JJT)�1 = A�1. For the force ellipsoid, the matrix B plays the
same role as A in the manipulability ellipsoid, and it is the eigenvectors and the
square roots of eigenvalues of B that define the shape of the force ellipsoid.

172 Velocity Kinematics and Statics

Since eigenvectors of any invertible matrix A are also eigenvectors of B =
A�1, the principal axes of the force ellipsoid are aligned with the principal axes
of the manipulability ellipsoid. Furthermore, since the eigenvalues of B = A�1

associated with each principal axis are the reciprocals of the corresponding eigen-
values of A, the lengths of the principal semi-axes of the force ellipsoid are given
by 1/

p
�
i

, where �
i

are the eigenvalues of A. Thus the force ellipsoid is obtained
from the manipulability ellipsoid simply by stretching the manipulability ellip-
soid along each principal axis i by a factor of 1/�

i

. Furthermore, since the
volume V

A

of the manipulability ellipsoid is proportional to the product of the
semi-axes,

p
�
1

�
2

. . ., and the volume V
B

of the force ellipsoid is proportional to
1/
p
�
1

�
2

. . ., the product of the two volumes V
A

V
B

is constant independent of
the joint variables ✓. Therefore, positioning the robot to increase the manipula-
bility ellipsoid volume measure µ

3

(A) simultaneously reduces the force ellipsoid
volume measure µ

3

(B). This also explains the observation in the beginning of
the chapter that, as the robot approaches a singularity, V

A

goes to zero while
V
B

goes to infinity.

5.5 Summary

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T (✓) = e[S1

]✓

1 · · · e[Sn

]✓

nM.

The space Jacobian J
s

(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn

to the end-e↵ector spatial twist V
s

via V
s

= J
s

(✓)✓̇. The ith column of
J
s

(✓) is
V
si

(✓) = Ad
e

[S
1

]✓

1 ···e[Si�1

]✓

i�1

(S
i

),

for i = 2, . . . , n, with the first column V
s1

(✓) = S
1

. V
si

is the screw vector
for joint i expressed in space frame coordinates, with the joint values ✓
assumed to be arbitrary rather than zero.

• Let the forward kinematics of an n-link open chain be expressed in the
following product of exponentials form:

T (✓) = Me[B1

]✓

1 · · · e[Bn

]✓

n .

The body Jacobian J
b

(✓) 2 R6⇥n relates the joint rate vector ✓̇ 2 Rn to
the end-e↵ector body twist V

b

= (!
b

, v
b

) via V
b

= J
b

(✓)✓̇. The ith column
of J

b

(✓) is
V
bi

(✓) = Ad
e

�[B
n

]✓

n ···e�[B
i+1

]✓

i+1

(B
i

),

for i = n � 1, . . . , 1, with V
bn

(✓) = B
n

. V
bi

is the screw vector for joint i
expressed in body frame coordinates, with the joint values ✓ assumed to
be arbitrary rather than zero.

5.6. Software 173

• The body Jacobian is related to the space Jacobian via the relation

J
s

(✓) = [Ad
T

sb

]J
b

(✓)

J
b

(✓) = [Ad
T

bs

]J
s

(✓)

where T
sb

= T (✓).

• Consider a spatial open chain with n one-dof joints that is also assumed
to be in static equilibrium. Let ⌧ 2 Rn denote the vector of joint torques
and forces, and F 2 R6 be the wrench applied at the end-e↵ector, in either
space or body frame coordinates. Then ⌧ and F are related by

⌧ = JT

b

(✓)F
b

= JT

s

(✓)F
s

.

• A kinematically singular configuration for an open chain, or more simply
a kinematic singularity, is any configuration ✓ 2 Rn at which the rank
of the Jacobian is not maximal. For six-dof spatial open chains consisting
of revolute and prismatic joints, some common singularities include (i)
two collinear revolute joint axes; (ii) three coplanar and parallel revolute
joint axes; (iii) four revolute joint axes intersecting at a common point;
(iv) four coplanar revolute joints, and (v) six revolute joints intersecting
a common line.

• The manipulability ellipsoid describes how easily the robot can move in
di↵erent directions. For a Jacobian J , the principal axes of the manip-
ulability ellipsoid are defined by the eigenvectors of JJT , and the corre-
sponding lengths of the principal semi-axes are the square roots of the
eigenvalues.

• The force ellipsoid describes how easily the robot can generate forces in
di↵erent directions. For a Jacobian J , the principal axes of the force
ellipsoid are defined by the eigenvectors of (JJT)�1, and the corresponding
lengths of the principal semi-axes are the square roots of the eigenvalues.

• Measures of the manipulability and force ellipsoid include the ratio of the
longest principal semi-axis to the shortest; the square of this measure; and
the volume of the ellipsoid. The first two measures indicate that the robot
is far from a singularity if they are small (close to one).

5.6 Software

Jb = JacobianBody(Blist,thetalist)
Computes the body Jacobian J

b

(✓) 2 R6⇥n given a list of joint screws B
i

ex-
pressed in the body frame and a list of joint angles.

Js = JacobianSpace(Blist,thetalist)
Computes the space Jacobian J

s

(✓) 2 R6⇥n given a list of joint screws S
i

ex-
pressed in the fixed space frame and a list of joint angles.

174 Velocity Kinematics and Statics

5.7 Notes and References

The terms spatial velocity and spatial force were first coined by Roy Feath-
erstone [32], and are also referred to in the literature as twists and wrenches,
respectively. There is a well developed calculus of twists and wrenches that
is covered in treatments of classical screw theory, e.g., [13], [4]. Singularities
of closed chains are discussed in the later chapter on closed chain kinematics.
Manipulability ellipsoids and their dual, force ellipsoids, are discussed in greater
detail in [97].

5.8. Exercises 175

5.8 Exercises

X

Y

{s}

x
y
{b}

ox

y

{b}

Figure 5.13: A rolling wheel.

1. A wheel of unit radius is rolling to the right at a rate of 1 rad/sec (see
Figure 5.13; the dotted circle shows the wheel at t = 0).
(a) Find V

s

(t), the space velocity of the {b} frame, as a function of t.
(b) Find the linear velocity of the {b} frame origin expressed in {s} frame
coordinates.

2. The 3R planar open chain of Figure 5.14(a) is shown in its zero position.
(a) Suppose the tip must apply a force of 5 N in the x̂-direction. What torques
should be applied at each of the joints?
(b) Suppose the tip must now apply a force of 5 N in the ŷ-direction. What
torques should be applied at each of the joints?

3. Answer the following questions for the 4R planar open chain of Figure 5.14(b).
(a) Derive the forward kinematics in the form

T (✓) = e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4M,

x

y

1

1

1

45 O

(a)

x

I

J

θ1

θ2

1s

i
j

P(x,y)

θ4

θ3

2s
3s

4s

(b)

Figure 5.14: (a) A 3R planar open chain. (b) A 4R planar open chain.

176 Velocity Kinematics and Statics

where each S
i

2 R3 and M 2 SE(2).
(b) Derive the body Jacobian.
(c) Suppose the chain is in static equilibrium at the configuration ✓

1

= ✓
2

=
0, ✓

3

= ⇡

2

, ✓
4

= �⇡
2

, and a force f = (10, 10, 0) and moment m = (0, 0, 10) are
applied to the tip (both f and m are expressed with respect to the fixed frame).
What are the torques experienced at each of the joints?
(d) Under the same conditions as (c), suppose that a force f = (�10, 10, 0)
and moment m = (0, 0,�10) are applied to the tip. What are the torques
experienced at each of the joints?
(e) Find all kinematic singularities for this chain.

y

z

{b}x y

z
x
{b2}

y
z

x {b1}

y

z

{s}

x

L L

finger 1 finger 2

Figure 5.15: Two fingers grasping a can.

4. Figure 5.15 shows two fingers grasping a can. Assume that all contacts are
point contacts with su�ciently large friction coe�cient. Frame {b} is attached
to the center of the can. Frames {b

1

} and {b
2

} are attached to the can at the two
contact points as shown. f

1

= (f
1,x

, f
1,y

, f
1,z

)T is the force applied by fingertip
1 to the can, expressed in {b

1

} coordinates. Similarly, f
2

= (f
2,x

, f
2,y

, f
2,z

)T is
the force applied by fingertip 2 to the can, expressed in {b

2

} coordinates.
(a) Assume the system is in static equilibrium, and find the total spatial force
F

b

applied by the two fingers to the can; express your result in {b} coordinates.
(b) Suppose Fext is an arbitrary external spatial force applied to the can (F

ext

is
also expressed in frame {b} coordinates). Find all Fext that cannot be resisted
by the fingertip forces.

5. Referring to Figure 5.16, the rigid body rotates about the point (L,L) with
angular velocity ✓̇ = 1.
(a) Find the position of point P on the moving body with respect to the fixed
reference frame in terms of ✓.
(b) Find the velocity of point P in terms of the fixed frame.
(c) What is T

sb

, the displacement of frame {s} as seen from the fixed frame {s}?
(d) Find the twist of T

sb

in body coordinates.
(e) Find the twist of T

sb

in space coordinates.

5.8. Exercises 177

θ

Figure 5.16: A rigid body rotating in the plane.

(f) What is the relation between the twists from (d) and (e)?
(g) What is the relation between the twist from (d) and Ṗ from (b)?
(h) What is the relation between the twist from (e) and Ṗ from (b)?

y

z

x

{S}

θ 2

L

R

θ1

y

z

x
{b}

wall

wall

Figure 5.17: A new amusement park ride.

6. Figure 5.17 shows a design for a new amusement park ride. The rider sits at
the location indicated by the moving frame {b}. The fixed frame {s} is attached
to the top shaft as shown. R = 1m and L = 2m, and the two joints ✓

1

and ✓
2

rotate at a constant angular velocity of 1 rad/sec.
(a) Suppose t = 0 at the instant shown in the figure. Find the linear velocity

178 Velocity Kinematics and Statics

Q

2

3

xs

ys

zs

zb

xb
yb

Figure 5.18: RRP robot shown in its zero position.

v
b

and angular velocity !
b

of the rider as a function of time t. Express your
answer in moving frame {b} coordinates.
(b) Find the linear velocity of the rider as a function of time t. Express your
answer in fixed frame {s} coordinates.

7. The RRP robot in Figure 5.18 is shown in its zero position.
(a) Write the screw axes in the space frame. Evaluate the forward kinematics
when ✓ = (90�, 90�, 1). Hand-draw or use a computer to show the arm and the
end-e↵ector frame in this configuration. Provide the space Jacobian J

s

at this
configuration.
(b) Write the screw axes in the end-e↵ector body frame. Evaluate the forward
kinematics when ✓ = (90�, 90�, 1) and confirm that you get the same result.
Provide the body Jacobian J

b

at this configuration.

L L

θ₁

θ2

θ3

y

z

x

{s}

y

z

x

{b}

L

Figure 5.19: RPR robot.

8. The RPR robot of Figure 5.19 is shown in its zero position. The fixed and
end-e↵ector frames are respectively denoted {s} and {b}.
(a) Find the space Jacobian J

s

(✓) for arbitrary configurations ✓ 2 R3.
(b) Assume the manipulator is in its zero position. Suppose an external force
f 2 R3 is applied to the {b} frame origin. Find all directions of f that can be

5.8. Exercises 179

θ1

x
yz

{ S }

θ2

θ3

x
yz

{ b}

2L

L

L L

Figure 5.20: A spatial 3R open chain.

resisted by the manipulator with zero torques.

9. Find all kinematic singularities of the 3R wrist with the forward kinematics

R = e[!̂1

]✓

1e[!̂2

]✓

2e[!̂3

]✓

3 ,

where !
1

= (0, 0, 1)T , !
2

= (1/
p
2, 0, 1/

p
2)T , and !

3

= (1, 0, 0)T .

10. In this exercise we derive the analytic Jacobian for an n-link open chain
corresponding to the exponential coordinates on SO(3).
(a) Given an n⇥n matrix A(t) parametrized by t that is also di↵erentiable with
respect to t, its exponential X(t) = eA(t) is then an n⇥ n matrix that is always
nonsingular. Prove the following:

X�1Ẋ =

Z
1

0

e�A(t)sȦ(t)eA(t)sds

ẊX�1 =

Z
1

0

eA(t)sȦ(t)e�A(t)sds.

(b) Use the above result to show that for r(t) 2 R3 and R(t) = e[r(t)], the
angular velocity in the body frame, [!

b

] = RT Ṙ is related to ṙ by

!
b

= A(r)ṙ

A(r) = I � 1� cos krk
krk2 [r] +

krk � sin krk
krk3 [r]2.

(c) Derive the corresponding formula relating the angular velocity in the space
frame, [!

s

] = ṘRT , with ṙ.

11. The spatial 3R open chain of Figure 5.20 is shown in its zero position.
(a) In its zero position, suppose we wish to make the end-e↵ector move with

180 Velocity Kinematics and Statics

x

y

z

{S}

L

x

y

z

{T}

L
T1

T2

T3 T4

Figure 5.21: An RRRP spatial open chain.

L L L

x

y

z

{T}x

y

z

{S}

Figure 5.22: Singularities of a 6R open chain.

linear velocity v
tip

= (10, 0, 0), where v
tip

is expressed with respect to the space
frame {s}. What are the required input joint velocities ✓̇

1

, ✓̇
2

, ✓̇
3

?
(b) Suppose the robot is in the configuration ✓

1

= 0, ✓
2

= 45�, ✓
3

= �45�.
Assuming static equilibrium, suppose we wish to generate an end-e↵ector force
f
b

= (10, 0, 0), where f
b

is expressed with respect to the end-e↵ector frame {b}.
What are the required input joint torques ⌧

1

, ⌧
2

, ⌧
3

?
(c) Under the same conditions as in (b), suppose we now seek to generate an
end-e↵ector moment m

b

= (10, 0, 0), where m
b

is expressed with respect to the
end-e↵ector frame {b}. What are the required input joint torques ⌧

1

, ⌧
2

, ⌧
3

?
(d) Suppose the maximum allowable torques for each joint motor are

k⌧
1

k 10, k⌧
2

k 20, k⌧
3

k 5.

In the zero position, what is the maximum force that can be applied by the tip
in the end-e↵ector frame x̂-direction?

12. The RRRP chain of Figure 5.21 is shown in its zero position.
(a) Determine the body Jacobian J

b

(✓) when ✓
1

= ✓
2

= 0, ✓
3

= ⇡/2, ✓
4

= L.
(b) Determine the linear velocity of the end-e↵ector frame in fixed frame coor-
dinates when ✓

1

= ✓
2

= 0, ✓
3

= ⇡/2, ✓
4

= L and ✓̇
1

= ✓̇
2

= ✓̇
3

= ✓̇
4

= 1.

13. For the 6R spatial open chain of Figure 5.22,

5.8. Exercises 181

Prismatic joint axis

Revolute joint axis

Figure 5.23: A kinematic singularity involving prismatic and revolute joints.

z y

x

Z

YX

θ θ

θ

θ

z

yx

θ

θ

Figure 5.24: A spatial PRRRRP open chain.

(a) Determine its space Jacobian J
s

(✓).
(b) Find its kinematic singularities. Explain each singularity in terms of the
alignment of the joint screws, and the directions in which the end-e↵ector loses
one or more degrees of freedom of motion.

14. Show that a six-dof spatial open chain is in a kinematic singularity when any
two of its revolute joint axes are parallel, and any prismatic joint axis is normal
to the plane spanned by the two parallel revolute joint axes (see Figure 5.23).

15. The spatial PRRRRP open chain of Figure 5.24 is shown in its zero position.
(a) At the zero position, find the first three columns of the space Jacobian.
(b) Find all configurations at which the first three columns of the space Jacobian
become linearly dependent.
(c) Suppose the chain is in the configuration ✓

1

= ✓
2

= ✓
3

= ✓
5

= ✓
6

=
0, ✓

4

= 90o. Assuming static equilibrium, suppose a pure force f
b

= (10, 0, 10)
is applied to the origin of the end-e↵ector frame, where f

b

is expressed in terms
of the end-e↵ector frame. Find the joint torques ⌧

1

, ⌧
2

, ⌧
3

experienced at the

182 Velocity Kinematics and Statics

T2

T1 T4

T5

T6

x
y

z

x
y

z{S} {T}
T3

L

100N

Figure 5.25: A PRRRRR spatial open chain.

first three joints.

16. Consider the PRRRRR spatial open chain of Figure 5.25 shown in its zero
position. The distance from the origin of the fixed frame to the origin of the
end-e↵ector frame at the home position is L.
(a) Determine the first three columns of the space Jacobian J

s

.
(b) Determine the last two columns of the body Jacobian J

b

.
(c) For what value of L is the home position a singularity?
(d) In the zero position, what joint torques must be applied in order to generate
a pure end-e↵ector force of 100 N in the �ẑ direction?

45˚

θ1

θ2

θ4

θ3

θ5

θ6

y

z

x

{s}

y

z

x

{b}

L

L

L

L

L L

Figure 5.26: A PRRRRP robot.

17. The PRRRRP robot of Figure 5.26 is shown in its zero position.
(a) Find the first three columns of the space Jacobian J

s

(✓)
(b) Assuming the robot is in its zero position and ✓̇ = (1, 0, 1, -1, 2, 0)T , find
the spatial velocity V

s

of the end-e↵ector frame.

5.8. Exercises 183

(c) Is the zero position a kinematic singularity? Explain your answer.

y

z

x

L

L L

L

L

L

y

z

x

45
o

θ1

θ2

θ3

θ4

θ5

θ6

{b}

{S}

parallel to fixed fame x axis

Figure 5.27: An RRPRPR open chain shown at its zero position.

18. The six-dof RRPRPR open chain of Figure 5.27 has fixed frame {s} and
end-e↵ector frame {b} attached as shown. At its zero position, joint axes 1, 2
and 6 lie on the ŷ-ẑ plane of the fixed frame, and joint axis 4 is aligned along
the fixed frame x̂-axis.
(a) Find the first three columns of the space Jacobian J

s

(✓).
(b) At the zero position, let ✓̇ = (1, 0, 1, -1, 2, 0)T . Find the spatial velocity V

s

of the end-e↵ector frame at the instant shown.
(c) Is the zero position a kinematic singularity? Explain your answer.

19. The spatial PRRRRP open chain of Figure 5.28 is shown in its zero position.
(a) Determine the first four columns of the space Jacobian J

s

(✓).
(b) Determine whether the zero position is a kinematic singularity.
(c) Calculate the joint torques required for the tip to apply the following end-
e↵ector wrenches:

X

Y

Z

{S}

1

T3

T4

1

1 1

1

T2

T1

T5 T6
x

y

z

{T}

45o

Figure 5.28: A spatial PRRRRP open chain with a skewed joint axis.

184 Velocity Kinematics and Statics

L0

L1 L2

L1

θ1

θ2

θ3
θ4

θ5

θ6

z

yx

z

yx

{ t }

{ 0’}
x
yz

{ 0 }

Figure 5.29: A spatial RRPRRR open chain.

(i) F
s

= (0, 1,�1, 1, 0, 0)T

(ii) F
s

= (1,�1, 0, 1, 0,�1)T .

20. The spatial RRPRRR open chain of Figure 5.29 is shown in its zero position.
(a) For the fixed frame {0} and tool frame {t} as shown, express the forward
kinematics in the product of exponentials form

T (✓) = e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4e[S5

]✓

5e[S6

]✓

6M.

(b) Find the first three columns of the space Jacobian J
s

(✓).
(c) Suppose that the fixed frame {0} is moved to another location {00} as shown
in the figure. Find the first three columns of the space Jacobian J

s

(✓) with
respect to this new fixed frame.
(d) Determine if the zero position is a kinematic singularity, and if so, provide
a geometric description in terms of the joint screw axes.

21. The construction robot of Figure 5.30 is used for applications that require
large, high impact forces. Kinematically the robot can be modelled as a RPRRR
open chain. ✓

2

is a prismatic joint, and ✓
4

is defined to be the angle between
links 3 and 4 as shown in the figure. The robot is shown in its zero position
in Figures 5.30(a) and 5.30(b); the origin of the tool frame {t} is located at

coordinates (
p
3L

1

+L

2

2

,L1

�
p
3L

2

2

,L
3

) in terms of the fixed {s}-frame coordinates.

(a) The forward kinematics T
st

can be expressed as

T
st

= e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4M .

Find S
1

and S
4

.
(b) In reality, joints (✓

1

, ✓
2

, ✓
3

, ✓
5

) are actuated. At the zero position, suppose

5.8. Exercises 185

y

z

x

{s}

θ1

θ2

θ3
θ5

θ4

y

z

x
{t}

Link 2

Link 1

Link 3

Link 4

(a)

L1

L1

L2

0.5 L2

0.5 L2

x

y

A

30˚

30˚ θ4

(b)

Figure 5.30: A construction robot.

the joint velocities are set to (✓̇
1

, ✓̇
2

, ✓̇
3

, ✓̇
5

= (1, 0, 1, 2). Find the spatial velocity
V
s

of the tool frame.

(c) Now suppose joints ✓
1

and ✓
2

are fixed at zero, and only joints ✓
3

and
✓
5

are actuated. Suppose L
1

= L
2

, and find the relation between ✓
3

and ✓
5

at
which the manipulability ellipsoid becomes a circle.

(d) Under the same conditions as (c), but now with ✓
3

= ⇡/6 and ✓
5

= 0,
in what direction of (f

x

, f
y

) can the tip exert a maximum force? Assume the
maximum exertable torques at joint 3 and 5 are the same.

22. Figure 5.31 shows an RRPRRR arm exercise robot used for stroke patient
rehabilitation6.
(a) Assume the manipulator is in its zero position, and suppose that M

0c

2
SE(3) is the displacement from frame {0} to frame {c}, and M

ct

2 SE(3) is
the displacement from frame {c} to frame {t}. Express the forward kinematics
T
0t

in the form

T
0t

= e[A1

]✓

1e[A2

]✓

2M
0c

e[A3

]✓

3e[A4

]✓

4M
ct

e[A5

]✓

5e[A6

]✓

6 .

Find A
2

,A
4

,A
5

.
(b) Suppose that ✓

2

= 90� and all the other joint variables are fixed at zero. Set
the joint velocities to (✓̇

1

, ✓̇
2

, ✓̇
3

, ✓̇
4

✓̇
5

, ✓̇
6

) = (1, 0, 1, 0, 0, 1), and find the spatial
velocity V

s

of the tool frame in frame {0} coordinates.

6
Nef, Tobias, Marco Guidali, and Robert Riener, ”ARMin III arm therapy exoskeleton

with an ergonomic shoulder actuation,” Applied Bionics and Biomechanics 6(2): 127-142,

2009

186 Velocity Kinematics and Statics

θ

θ
θ

θ

θ
θ

(a)

θ1

θ2

θ3

θ4

θ5θ6

x

y

y

z
{t} L

L

L

L

L

L

L

L

L

L

tt

t

x

z
{c}

c

cc

x0 y0

z0
{0}

Elbow linkLast link

(b)

Figure 5.31: Rehabilitation robot ARMin III.

(c) Is the configuration described in part (b) a kinematic singularity? Explain
your answer.
(d) Suppose a person now operates the rehabilitation robot. At the configuration
described in part (b), a spatial force Felbow is applied to the elbow link, and
a spatial force Ftip is applied to the last link. Both Felbow and Ftip are

5.8. Exercises 187

expressed in frame {0} coordinates and are given by

Felbow =
⇥
1 0 0 0 0 1

⇤
T

Ftip =
⇥
0 1 0 1 1 0

⇤
T

.

Find the joint torques that must be applied in order for the robot to maintain
static equilibrium.

23. Consider an n-link open chain, with reference frames attached to each link.
Let

T
0k

= e[S1

]✓

1 · · · e[Sk

]✓

kM
k

, k = 1, . . . , n

be the forward kinematics up to link frame {k}. Let J
s

(✓) be the space Jacobian
for T

0n

. The columns of J
s

(✓)are denoted

J
s

(✓) =
⇥
V
s1

(✓) · · · V
sn

(✓)
⇤
.

Let [V
k

] = Ṫ T�1

0k

be the spatial velocity of link frame {k} in frame {k} coordi-
nates.
(a) Derive explicit expressions for V

2

and V
3

.
(b) Based on your results from (a), derive a recursive formula for V

k+1

in terms
of V

k

, V
s1

, . . . ,V
s,k+1

, and ✓̇.

24. Write a program that allows the user to enter the link lengths L
1

and L
2

of
a 2R planar robot (Figure 5.32), and a list of configurations of the robot (each
as the joint angles (✓

1

, ✓
2

)), and plots the manipulability ellipse at each of those
configurations. The program should plot the arm at each configuration (two line
segments) and the manipulability ellipse centered at the endpoint of the arm.
Choose the same scaling for all the ellipses so that they are easily visualized
(e.g., the ellipse should usually be shorter than the arm, but not so small that
you can’t easily see it). The program should also print the three manipulability
measures µ

1

, µ
2

, µ
3

for each configuration.

(i) Choose L
1

= L
2

= 1 and plot the arm and its manipulability ellipse at
the four configurations (�10�, 20�), (60�, 60�), (135�, 90�), (190�, 160�). At
which of these configurations does the arm appear most isotropic? Does
this agree with the manipulability measures calculated by the program?

(ii) Does the eccentricity of the ellipse depend on ✓
1

? On ✓
2

? Explain your
answers.

(iii) Choose L
1

= L
2

= 1. Hand-draw the arm at (�45�, 90�). Hand-draw
the endpoint linear velocity vector arising from ✓̇

1

= 1 rad/s and ✓̇
2

= 0.
Hand-draw the endpoint linear velocity vector arising from ✓̇

1

= 0 and
✓̇
2

= 1 rad/s. Hand-draw the vector sum of these two to get the endpoint
linear velocity when ✓̇

1

= 1 rad/s and ✓̇
2

= 1 rad/s.

188 Velocity Kinematics and Statics

L 1

L2 θ2

θ1

x2
^

x1
^

Figure 5.32: Left: The 2R robot arm. Right: The arm at four configurations.

25. Modify the program in the previous exercise to plot the force ellipse.
Demonstrate it at the same four configurations as in the first part of the previous
exercise.

26. The kinematics of the 6R UR5 robot are given in Chapter 4.1.2.

(i) Give the numerical space Jacobian J
s

when all joint angles are ⇡/2. Divide
the Jacobian matrix into an angular velocity portion J

!

(joint rates act
on angular velocity) and a linear velocity portion J

v

(joint rates act on
linear velocity).

(ii) At this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular velocity manipulability
ellipsoid (based on J

!

) and the directions and lengths of the principal
semi-axes of the three-dimensional linear velocity manipulability ellipsoid
(based on J

v

).

(iii) At this configuration, calculate the directions and lengths of the principal
semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J

!

) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on J

v

).

27. The kinematics of the 7R WAM robot are given in Chapter 4.1.3.

(i) Give the numerical body Jacobian J
b

when all joint angles are ⇡/2. Divide
the Jacobian matrix into an angular velocity portion J

!

(joint rates act
on angular velocity) and a linear velocity portion J

v

(joint rates act on
linear velocity).

(ii) At this configuration, calculate the directions and lengths of the prin-
cipal semi-axes of the three-dimensional angular velocity manipulability
ellipsoid (based on J

!

) and the directions and lengths of the principal
semi-axes of the three-dimensional linear velocity manipulability ellipsoid
(based on J

v

).

5.8. Exercises 189

(iii) At this configuration, calculate the directions and lengths of the principal
semi-axes of the three-dimensional moment (torque) force ellipsoid (based
on J

!

) and the directions and lengths of the principal semi-axes of the
three-dimensional linear force ellipsoid (based on J

v

).

28. Examine the software functions for this chapter in your favorite program-
ming language. Verify that they work the way you expect. Can you make them
more computationally e�cient?

190 Velocity Kinematics and Statics

Chapter 6

Inverse Kinematics

For a general n degree-of-freedom open chain with forward kinematics T (✓),
✓ 2 Rn, the inverse kinematics problem can be stated as follows: given a ho-
mogeneous transform X 2 SE(3), find solutions ✓ that satisfy T (✓) = X. To
highlight the main features of the inverse kinematics problem, let us consider
the two-link planar open chain of Figure 6.1(a) as a motivational example. Con-
sidering only the position of the end-e↵ector and ignoring its orientation, the
forward kinematics can be expressed as

x
y

�
=

L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

)
L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

)

�
. (6.1)

Assuming L
1

> L
2

, the set of reachable points, or the workspace, is an annulus
of inner radius L

1

� L
2

and outer radius L
1

+ L
2

. Given some end-e↵ector
position (x, y), it is not hard to see that there will be either zero, one, or
two solutions depending on whether (x, y) lies in the exterior, boundary, or
interior of this annulus, respectively. When there are two solutions, the angle
at the second joint (the “elbow” joint) may be positive or negative. These two
solutions are sometimes called “lefty” and “righty” solutions, or “elbow-up” and
“elbow-down” solutions.

Finding an explicit solution (✓
1

, ✓
2

) for a given (x, y) is also not di�cult.
For this purpose, we will find it useful to introduce the two-argument arctan-
gent function atan2(y, x), which returns the angle from the origin to a point
(x, y) in the plane. It is similar to the inverse tangent tan�1(y/x), but whereas
tan�1 only returns angles in the range (�⇡/2,⇡/2), since points (x, y) are in-
distinguishable from points (�x,�y), the atan2 function returns angles in the
range (�⇡,⇡]. For this reason, atan2 is sometimes called the four-quadrant
arctangent.

We also recall the law of cosines,

c2 = a2 + b2 � 2ab cosC,

where a, b, and c are the lengths of the three sides of a triangle and C is the
interior angle of the triangle opposite the side of length c.

191

192 Inverse Kinematics

θ"

θ#

x
y()

Workspace

(a) Workspace and lefty and righty

configurations.

θ"

θ#

α γ
βx + y2 2

(b) Geometric solution.

Figure 6.1: 2R planar open chain inverse kinematics.

Referring to Figure 6.1(b), angle �, restricted to lie in the interval [0,⇡], can
be determined from the law of cosines,

L2

1

+ L2

2

� 2L
1

L
2

cos� = x2 + y2,

from which it follows that

� = cos�1

✓
L2

1

+ L2

2

� x2 � y2

2L
1

L
2

◆
.

Also from the law of cosines,

↵ = cos�1

x2 + y2 + L2

1

� L2

2

2L
1

p
x2 + y2

!
.

The angle � is determined using the two-argument arctangent function, � =
atan2(y, x). With these, the righty solution to the inverse kinematics is

✓
1

= � � ↵, ✓
2

= ⇡ � �

and the lefty solution is

✓
1

= � + ↵, ✓
2

= � � ⇡.

If x2 + y2 lies outside the range [L
1

� L
2

, L
1

+ L
2

], then no solution exists.
This simple motivational example illustrates that for open chains, the in-

verse kinematics problem may have multiple solutions; this is in contrast to the
forward kinematics, where a unique end-e↵ector displacement T exists for given

6.1. Analytic Inverse Kinematics 193

x

x
y

z

z
z

0

0

0

1

1

2

θ1 r

P

P

S

x

y

z

Figure 6.2: Inverse position kinematics of a 6R PUMA-type arm.

joint values ✓. In fact, three-link planar open chains have an infinite number
of solutions for points (x, y) lying in the interior of the workspace; in this case
the chain possesses an extra degree of freedom, and is said to be kinematically
redundant.

In this chapter we first consider the inverse kinematics of spatial open chains
with six degrees of freedom. At most a finite number of solutions exists in this
case, and we consider two popular structures—the PUMA and Stanford robot
arms—for which analytic inverse kinematic solutions can be easily obtained.
For more general open chains, we adapt the Newton-Raphson method for non-
linear root finding to the inverse kinematics problem. The result is an iterative
numerical algorithm that, provided an initial guess of the joint variables is su�-
ciently close to a true solution, eventually converges to a solution. The chapter
concludes with a discussion of pseudoinverse-based inverse kinematics solutions
for redundant open chains.

6.1 Analytic Inverse Kinematics

We begin by writing the forward kinematics of a spatial six-dof open chain in
the following product of exponentials form:

T (✓) = e[S1

]✓

1e[S2

]✓

2e[S3

]✓

3e[S4

]✓

4e[S5

]✓

5e[S6

]✓

6M.

Given some end-e↵ector frame X 2 SE(3), in the inverse kinematics problem
we seek solutions ✓ 2 R6 that satisfy T (✓) = X. In the following subsections we
derive analytic inverse kinematic sollutions for the PUMA and Stanford arms.

6.1.1 6R PUMA-Type Arm

We first consider a 6R arm of the PUMA type. Referring to Figure 6.2, when
the arm is placed in its zero position, (i) the two shoulder joint axes intersect
orthogonally at a common point, with joint axis 1 aligned in the ẑ

0

direction and
joint axis 2 aligned in the x̂

0

direction; (ii) joint axis 3 (the elbow joint) lies in
the x̂

0

-ŷ
0

plane and is aligned parallel with joint axis 2; (iii)joint axes 4, 5, and 6

194 Inverse Kinematics

z0 d1

(a) Elbow arm with

o↵set.

y
0

y
0

p

px

y

px

p y

x0x0
d1

d1

r

r

θ1

θ1

α

ϕ

(b) Kinematic diagram.

Figure 6.3: A 6R PUMA-type arm with a shoulder o↵set.

z0

Figure 6.4: Singular configuration of the zero-o↵set 6R PUMA-type arm.

(the wrist joints) intersect orthogonally at a common point (the wrist center) to
form an orthogonal wrist; for the purposes of this example we assume joint axes
4, 5, and 6 are aligned in the ẑ

0

, ŷ
0

, and x̂
0

directions, respectively. The arm
may also have an o↵set at the shoulder (see Figure 6.3). The inverse kinematics
problem for PUMA-type arms can be decoupled into an inverse position and
inverse orientation subproblem, as we now show.

We first consider the simple case of a zero-o↵set PUMA-type arm. Referring
to Figure 6.2 and expressing all vectors in terms of fixed frame coordinates,
denote components of the wrist center p 2 R3 by p = (p

x

, p
y

, p
z

). Projecting p
onto the x-y plane, it can be seen that

✓
1

= tan�1

✓
p
y

p
x

◆
,

where the atan2 function can be used instead of tan�1. Note that a second valid

6.1. Analytic Inverse Kinematics 195

Figure 6.5: Four possible inverse kinematics solutions for the 6R PUMA type
arm with shoulder o↵set.

solution for ✓
1

is given by

✓
1

= tan�1

✓
p
y

p
x

◆
+ ⇡,

provided that the original solution for ✓
2

is replaced by ⇡ � ✓
2

. As long as
p
x

, p
y

6= 0, both these solutions are valid. When p
x

= p
y

= 0 the arm is in a
singular configuration (see Figure 6.4), and there are infinitely many possible
solutions for ✓

1

.
If there is an o↵set d

1

6= 0 as shown in Figure 6.3, then in general there will be
two solutions for ✓

1

, denoted the right and left arm solutions (Figure 6.3). As

seen from the figure, ✓
1

= ��↵, where � = tan�1(py

p

x

) and ↵ = tan�1(
p

r

2�d

2

1

d

1

) =

tan�1(
p

p

2

x

+p

2

y

�d

2

1

d

1

). The second solution is given by

✓
1

= tan�1

✓
p
y

p
x

◆
� tan�1

0

@
�
q
p2
x

+ p2
y

� d2
1

d
1

1

A .

Determining angles ✓
2

and ✓
3

for the PUMA-type arm now reduces to the inverse
kinematics problem for a planar two-link chain:

cos ✓
3

=
r2 + s2 � a2

2

� a2
3

2a
2

a
3

=
p2
x

+ p2
y

+ (p2
z

� d
1

)2 � a2
2

� a2
3

2a
2

a
3

196 Inverse Kinematics

If we let cos ✓
3

= D, then ✓
3

is given by

✓
3

= tan�1

±
p
1�D2

D

!

✓
2

can be obtained in a similar fashion as

✓
2

= tan�1

⇣s
r

⌘
� tan�1

✓
a
3

s
3

a
2

+ a
3

c
3

◆

= tan�1

0

@ p
z

� d
1q

p2
x

+ p2
y

1

A� tan�1

✓
a
3

s
3

a
2

+ a
3

c
3

◆

The two solutions for ✓
3

correspond to the well-known elbow-up and elbow-
down configurations for the two-link planar arm. In general, a PUMA-type arm
with an o↵set will have four solutions to the inverse position problem, as shown
in Figure 6.5; the upper postures are called left-arm solutions (elbow-up and
elbow-down), while the lower postures are called right-arm solutions (elbow-up
and elbow-down).

We now solve the inverse orientation problem, i.e., finding (✓
4

, ✓
5

, ✓
6

) given
the end-e↵ector frame orientation. This is completely straightforward: having
found (✓

1

, ✓
2

, ✓
3

), the forward kinematics can be manipulated into the form

e[S4

]✓

4e[S5

]✓

5e[S6

]✓

6 = e�[S
3

]✓

3e�[S
2

]✓

2e�[S
1

]✓

1XM�1, (6.2)

where the right-hand side is now known, and the !
i

components of S
4

, S
5

, S
6

are

!
4

= (0, 0, 1)

!
5

= (0, 1, 0)

!
6

= (1, 0, 0).

Denoting the SO(3) component of the right-hand side of Equation (6.2) by R,
the wrist joint angles (✓

4

, ✓
5

, ✓
6

) can be determined as the solution to

Rot(ẑ, ✓
4

)Rot(ŷ, ✓
5

)Rot(x̂, ✓
6

) = R,

which corresponds exactly to the ZYX Euler angles as derived in Appendix B.

6.1.2 Stanford-Type Arms

If the elbow joint in a 6R PUMA-type arm is replaced by a prismatic joint
as shown in Figure 6.6, we then have a Stanford-type arm. Here we consider
the inverse position kinematics for the arm of Figure 6.6; the inverse orientation
kinematics is identical to that for the PUMA-type arm and is not repeated here.

6.1. Analytic Inverse Kinematics 197

θ2

z 0

θ1

y 0

x 0

px

pz

py
sr

d1

d3

Figure 6.6: The first three joints of a Stanford-type arm.

The first joint variable ✓
1

an be found in a similar fashion to the PUMA-type
arm: ✓

1

= tan�1(py

p

x

) (provided that p
x

and p
y

are not both zero). ✓
2

is then
found from Figure 6.6 to be

✓
2

= tan�1

⇣s
r

⌘

where r2 = p2
x

+ p2
y

and s = p
z

� d
1

. Similar to the PUMA-type arm, a second
solution for ✓

1

, ✓
2

is given by

✓
1

= ⇡ + tan�1

✓
p
y

p
x

◆

✓
2

= ⇡ � tan�1

✓
p
y

p
x

◆

The translation distance d
3

is found from the relation

(d
3

+ a
2

)2 = r2 + s2

as

d
3

=
p
r2 + s2

=
q
p2
x

+ p2
y

+ (p
z

� d
1

)2 � a
2

Ignoring the negative square root solution for d
3

, we obtain two solutions to
the inverse position kinematics as long as the wrist center p does not intersect

198 Inverse Kinematics

the z-axis of the fixed frame. If there is an o↵set, then as in the case of the
PUMA-type arm there will be a left and right arm solution.

If the elbow joint in the generalized 6R PUMA-type arm is replaced by a
prismatic joint, the resulting arm is then referred to as a generalized Stanford-
type arm. The inverse kinematics proceeds in the same way as for the general-
ized PUMA-type arm; the only di↵erence occurs in the first step (obtaining ✓

3

).
The screw vector for the third joint now becomes S

3

= (0, v
3

), with kv
3

k = 1,
and ✓

3

is found by solving the equation

ke[S3

]✓

3pk = c,

for some given p 2 R3 and nonnegative positive scalar c. The above equation
reduces to solving the following quadratic in ✓

3

:

✓2
3

+ 2(pT v
3

)✓
3

+ (kpk2 � c2) = 0.

Imaginary, as well as negative solutions, naturally should be excluded.

6.2 Numerical Inverse Kinematics

Iterative numerical methods can be applied if the inverse kinematics equations
do not admit analytic solutions. Even in cases where an analytic solution does
exist, numerical methods are often used to improve the accuracy of these solu-
tions. For example, in a PUMA-type arm, the last three axes may not exactly
intersect at a common point, and the shoulder joint axes may not be exactly or-
thogonal. In such cases, rather than throw away any analytic inverse kinematic
solutions that are available, such solutions can be used as the initial guess in an
iterative numerical procedure for solving the inverse kinematics.

There exist a variety of iterative methods for finding the roots of a nonlinear
equation, and our aim is not to discuss these in detail—any text on numerical
analysis will cover these methods in depth—but rather to develop ways in which
to transform the inverse kinematics equations such that they are amenable to
existing numerical methods. However, it is useful to review one fundamental
approach to nonlinear root-finding, the Newton-Raphson method. Also, in situ-
ations where an exact solution may not exist and we seek the closest approximate
solution, or conversely, an infinity of inverse kinematics solutions exists (i.e., if
the robot is kinematically redundant) and we seek a solution that is optimal
with respect to some criterion, methods of optimization are needed. We be-
gin this section with a discussion of the Newton-Raphson method for nonlinear
root-finding, and also the first-order necessary conditions for optimization.

6.2.1 Newton-Raphson Method

To numerically solve the equation f(✓) = 0 for a given di↵erentiable function
f : R ! R, assume ✓

0

is an initial guess for the solution, and expand f(✓) to

6.2. Numerical Inverse Kinematics 199

first-order about ✓
0

:

f(✓) = f(✓
0

) +
@f

@✓
(✓

0

)(✓ � ✓
0

) + higher-order terms.

Keeping only the terms up to first-order, set f(✓) = 0 and solve for ✓ to obtain

✓ = ✓
0

�
✓
@f

@✓
(✓

0

)

◆�1

✓
0

.

Using this value of ✓ as the new guess for the solution and repeating the above,
we get the following iteration:

✓
k+1

= ✓
k

�
✓
@f

@✓
(✓

k

)

◆�1

✓
k

.

The above iteration is repeated until some stopping criterion is satisified, e.g.,
|f(✓

k

)� f(✓
k+1

)|/|f(✓
k

)| ✏ for some user-prescribed threshold value ✏.
The same formula applies for the case when f is multi-dimensional, i.e.,

f : Rn ! Rn, in which case

@f

@✓
(✓) =

2

64

@f

1

@✓

1

(✓) · · · @f

1

@✓

n

(✓)
...

. . .
...

@f

n

@✓

1

(✓) · · · @f

n

@✓

n

(✓)

3

75 2 Rn⇥n.

The case when the above matrix fails to be invertible is discussed further in the
later section describing the numerical inverse kinematics algorithm.

6.2.2 Optimization Basics

Suppose x⇤ 2 R is a local minimum of a twice-di↵erentiable objective function
f(x), f : R! R, in the sense that for all x near x⇤, we have f(x) � f(x⇤). We
can then expect that the slope of f(x) at x⇤ is zero, i.e.,

@f

@x
(x⇤) = 0,

and also that
@2f

@x2

(x⇤) � 0.

If f is multi-dimensional, i.e., f : Rn ! R, and all partial derivatives of f
exist up to second-order, then a necessary condition for x⇤ 2 Rn to be a local
minimum is that its gradient be zero:

rf(x⇤) =
h

@f

@x

1

(x⇤) · · · @f

@x

n

(x⇤)
i
T

= 0.

As an example, consider the linear equation Ax = b, where A 2 Rm⇥n and
b 2 Rm (m > n) are given. Because there are more constraints (m) than

200 Inverse Kinematics

variables (n), in general a solution to Ax = b will not exist. Suppose we seek
the x that best approximates a solution, in the sense of minimizing

min
x2Rn

f(x) =
1

2
kAx� bk2 =

1

2
(Ax� b)T (Ax� b) =

1

2
xTATAx� 2bTAx+ bT b.

The first-order necessary condition is given by

ATAx�AT b = 0. (6.3)

If rank(A) = n, then ATA 2 Rn⇥n is invertible, and the solution to (6.3) is

x⇤ = (ATA)�1AT b.

Now suppose we wish to find, among all x 2 Rn that satisfy g(x) = 0 for
some di↵erentiable g : Rn ! Rm (typically m n to ensure that there exists an
infinity of solutions to g(x) = 0), the x⇤ that minimizes the objective function
f(x). Suppose x⇤ is a local minimum of f that is also a regular point of the
surface parametrized implicitly by g(x) = 0, i.e., x⇤ satisfies g(x⇤) = 0 and

rank
@g

@x
(x⇤) = m.

Then from the fundamental theorem of linear algebra, it can be shown that
there exists some �⇤ 2 Rm (called the Lagrange multiplier) that satisfies

rf(x⇤) +
@g

@x

T

(x⇤)�⇤ = 0 (6.4)

Equation (6.4) together with g(x⇤) = 0 constitute the first-order necessary con-
ditions for x⇤ to be a feasible local mininum of f(x). Note that these two
equations represent n+m equations in the n+m unknowns x and �.

As an example, consider the following quadratic objective function f(x):

min
x2Rn

f(x) =
1

2
xTQx+ cTx

subject to the linear constraint Ax = b, where Q 2 Rn is symmetric positive-
definite (that is, xTQx > 0 for all x 2 Rn), and the matrix A 2 Rm⇥n, m n,
is of maximal rank m. The first-order necessary conditions for this equality-
constrained optimization problem are

Qx+AT� = �c
Ax = b.

Since A is of maximal rank and Q is invertible, the solutions to the first-order
necessary conditions can be obtained after some manipulation as

x = Gb+ (I �GA)Q�1c

� = Bb+BAQ�1c

6.2. Numerical Inverse Kinematics 201

where G 2 Rn⇥m and B 2 Rm⇥m are defined as

G = Q�1ATB, B = (AQ�1AT)�1.

Both the proof of the existence of Lagrange multipliers and the derivation of
the solution to the first-order necessary conditions are further explored in the
exercises at the end of this chapter.

6.2.3 Numerical Inverse Kinematics Algorithm

Suppose we express the end-e↵ector frame using a coordinate vector x governed
by the forward kinematics x = f(✓), a nonlinear vector equation mapping the
n joint coordinates to the m end-e↵ector coordinates. Assume f : Rn ! Rm is
di↵erentiable, and let x

d

be the desired end-e↵ector coordinates. The goal is to
find joint coordinates ✓

d

such that

x
d

� f(✓
d

) = 0.

Given an initial guess ✓
0

which is “close by” a solution ✓
d

, the kinematics can
be expressed as the Taylor expansion

x
d

= f(✓
d

) = f(✓
0

) +
@f

@x

����
✓

0| {z }
J(✓

0

)

(✓
d

� ✓
0

)| {z }
�✓

+ h.o.t., (6.5)

where J(✓
0

) 2 Rm⇥n is the coordinate Jacobian evaluated at ✓
0

. Truncating
the Taylor expansion at first-order, we can approximate Equation (6.5) as

J(✓
0

)�✓ = x
d

� f(✓
0

). (6.6)

Assuming J(✓
0

) is square (m = n) and invertible, we can solve for �✓ as

�✓ = J�1(✓
0

) (x
d

� f(✓
0

)) . (6.7)

If the kinematics are linear, i.e., the higher-order terms in Equation (6.5) are
zero, then the new guess ✓

1

= ✓
0

+�✓ would exactly satisfy x
d

= f(✓
1

). If not,
the new guess ✓

1

should be closer to the root than ✓
0

, and the process is then
repeated, with the sequence {✓

0

, ✓
1

, ✓
2

, . . .} converging to ✓
d

(Figure 6.7).
As indicated in Figure 6.7, if there are multiple inverse kinematics solutions,

the iterative process tends to converge to the solution that is “closest” to the
initial guess ✓

0

. You can think of each solution as having its own basin of
attraction. If the initial guess is not in one of these basins (e.g., the initial guess
is not su�ciently close to a solution), the iterative process may not converge.

In practice, for computational e�ciency reasons, Equation (6.6) is often
solved without directly calculating the inverse J�1(✓

0

). More e�cient tech-
niques exist for solving a set of linear equations Ax = b for x. For example, for
invertible square matrices A, the LU decomposition of A can be used to solve
for x with fewer operations. In MATLAB, for example, the syntax

202 Inverse Kinematics

x – f(θ)d

x – f(θ)d 0

0θ 1θ dθ

Δθ = ∂f
∂θ

(θ) ()
−1

x – f(θ)d 0()

slope = ∂f
∂θ

(θ)
_

0

0

Figure 6.7: The first step of the Newton-Raphson method for nonlinear root-
finding for a scalar x and ✓. In the first step, the slope �@f/@✓ is evaluated
at the point (✓

0

, x
d

� f(✓
0

)). In the second step, the slope would be evaluated
at the point (✓

1

, x
d

� f(✓
1

)), and eventually the process would converge to ✓
d

.
Note that an initial guess to the left of the plateau of x

d

� f(✓) would likely
result in convergence to the other root of x

d

� f(✓), and an initial guess at or
near the plateau would result in a large initial |�✓| and the iterative process
may not converge at all.

x = A\b

solves for x without computing A�1.
If J is not invertible, either because it is not square or because it is singular,

then J�1 in Equation (6.7) does not exist. Equation (6.6) can still be solved
(or approximately solved) for �✓ by replacing J�1 in Equation (6.7) with the
Moore-Penrose pseudoinverse J†. For any equation of the form Jy = z, where
J 2 Rm⇥n, y 2 Rn, and z 2 Rm, the solution

y⇤ = J†z

falls into one of two categories:

• The solution y⇤ exactly satisfies Jy⇤ = z, and for any solution y exactly
satisfying Jy = z, ky⇤k kyk. In other words, among all solutions, the
solution y⇤ minimizes the two-norm. There can be an infinite number of
solutions y to Jy = z if the robot has more joints n than end-e↵ector
coordinates m, i.e., the Jacobian J is “fat.”

• If there is no y that exactly satisfies Jy = z, then y⇤ minimizes the two-
norm of the error, i.e., kJy⇤ � zk kJy � zk for any y 2 Rn. This
case corresponds to rank(J) < m, i.e., the robot has fewer joints n than
end-e↵ector coordinates m (a “tall” Jacobian J) or is at a singularity.

Many programming languages provide functions to calculate the pseudoin-
verse; for example, the usage in MATLAB is

6.2. Numerical Inverse Kinematics 203

y = pinv(J)*z

In the case that J is full rank (rank m for n > m or rank n for n < m), i.e., the
robot is not at a singularity, the pseudoinverse can be calculated as

J† = JT (JJT)�1 if J is fat, n > m (called a right inverse, since JJ† = I)

J† = (JTJ)�1JT if J is tall, n < m (called a left inverse, since J†J = I).

Replacing the Jacobian inverse with the Jacobian pseudoinverse, Equation (6.7)
becomes

�✓ = J†(✓
0

) (x
d

� f(✓
0

)) . (6.8)

If rank(J) < m, then the solution �✓ calculated in Equation (6.8) may not
exactly satisfy Equation (6.6), but it satisfies this condition as closely as possible
in a least-squares sense. If n > m, then the solution is the smallest joint variable
change (in the two-norm sense) that exactly satisfies Equation (6.6).

Equation (6.8) suggests the Newton-Raphson iterative algorithm for finding
✓
d

:

(i) Initialization: Given x
d

2 Rm and an initial guess ✓
0

2 Rn. Set i = 0.

(ii) Set e = x
d

� f(✓
i

). While kek > ✏ for some small ✏:

• Set ✓
i+1

= ✓
i

+ J†(✓
i

)e.

• Increment i.

To modify this algorithm to work with a desired end-e↵ector configuration
represented as T

sd

2 SE(3) instead of as a coordinate vector x
d

, we can replace
the coordinate Jacobian J with the end-e↵ector body Jacobian J

b

2 R6⇥n.
Note, however, that the vector e = x

d

� f(✓
i

), representing the direction from
the current guess (evaluated through the forward kinematics) to the desired
end-e↵ector configuration, cannot simply be replaced by T

sd

�T
sb

(✓
i

); the pseu-
doinverse of J

b

should act on a body twist V
b

2 R6. To find the right analogy,
we should think of e = x

d

� f(✓
i

) as a velocity vector which, if followed for
unit time, would cause a motion from f(✓

i

) to x
d

. Similarly, we should look
for a body twist V

b

which, if followed for unit time, would cause a motion from
T
sb

(✓
i

) to the desired configuration T
sd

.
To find this V

b

, we first calculate the desired configuration in the body frame,

T
bd

(✓
i

) = T�1

sb

(✓
i

)T
sd

= T
bs

(✓
i

)T
sd

.

Then V
b

is determined using the matrix logarithm,

[V
b

] = log T
bd

(✓
i

).

This leads to the following inverse kinematics algorithm, analogous to the
coordinate vector algorithm:

(i) Initialization: Given T
sd

and an initial guess ✓
0

2 Rn. Set i = 0.

204 Inverse Kinematics

θ2

θ1

y^

x^

1 m

1 m

{b}

initial
guess

{goal}

after one
N-R iteration

screw
axis

Figure 6.8: (Left) A 2R robot. (Right) The goal is to find the joint angles
yielding the end-e↵ector frame {goal}, corresponding to ✓

1

= 30�, ✓
2

= 90�. The
initial guess is (0�, 30�). After one Newton-Raphson iteration, the calculated
joint angles are (34.23�, 79.18�). The screw axis that takes the initial frame to
the goal frame (the dotted line) is also indicated.

(ii) Set [V
b

] = log
�
T�1

sb

(✓
i

)T
sd

�
. While k!

b

k > ✏
!

or kv
b

k > ✏
v

for small ✏
!

, ✏
v

:

• Set ✓
i+1

= ✓
i

+ J†
b

(✓
i

)V
b

.

• Increment i.

An equivalent form can be derived in the space frame, using the space Ja-
cobian J

s

(✓) and the spatial twist V
s

= [Ad
T

sb

]V
b

.
For this numerical inverse kinematics method to converge, the initial guess

✓
0

should be su�ciently close to a solution ✓
d

. This condition can be satisfied
by starting the robot from an initial home configuration where both the actual
end-e↵ector configuration and the joint angles are known, and ensuring that
the requested end-e↵ector position T

sd

change slowly relative to the frequency
of the calculation of the inverse kinematics. Then, for the rest of the robot’s
run, the calculated ✓

d

at the previous timestep serves as the initial guess ✓
0

for
the new T

sd

at the next timestep.

Example: Planar 2R Robot

The body Jacobian Newton-Raphson inverse kinematics algorithm is applied to
the 2R robot in Figure 6.8. Each link is 1 m in length, and we would like to find
the joint angles that place the tip of the robot at (x, y) = (0.366 m, 1.366 m),
which corresponds to

T
sd

=

2

664

�0.5 �0.866 0 0.366
0.866 �0.5 0 1.366
0 0 1 0
0 0 0 1

3

775

6.3. Inverse Velocity Kinematics 205

as shown by the frame {goal} in Figure 6.8. The forward kinematics, expressed
in the end-e↵ector frame, are given by

M =

2

664

1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , B
1

=

2

6666664

0
0
1
0
2
0

3

7777775
, B

2

=

2

6666664

0
0
1
0
1
0

3

7777775
.

Our initial guess to the solution is ✓
0

= (0, 30�), and we specify an error tolerance
of ✏

!

= 0.001 rad (or 0.057�) and ✏
v

= 10�4 m (100 microns). The progress
of the Newton-Raphson method is illustrated in the table below, where only
the (!

zb

, v
xb

, v
yb

) components of the body twist V
b

are given, since the robot’s
motion is restricted to the x-y plane:

i ✓
i

(in degrees) (x, y) V
b

= (!
zb

, v
xb

, v
yb

) k!
b

k kv
b

k
0 (0.00, 30.00�) (1.866, 0.500) (1.571, 0.498, 1.858) 1.571 1.924
1 (34.23�, 79.18�) (0.429, 1.480) (0.115,�0.074, 0.108) 0.115 0.131
2 (29.98�, 90.22�) (0.363, 1.364) (�0.004, 0.000,�0.004) 0.004 0.004
3 (30.00�, 90.00�) (0.366, 1.366) (0.000, 0.000, 0.000) 0.000 0.000

The iterative procedure converges to within the tolerances after three it-
erations. Figure 6.8 shows the initial guess, the goal configuration, and the
configuration after one iteration. Notice that the first v

xb

calculated is positive,
even though the origin of the goal frame is in the �x̂

b

direction of the initial
guess. This is because the constant body velocity V

b

that takes the initial guess
to {goal} in one second is a rotation about the screw axis indicated in the figure.

6.3 Inverse Velocity Kinematics

To control a robot to follow a desired end-e↵ector trajectory T
sd

(t), one solution
is to calculate the inverse kinematics ✓

d

(k�t) at each discrete time step k, then
control the joint velocities to be

✓̇ = (✓
d

(k�t)� ✓((k � 1)�t))/�t

during the time interval [(k � 1)�t, k�t]. This is a type of feedback controller,
since the desired new joint angles ✓

d

(k�t) are being compared to the most
recently measured actual joint angles ✓((k� 1)�t) to calculate the commanded
joint velocities.

Another option that avoids the computation of inverse kinematics is to cal-
culate the required joint velocities ✓̇ directly from the relationship J ✓̇ = V

d

,
where the desired end-e↵ector twist V

d

and J are expressed with respect to the
same frame:

✓̇ = J†(✓)V
d

. (6.9)

206 Inverse Kinematics

The desired twist V
d

(t) can be chosen to be T�1

sd

(t)Ṫ
sd

(t) (the body twist of
the desired trajectory at time t) or Ṫ

sd

(t)T�1

sd

(t) (the spatial twist), depending
on whether the body Jacobian or space Jacobian is used, but small velocity
errors are likely to accumulate over time, resulting in increasing position error.
Preferably a position feedback controller would be designed to choose V

d

(t) to
keep the end-e↵ector following T

sd

(t) with little position error. Feedback control
is discussed in Chapter 11.

In the case of a redundant robot with n > 6 joints, of the (n�6)-dimensional
set of solutions satisfying Equation (6.9), the use of the pseudoinverse J†(✓)

returns the ✓̇ minimizing the two-norm k✓̇k =
p
✓̇T ✓̇. This is appealing; the

motion is the minimum joint velocity motion that achieves the desired end-
e↵ector twist.

We could also choose to give the individual joint velocities di↵erent weight-
ing. For example, as we will see later, the kinetic energy of a robot can be
written

1

2
✓̇TM(✓)✓̇,

where M(✓) is the symmetric, positive-definite, configuration-dependent inertia
matrix of the robot. We may also seek a path that minimizes some configuration-
dependent potential energy function h(✓) (for example, h(✓) could be the gravi-
tational potential energy, or an external elastic potential energy that may arise
from mechanical springs connected between a robot’s links or at the joints).
The time derivative of h(✓) is then the rate of change of the potential, or power:

d

dt
h(✓) = rh(✓)T ✓̇.

The following optimization problem can therefore be formulated:

min
˙

✓

1

2
✓̇TM(✓)✓̇,+rh(✓)T ✓̇

subject to the constraint J(✓)✓̇ = V
d

. From the first-order necessary conditions
for optimality, i.e.,

JT� = M ✓̇ +rh
V
d

= J ✓̇,

the optimal ✓̇ and � can be derived as follows:

✓̇ = GV
d

+ (I �GJ)M�1rh
� = BV

d

+BJM�1rh,

where B 2 Rm⇥m and G 2 Rn⇥m are defined as

B = (JM�1JT)�1

G = M�1JT (JM�1JT)�1 = M�1JTB.

6.4. A Note on Closed Loops 207

Recalling the static relation ⌧ = JTF from the previous chapter, the Lagrange
multiplier � can be interpreted as a spatial force in task space. Moreover, from
the expression � = BV

d

+BJM�1rh, the first term BV
d

can be interpreted as
a dynamic force generating the end-e↵ector velocity V

d

, while the second term
BJM�1rh can be interpreted as a static force required to keep the end-e↵ector
stationary.

If a potential function h(q) is not specified and we wish to choose the joint
velocities ✓̇ to minimize the kinetic energy of the robot (intuitively, minimize
the velocities of the joints moving a lot of mass), while still satisfying the desired
end-e↵ector twist, the solution

✓̇ = M�1JT (JM�1JT)�1V
d

,

corresponding to the weighted Moore-Penrose pseudoinverse J† = M�1JT (JM�1JT)�1,
minimizes the weighted norm ✓̇TM ✓̇.

6.4 A Note on Closed Loops

A desired end-e↵ector trajectory over a time-interval [0, t
f

] is a closed loop if
T
sd

(0) = T
sd

(t
f

). It should be noted that numerical methods for calculating
inverse kinematics for redundant robots, at either the configuration or velocity
levels, are likely to yield motions that are not closed loops in the joint space,
i.e., ✓(0) 6= ✓(t

f

). If closed-loop motions in joint space are required, an extra
set of conditions on the inverse kinematics must be satisfied.

6.5 Summary

• Given a spatial open chain with forward kinematics T (✓), ✓ 2 Rn, in the
inverse kinematics problem one seeks to find, for some given X 2 SE(3),
solutions ✓ that satisfy X = T (✓). Unlike the forward kinematics, the
inverse kinematics problem can possess multiple solutions, or no solutions
in the event that X lies outside the workspace. For a spatial open chain
with n joints and an X in the workspace, n = 6 typically leads to a finite
number of inverse kinematic solutions, while n > 6 leads to an infinite
number of solutions.

• The inverse kinematics can be solved analytically for the six-dof PUMA-
type robot arm, a popular 6R design consisting of a 3R orthogonal axis
wrist connected to a 2R orthogonal axis shoulder by an elbow joint.

• Another class of open chains that admit analytic inverse kinematic solu-
tions are Stanford-type arms; these arms are obtained by replacing the
elbow joint in the generalized 6R PUMA-type arm by a prismatic joint.
Geometric inverse kinematic algorithms similar to those for PUMA-type
arms have been developed.

208 Inverse Kinematics

• Iterative numerical methods are used in cases where analytic inverse kine-
matic solutions are not available. These typically involve solving the in-
verse kinematics equations through an iterative procedure like the Newton-
Raphson method, and they require an initial guess at the joint variables.
The performance of the iterative procedure depends to a large extent on
the quality of the initial guess, and in the case that there are several pos-
sible inverse kinematic solutions, the method finds the solution that is
“closest” to the initial guess. Each iteration is of the form

✓̇
i+1

= ✓
i

+ J†(✓
i

)V,

where J†(✓) is the pseudoinverse of the Jacobian J(✓) and V is the twist
that takes T (✓

i

) to T
sd

in one second.

6.6 Software

[thetalist,success] = IKinBody(Blist,M,T,thetalist0,eomg,ev)
Uses iterative Newton-Raphson to calculate the inverse kinematics given the
list of joint screws B

i

expressed in the end-e↵ector frame, the end-e↵ector home
configuration M , the desired end-e↵ector configuration T , an initial guess at the
joint angles ✓

0

, and the tolerances ✏
!

and ✏
v

on the final error. If a solution is
not found within a maximum number of iterations, then success is false.

[thetalist,success] = IKinSpace(Slist,M,T,thetalist0,eomg,ev)
Similar to IKinBody, except the joint screws S

i

are expressed in the space frame,
and the tolerances are interpreted in the space frame.

6.7 Notes and References

The inverse kinematics of the most general 6R open chain is known to have up
to 16 solutions; this result was first proved by Lee and Liang [63], and also by
Raghavan and Roth [101]. Iterative numerical procedures for finding all sixteen
solutions of a general 6R open chain are reported in [77]. A summary of inverse
kinematics methods for kinematically redundant robot arms are discussed in
[123]. The repeatability conditions for kinematically redundant inverse kine-
matics schemes are examined in [116].

6.8. Exercises 209

Figure 6.9: A 6R open chain.

{T}

L L

xs
^

ys
^

zs
^

{s}

x̂
ŷ

ẑ
{T }

x̂ ŷ

ẑ

θ2

θ1

θ3 θ4

θ5

θ6

L

L2

Figure 6.10: A 6R open chain.

6.8 Exercises

1. Write a program that solves the analytical inverse kinematics for a planar 3R
robot with link lengths L

1

= 3, L
2

= 2, and L
1

= 1, given the desired position
(x, y) and orientation ✓ of a frame fixed to the tip of the robot. Each joint has
no joint limits. Your program should find all of the solutions (how many are
there in the general case?), give the joint angles for each, and draw the robot
in these configurations. Test the code for the case of (x, y, ✓) = (4, 2, 0).

2. Solve the inverse position kinematics (you do not need to solve the orienta-
tion kinematics) of the 6R open chain robot shown in Figure 6.9.

3. Find the inverse kinematics solutions when the end-e↵ector frame {T} of
the 6R open chain robot shown in Figure 6.10 is set to {T’} as shown. The
orientation of {T} at the zero position is the same as that of the fixed frame
{s}, and {T’} is the result of a pure translation of {T} along the ŷs-axis.

4. The RRP open chain of Figure 6.11 is shown in its zero position. Joint axes
1 and 2 intersect at the fixed frame origin, and the end-e↵ector frame origin p
is located at (0, 1, 0) when the robot is in its zero position.
(a) Suppose ✓

1

= 0. Solve for ✓
2

and ✓
3

when the end-e↵ector frame origin p is

210 Inverse Kinematics

z

x y

1θ

2θ

L = 1

P

π

6

3θ

1ω

2ω

Figure 6.11: An RRP open chain.

at (�6, 5,
p
3).

(b) If joint 1 is not fixed to zero but instead allowed to vary, find all inverse
kinematic solutions (✓

1

, ✓
2

, ✓
3

) for the same p given in (a).

5. The four-dof robot of Figure 6.12 is shown in its zero position. Joint 1
is a screw joint of pitch h. Given the end-e↵ector position p = (p

x

, p
y

, p
z

)
and orientation R = e[ẑ]↵, where ẑ = (0, 0, 1) and ↵ 2 [0, 2⇡], find the inverse
kinematics solution (✓

1

, ✓
2

, ✓
3

, ✓
4

) as a function of p and ↵.

ys

zs

xs

{S}

yb

zb

xb

{b}

Figure 6.12: Open chain with screw joint

6.8. Exercises 211

6. Figure 6.13(a) shows a surgical robot, which can be modelled as an RRPRRP
open chain as shown in Figure 6.13(b).
(a) In the general case, how many inverse kinematic solutions will exist for a
given end-e↵ector frame?
(b) Suppose coordinates for points A and B in the fixed frame are respectively
given as (x

A

, y
A

, z
A

) and (x
B

, y
B

, z
B

). Solve the inverse kinematics for ✓
1

, ✓
2

,
✓
3

, ✓
4

, ✓
5

: find an explicit formula for (✓
1

, ✓
2

, ✓
3

), while for (✓
4

, ✓
5

), just describe
the procedure.

(a) Surgical robot

x
y

z

2L

2L

L

2L

2L 2L 2L

L

45

y
z

x

point A

point B

end-effector

(b) RRRRRP robot at zero position

Figure 6.13: Surgical robot and kinematic model

7. In this exercise you will draw a plot of a scalar x
d

�f(✓) vs. a scalar ✓ (similar
to Figure 6.7) with two roots. Draw it so that for some initial guess ✓

0

, the
iterative process actually jumps over the closest root and eventually converges
to the further root. Hand-draw the plot and show the iteration process that
results in convergence to the further root. Comment on the basins of attraction

212 Inverse Kinematics

x̂

ẑ

ŷ

θ1

θ2

θ3

Figure 6.14: A 3R wrist.

of the two roots in your plot.

8. Use Newton-Raphson iterative numerical root finding to perform two steps
of finding the root of

f(x, y) =

x2 � 4
y2 � 9

�

when your initial guess is (x
1

, y
1

) = (1, 1). Write the general form of the gradient
(for any guess (x, y)) and compute the results of the first two iterations. You
can do this by hand or write a program. If you write a program, submit your
code and the printout of the results. Also, give all of the correct roots, not just
the one that would be found from your initial guess. How many are there?

9. Modify the function IKinBody to print out the results of each Newton-
Raphson iteration, similar to the table for the 2R robot example in Section 6.2.
Show the table produced when the initial guess for the 2R robot of Figure 6.8
is (0, 30�) and the goal configuration corresponds to (90�, 120�). Turn in your
code.

10. The 3R orthogonal axis wrist mechanism of Figure 6.14 is shown in its zero
position, with joint axes 1 and 3 collinear.
(a) Given a desired wrist orientation R 2 SO(3), derive an iterative numerical
procedure for solving its inverse kinematics.
(b) Perform a single iteration of Newton-Raphson root-finding using body-frame

6.8. Exercises 213

xs
^

ys
^

zs
^

{s}
{T} =

R p

0 1

L

θ1

θ2

θ3

π
4 π

4

Figure 6.15: A 3R nonorthogonal chain.

numerical inverse kinematics. First write the forward kinematics and Jacobian
for general configurations of the wrist. Then apply your results for the specific
case of an initial guess of ✓

1

= ✓
3

= 0, ✓
2

= ⇡/6, with a desired end-e↵ector
frame at

R =

2

4
1p
2

� 1p
2

0
1p
2

1p
2

0

0 0 1

3

5 2 SO(3).

If you write code, submit the code together with the results.

11. The 3R nonorthogonal chain of Figure 6.15 is shown in its zero position.
(a) Derive a numerical procedure for solving the inverse position kinematics
numerically; that is, given some end-e↵ector position p as indicated in the figure,
find (✓

1

, ✓
2

, ✓
3

).
(b) Given an end-e↵ector orientation R 2 SO(3), find all inverse kinematic
solutions (✓

1

, ✓
2

, ✓
3

).

12. Use the function IKinSpace to find joint variables ✓
d

of the UR5 (Chap-
ter 4.1.2) satisfying

T (✓
d

) = T
sd

=

2

664

0 1 0 �0.5
0 0 �1 0.1
�1 0 0 0.1
0 0 0 1

3

775 .

Distances are in meters. Use ✏
!

= 0.001 (0.057 degrees) and ✏
v

= 0.0001
(0.1 mm). For your initial guess ✓

0

, choose all joint angles as 0.1 rad. If the
configuration is outside the workspace, or if you find that the zero configuration
is too far from a final answer to converge, you may demonstrate IKinBody
using another T

sd

. Note that the numerical inverse kinematics routines do not

214 Inverse Kinematics

respect joint limits, so it is possible for your routine to find solutions that are
not achievable by the actual robot.

13. Use the function IKinBody to find joint variables ✓
d

of the WAM (Chap-
ter 4.1.3) satisfying

T (✓
d

) = T
sd

=

2

664

1 0 0 0.5
0 1 0 0
0 0 1 0.4
0 0 0 1

3

775 .

Distances are in meters. Use ✏
!

= 0.001 (0.057 degrees) and ✏
v

= 0.0001
(0.1 mm). For your initial guess ✓

0

, choose all joint angles as 0.1 rad. If the
configuration is outside the workspace, or if you find that the zero configuration
is too far from a final answer to converge, you may demonstrate IKinBody using
another T

sd

.

14. The Fundamental Theorem of Linear Algebra (FTLA) states that given a
matrix A 2 Rm⇥n,

null(A) = range(AT)?

null(AT) = range(A)?,

where null(A) denotes the null space of A (i.e., the subspace of Rn of vectors
that satisfy Ax = 0), range(A) denotes the range or column space of A (i.e.,
the subspace of Rm spanned by the columns of A), and range(A)? denotes
the orthogonal complement to range(A) (i.e., the set of all vectors in Rm that
are orthogonal to every vector in range(A)). In this problem you are asked
to use FTLA to prove the existence of Lagrange multipliers for the equality
constrained optimization problem. Let f(x), f : Rn ! R di↵erentiable, be
the objective function to be minimized. x must satisfy the equality constraint
g(x) = 0 for given di↵erentiable g : Rn ! Rm.
(a) Suppose x⇤ is a local minimum. Let x(t) be any arbitrary curve on the
surface parametrized implicitly by g(x) = 0 (implying that g(x(t)) = 0 for all t)
such that x(0) = x⇤. Further assume that x⇤ is a regular point of the surface.
Taking the time derivative of both sides of g(x(t)) = 0 at t = 0 then leads to

@g

@x
(x⇤)ẋ(0) = 0. (6.10)

At the same time, because x(0) = x⇤ is a local minimum, it follows that f(x(t))
(viewed as an objective function in t) has a local minimum at t = 0, implying
that

d

dt
f(x(t))

����
t=0

=
@f

@x
(x⇤)ẋ(0) = 0. (6.11)

Since (6.10) and (6.11) must hold for all arbitrary curves x(t) on the surface
defined by g(x) = 0, use FTLA to prove the existence of a Lagrange multiplier

6.8. Exercises 215

�⇤ 2 Rm such that the first-order necessary condition

rf(x⇤) +
@g

@x
(x⇤)T�⇤ = 0.

holds.

15. (a) If A�1 exists, show that

A D
C B

��1

=

A�1 + EG�1F �EG�1

�G�1F G�1

�
,

where G = B � CA�1D, E = A�1D, and F = CA�1.
(b) Use the above result to solve the first-order necessary conditions for the
equality constrained optimization problem

min
x2Rn

1

2
xTQx+ cTx

subject to Ax = b, where Q 2 Rn⇥n is symmetric positive-definite and A 2
Rm⇥n is of maximal rank m.

216 Inverse Kinematics

Chapter 7

Kinematics of Closed
Chains

Any kinematic chain that contains one or more loops is called a closed chain.
Several examples of closed chains were encountered in Chapter 2, from the
planar four-bar linkage to spatial mechanisms like the Stewart-Gough platform
and Delta robot (Figure 7.1). These mechanisms are examples of parallel
mechanisms; these are closed chains consisting of a fixed and moving platform
connected by a set of “legs.” The legs themselves are typically open chains,
but sometimes can also be other closed chains (like the Delta robot depicted in
the figure). In this chapter we analyze the kinematics of closed chains, paying
special attention to parallel mechanisms.

The Stewart-Gough Platform is used widely as both a motion simulator
and six-axis force-torque sensor. When used as a force-torque sensor, the six
prismatic joints experience internal linear forces whenever any external force
is applied to the moving platform; by measuring these internal linear forces
one can estimate the applied external force. The Delta robot is a three-dof
mechanism whose moving platform moves such that it always remains parallel
to the fixed platform. Because the three actuators are all attached to the three
revolute joints of the fixed platform, the moving parts are relatively light; this
allows the Delta to achieve very fast motions.

Closed chains admit a much greater variety of designs than open chains,
and their kinematic and static analysis is consequently more complicated. This
can be traced to two defining features of closed chains: (i) not all joints are
actuated, and (ii) the joint variables must satisfy a number of loop-closure
constraint equations, which may or may not be independent depending on the
configuration of the mechanism. The presence of unactuated (or passive) joints,
together with the fact that the number of actuated joints may deliberately
exceed the mechanism’s kinematic degrees of freedom—such mechanisms are
said to be redundantly actuated—makes not only the kinematics analysis
more challenging, but also introduces new types of singularities not present in

217

218 Kinematics of Closed Chains

{s}

{b} bi

Ai

Bi

di

a i

pi

(a) Stewart-Gough platform (b) Delta robot

Figure 7.1: Two popular parallel mechanisms.

open chains.
Recall also that for open chains, the kinematic analysis proceeds in a more

or less straightforward fashion with the formulation of the forward kinematics
(e.g., via the product of exponentials formalism) followed by that of the inverse
kinematics. For general closed chains it is usually di�cult to obtain an explicit
set of equations for the forward kinematics in the form X = T (✓), where X 2
SE(3) is the end-e↵ector frame and ✓ 2 Rn are the joint coordinates. The more
e↵ective approaches exploit as much as possible any kinematic symmetries and
other special features of the mechanism.

In this chapter we begin with a series of case studies involving some well-
known parallel mechanisms, and eventually build up a repertoire of kinematic
analysis tools and methodologies for handling more general closed chains. Our
focus will be on parallel mechanisms that are exactly actuated, i.e., the number
of actuated degrees of freedom is equal to the number of degrees of freedom of the
mechanism. Methods for the forward and inverse position kinematics of parallel
mechanisms are discussed, followed by the characterization and derivation of
the constraint Jacobian, and the Jacobians of both the inverse and forward
kinematics. The chapter concludes with a discussion of the di↵erent types of
kinematic singularities that arise in closed chains.

7.1 Inverse and Forward Kinematics

One general observation can be made for serial mechanisms vs. parallel mecha-
nisms: For serial chains, forward kinematics is generally straightforward while
inverse kinematics may be complex (e.g., multiple solutions or no solutions). For
parallel mechanisms, the inverse kinematics is often relatively straightforward
(e.g., given the configuration of a platform, it may not be hard to determine
the joint variables), while the forward kinematics may be quite complex: an

7.1. Inverse and Forward Kinematics 219

p

a2

d2

d3

b2b1

b3

d1

a3

a1

Figure 7.2: 3⇥RPR planar parallel mechanism.

arbitrarily chosen set of joint variables may be infeasible, or it may correspond
to multiple possible configurations of the platform.

In this section we begin with two case studies, the 3⇥RPR planar parallel
mechanism, and its spatial counterpart, the 3⇥SPS Stewart-Gough platform.
The analysis of these two mechanisms draws upon some simplification techniques
that result in a reduced form of the governing kinematic equations, which in turn
can be generalized to the analysis of more general parallel mechanisms.

7.1.1 3⇥RPR Planar Parallel Mechanism

The first example we consider is the 3-dof planar 3⇥RPR parallel mechanism
shown in Figure 7.2. A fixed frame {s} and body frame {b} are assigned to
the platform as shown. The three prismatic joints are typically actuated while
the six revolute joints are passive. Denote the lengths of each of the three legs
by s

i

, i = 1, 2, 3. The forward kinematics problem is to determine, from given
values of s = (s

1

, s
2

, s
3

), the body frame’s position and orientation. Conversely,
the inverse kinematics problem is to determine s from T

sb

2 SE(2).
Let p be the vector from the origin of the {s} frame to the origin of the {b}

frame. Let � denote the angle measured from the x̂
s

axis of the {s} frame to
the x̂

b

axis of the {b} frame. Further define the vectors a
i

, b
i

, d
i

, i = 1, 2, 3, as
shown in the figure. From these definitions, clearly

d
i

= p + b
i

� a
i

, (7.1)

220 Kinematics of Closed Chains

for i = 1, 2, 3. Let

p
x

p
y

�
= p in {s}-frame coordinates

a
ix

a
iy

�
= a

i

in {s}-frame coordinates

d
ix

d
iy

�
= d

i

in {s}-frame coordinates

b
ix

b
iy

�
= b

i

in {b}-frame coordinates.

Note that the (a
ix

, a
iy

), (b
ix

, b
iy

), i = 1, 2, 3 are all constant, and that with the
exception of the (b

ix

, b
iy

), all other vectors are expressed in {s}-frame coordi-
nates. To express Equation (7.1) in terms of {s}-frame coordinates, b

i

must be
expressed in {s}-frame coordinates. This is straightforward: defining

R
sb

=

cos� � sin�
sin� cos�

�
,

it follows that

d
ix

d
iy

�
=

p
x

p
y

�
+R

sb

b
ix

b
iy

�
�

a
ix

a
iy

�
,

for i = 1, 2, 3. Also, since s2
i

= d2
ix

+ d2
iy

, we have

s2
i

= (p
x

+ b
ix

cos�� b
iy

sin�� a
ix

)2

+(p
y

+ b
ix

sin�+ b
iy

cos�� a
iy

)2, (7.2)

for i = 1, 2, 3.
Formulated as above, the inverse kinematics is trivial to compute: given

values for (p
x

, p
y

,�), the leg lengths (s
1

, s
2

, s
3

) can be directly calculated from
the above equations (negative values of s

i

will not be physically realizable in
most cases and can be ignored). In contrast, the forward kinematics problem of
determining the body frame’s position and orientation (p

x

, p
y

,�) from the leg
lengths (s

1

, s
2

, s
3

) is not trivial. The following tangent half-angle substitution
transforms the three equations in (7.2) into a system of polynomials in the newly
defined scalar variable t:

t = tan
�

2

sin� =
2t

1 + t2

cos� =
1� t2

1 + t2
.

After some algebraic manipulation, the system of polynomials (7.2) can even-
tually be reduced to a single sixth-order polynomial in t; this e↵ectively shows

7.1. Inverse and Forward Kinematics 221

(a) (b)

Figure 7.3: (a) The 3⇥RPR at a singular configuration. From this configuration,
extending the legs may cause the platform to snap to a counterclockwise rotation
or to a clockwise rotation. (b) Two solutions to the forward kinematics when
all prismatic joint extensions are identical.

that the 3⇥RPR mechanism may have up to six forward kinematics solutions.
Showing that all six mathematical solutions are physically realizable requires
further verification.

Figure 7.3(a) shows the mechanism at a singular configuration, where each
leg length is identical and as short as possible. This configuration is a sin-
gularity, because extending the legs from this symmetric configuration causes
the platform to rotate either clockwise or counterclockwise; we cannot predict
which.1 Singularities are covered in greater detail in Section 7.3. Figure 7.3(b)
shows two solutions to the forward kinematics when all leg lengths are identical.

7.1.2 Stewart-Gough Platform

We now examine the inverse and forward kinematics of the 6⇥SPS Stewart-
Gough platform of Figure 7.1(a). In this design, the fixed and moving platforms
are connected by six serial SPS structures, with the spherical joints passive and
the prismatic joints actuated. The derivation of the kinematic equations closely
parallels that of the earlier 3⇥RPR planar mechanism. Let {s} and {b} denote
the fixed and body frames, respectively, and let d

i

be the vector directed from
joint A

i

to joint B
i

, i = 1, . . . , 6. Referring to Figure 7.1(a), we make the
following definitions:

p 2 R3 = p in {s}-frame coordinates;

a
i

2 R3 = a
i

in {s}-frame coordinates;

b
i

2 R3 = b
i

in {b}-frame coordinates;

d
i

2 R3 = d
i

in {s}-frame coordinates;

R 2 SO(3) = orientation of {b} as seen from {s}.

In order to derive the kinematic constraint equations, note that vectorially,

d
i

= p + b
i

� a
i

, i = 1, . . . , 6.

1
A third possibility is that the extending legs crush the platform!

222 Kinematics of Closed Chains

ys

zs

xs

leg 1

leg 2

leg 3

ψ
p

ϕ
n

θm

θm-1

θm-2

θ1

ϕ
n-1

ϕ
n-2

ϕ
1

ψ
p-1

ψ
p-2

ψ
1

{s}

{b}

Figure 7.4: A general parallel mechanism.

Writing the above equations explicitly in {s}-frame coordinates,

d
i

= p+Rb
i

� a
i

, i = 1, . . . , 6.

Denoting the length of leg i by s
i

, we have

s2
i

= dT
i

d
i

= (p+Rb
i

� a
i

)T (p+Rb
i

� a
i

),

for i = 1, . . . , 6. Note that a
i

and b
i

are all known constant vectors. Writing
the constraint equations in this form, the inverse kinematics becomes straight-
forward: given p and R, the six leg lengths s

i

, i = 1, . . . , 6 can be evaluated
directly from the above equations (negative values of s

i

in most cases will not
be physically realizable and can be ignored).

The forward kinematics is not as straightforward: given each of the leg
lengths s

i

, i = 1, . . . , 6, we must solve for p 2 R3 and R 2 SO(3). These
six constraint equations, together with six further constraints imposed by the
condition RTR = I, constitute a set of twelve equations in twelve unknowns
(three for p, nine for R).

7.1.3 General Parallel Mechanisms

For both the 3⇥RPR mechanism and Stewart-Gough Platform, we were able
to exploit certain features of the mechanism that resulted in a reduced set of
equations; for example, the fact that the legs of the Stewart-Gough Platform
can be modelled as straight lines considerably simplified the analysis. In this
section we briefly consider the case when the legs are general open chains.

7.2. Di↵erential Kinematics 223

Consider such a parallel mechanism as shown in Figure 7.4; here the fixed
and moving platforms are connected by three open chains, and the configuration
of the moving platform is given by T

sb

. Denote the forward kinematics of the
three chains by T

1

(✓), T
2

(�), and T
3

(), respectively, where ✓ 2 Rm, � 2 Rn,
and 2 Rp. The loop-closure conditions can be written T

sb

= T
1

(✓) = T
2

(�) =
T
3

(). Eliminating T
sb

we get

T
1

(✓) = T
2

(�) (7.3)

T
2

(�) = T
3

(). (7.4)

Equations (7.3) and (7.4) each consist of twelve equations (nine for the rotation
component and three for the position component), six of which are indepen-
dent (from the rotation matrix constraint RTR = I, the nine equations for the
rotation component can be reduced to a set of three independent equations).
Thus there are 24 equations, twelve of which are independent, with n +m + p
unknown variables. The mechanism therefore has d = n +m + p � 12 degrees
of freedom.

In the forward kinematics problem, given values for d of the joint variables
(✓,�,), Equations (7.3) and (7.4) can be solved for the remaining joint vari-
ables. Generally this is not trivial and multiple solutions are likely. Once the
joint values for any one of the open chain legs are known, the forward kinematics
of that leg can then be evaluated to determine the forward kinematics of the
closed chain.

In the inverse kinematics problem, given the body frame displacement T
sb

2
SE(3), we set T = T

1

= T
2

= T
3

and solve Equations (7.3) and (7.4) for the
joint variables (✓,�,). As suggested by the case studies, for most parallel
mechanisms there are often features of the mechanism that can be exploited to
eliminate some of these equations and simplify them to a more computationally
amenable form.

7.2 Di↵erential Kinematics

We now consider the di↵erential kinematics of parallel mechanisms. Unlike
the case for open chains, in which the objective is to relate the input joint
velocities to the twist of the end-e↵ector frame, the analysis for closed chains is
complicated by the fact that not all of the joints are actuated. Only the actuated
joints can be prescribed input velocities; the velocities of the remaining passive
joints must then be determined from the kinematic constraint equations. These
passive joint velocities are usually required to eventually determine the twist of
the closed chain’s end-e↵ector frame.

For open chains, the Jacobian of the forward kinematics is central to veloc-
ity and static analysis. For closed chains, in addition to the forward kinematics
Jacobian, the Jacobian defined by the kinematic constraint equations—we will
call this the constraint Jacobian—also plays a central role in velocity and
static analysis. Usually there are features of the mechanism that can be ex-
ploited to simplify and reduce the procedure for obtaining the two Jacobians.

224 Kinematics of Closed Chains

We illustrate with a case study of the Stewart-Gough platform, and show that
the Jacobian of the inverse kinematics can be obtained straightforwardly via
static analysis. Velocity analysis for more general parallel mechanisms is then
detailed.

7.2.1 Stewart-Gough Platform

Earlier we saw that the inverse kinematics for the Stewart-Gough platform can
be solved analytically. That is, given the body frame orientation R 2 SO(3)
and position p 2 R3, the leg lengths s 2 R6 can be obtained analytically in the
functional form s = g(R, p). In principle one could di↵erentiate this equation
and manipulate it into the form

ṡ = G(R, p)V
s

, (7.5)

where ṡ 2 R6 denotes the leg velocities, V
s

2 R6 is the body frame’s spatial
twist, and G(R, p) 2 R6⇥6 is the Jacobian of the inverse kinematics. In most
cases this procedure will require considerable algebraic manipulation.

Here we take a di↵erent approach based on static analysis. Based on the
same conservation of power principles that were used to determine the static
relationship ⌧ = JTF for open chains, the static relationship for closed chains
can also be expressed in exactly the same form. We illustrate with an analysis
of the Steawert-Gough platform.

In the absence of external forces, the only forces applied to the moving
platform occur at the spherical joints. In what follows, all vectors are expressed
in {s}-frame coordinates. Let

f
i

= n̂
i

⌧
i

be the three-dimensional linear force applied by leg i, where n̂
i

2 R3 is a unit
vector indicating the direction of the applied force, and ⌧

i

2 R is the magnitude
of the linear force. The moment generated m

i

generated by f
i

is

m
i

= r
i

⇥ f
i

,

where r
i

2 R3 denotes the vector from the {s}-frame origin to the point of
application of the force (the location of spherical joint i in this case). Since
neither the spherical joint at the moving platform nor the spherical joint at the
fixed platform can resist any torques about the joints, the force f

i

must be along
the line of the leg. Therefore, instead of calculating the moment m

i

using the
spherical joint at the moving platform, we can calculate the moment using the
spherical joint at the fixed platform:

m
i

= q
i

⇥ f
i

,

where q
i

2 R3 denotes the vector from the fixed-frame origin to the base joint
of leg i. Since q

i

is constant, expressing the moment as q
i

⇥ f
i

is preferred.

7.2. Di↵erential Kinematics 225

Combining f
i

and m
i

into the six-dimensional wrench F
i

= (m
i

, f
i

), the
resultant wrench F

s

on the moving platform is given by

F
s

=
6X

i=1

F
i

=
6X

i=1

r
i

⇥ n̂
i

n̂
i

�
⌧
i

=

�n̂

1

⇥ q
1

· · · �n̂
6

⇥ q
6

n̂
1

· · · n̂
6

�
2

64
⌧
1

...
⌧
6

3

75

= J�T

s

⌧,

where J
s

is the spatial Jacobian of the forward kinematics, with its inverse given
by

J�1

s

=

�n̂

1

⇥ q
1

· · · �n̂
6

⇥ q
6

n̂
1

· · · n̂
6

�
T

.

7.2.2 General Parallel Mechanisms

Because of its kinematic structure, the Stewart-Gough platform lends itself par-
ticularly well to a static analysis, as each of the six joint forces are directed along
their respective legs. The Jacobian (or more precisely, the inverse Jacobian) can
therefore be derived in terms of the screws associated with each line. In this
section we consider more general parallel mechanisms where the static analysis
is less straightforward. Using the previous three-legged spatial parallel mech-
anism of Figure 7.4 as an illustrative example, we derive a general procedure
for determining the forward kinematics Jacobian that can also be generalized
to parallel mechanisms.

The mechanism of Figure 7.4 consists of two platforms connected by three
legs with m, n, and p joints, respectively. To keep things simple, we assume
m = n = p = 5, so the mechanism has d = n + m + p � 12 = 15 degrees
of freedom (generalizing what follows to di↵erent types and numbers of legs is
completely straightforward). For the fixed and body frames indicated in the
figure, write the forward kinematics for the three chains as follows:

T
1

(✓
1

, ✓
2

, . . . , ✓
5

) = e[S1

]✓

1e[S2

]✓

2 · · · e[S5

]✓

5M
1

T
2

(�
1

,�
2

, . . . ,�
5

) = e[P1

]�

1e[P2

]�

2 · · · e[P5

]�

5M
2

T
3

(
1

,
2

, . . . ,
5

) = e[Q1

]

1e[Q2

]

2 · · · e[Q5

]

5M
3

.

The kinematic loop constraints can be expressed as

T
1

(✓) = T
2

(�) (7.6)

T
2

(�) = T
3

(). (7.7)

Since these constraints must be satisfied at all times, we can express their time
derivatives in terms of their spatial twists, i.e.,

Ṫ
1

T�1

1

= Ṫ
2

T�1

2

(7.8)

Ṫ
2

T�1

2

= Ṫ
3

T�1

3

. (7.9)

226 Kinematics of Closed Chains

Since Ṫ
i

T�1

i

= [V
i

], where V
i

is the spatial twist of chain i’s end-e↵ector frame,
the above identities can also be expressed in terms of the forward kinematics
Jacobian for each chain:

J
1

(✓)✓̇ = J
2

(�)�̇ (7.10)

J
2

(�)�̇ = J
3

() ̇, (7.11)

which can be rearranged as

J
1

(✓) �J
2

(�) 0
0 �J

2

(�) J
3

()

�2

4
✓̇
�̇
 ̇

3

5 = 0. (7.12)

Now rearrange the fifteen joints into those that are actuated and those that
are passive. Assume without loss of generality that the three actuated joints
are (✓

1

,�
1

,
1

). Define the vector of actuated joints q
a

2 R3 and passive joints
q
p

2 R12 as

q
a

=

2

4
✓
1

�
1

1

3

5 , q
p

=

2

64
✓
2

...
�
5

3

75 ,

and q = (q
a

, q
p

) 2 R15. Equation (7.12) can now be rearranged into the form

⇥
H

a

(q) H
p

(q)
⇤ q̇

a

q̇
p

�
= 0, (7.13)

or equivalently
H

a

q̇
a

+H
p

q̇
p

= 0, (7.14)

where H
a

2 R12⇥3 and H
p

2 R12⇥12. If H
p

is invertible, we have

q̇
p

= �H�1

p

H
a

q̇
a

. (7.15)

Assuming H
p

is invertible, once the velocities of the actuated joints are given,
the velocities of the remaining passive joints can be obtained uniquely via Equa-
tion (7.15).

It still remains to derive the forward kinematics Jacobian with respect to
the actuated joints, i.e., to find J

a

(q) 2 R6⇥3 satisfying V
s

= J
a

(q)q̇
a

, where V
s

is the spatial twist of the end-e↵ector frame. For this purpose we can use the
forward kinematics for any of the three open chains; for example, in terms of
chain 1, J

1

(✓)✓̇ = V
s

, and from Equation (7.15) we can write

✓̇
2

= gT
2

q̇
a

(7.16)

✓̇
3

= gT
3

q̇
a

(7.17)

✓̇
4

= gT
4

q̇
a

(7.18)

✓̇
5

= gT
5

q̇
a

(7.19)

7.3. Singularities 227

where each g
i

(q) 2 R3, i = 2, . . . , 5, can be obtained from Equation (7.15).
Defining the row vector eT

1

= (1, 0, 0), the di↵erential forward kinematics for
chain 1 can now be written

V
s

= J
1

(✓)

2

66664

eT
1

gT
2

gT
3

gT
4

gT
5

3

77775

2

4
✓̇
1

�̇
1

 ̇
1

3

5 . (7.20)

Since we are seeking J
a

(q) in V
s

= J
a

(q)q̇
a

, and q̇T
a

= (✓̇
1

, �̇
1

, ̇
1

), from the
above it now follows that

J
a

(q) = J
1

(q
1

, . . . , q
5

)

2

66664

eT
1

g
2

(q)T

g
3

(q)T

g
4

(q)T

g
5

(q)T

3

77775
. (7.21)

The above could also have been derived using either chain 2 or chain 3.
Given values for the actuated joints q

a

, it still remains to solve for the passive
joints q

p

from the loop constraint equations. Eliminating as many elements of
q
p

in advance will obviously simplify matters. The second point to note is
that H

p

(q) may become singular, in which case q̇
p

cannot be obtained from
q̇
a

. Configurations in which H
p

(q) becomes singular correspond to actuator
singularities, which are discussed in the next section.

7.3 Singularities

Characterizing the singularities of closed chains involves many more subtleties
than for open chains. In this section we highlight the essential features of closed-
chain singularities via two planar examples: a four-bar linkage (see Figure 7.5),
and a five-bar linkage (see Figure 7.6). Based on these examples we classify
closed chain singularities into three basic types: actuator singularities, con-
figuration space singularities, and end-e↵ector singularities.

We begin with the four-bar linkage of Figure 7.5. Recall from Chapter 2 that
its C-space is a one-dimensional curve embedded in a four-dimensional ambient
space (each dimension is parametrized by one of the four joints). Projecting the
C-space onto the joint angles (✓,�) leads to the curve shown in Figure 7.5. In
terms of ✓ and �, the kinematic loop constraint equations for the four-bar can
be expressed as

� = tan�1

✓
�

↵

◆
± cos�1

�p

↵2 + �2

!
, (7.22)

228 Kinematics of Closed Chains

θ
θ

O

P

P

π

π

-π

-π

φ

φ

L1

L2

L3

L4

Figure 7.5: A planar four-bar linkage and its joint configuration space.

Figure 7.6: A planar five-bar linkage.

where

↵ = 2L
3

L
4

� 2L
1

L
3

cos ✓ (7.23)

� = �2L
1

L
3

sin ✓ (7.24)

� = L2

2

� L2

4

� L2

3

� L2

1

+ 2L
1

L
4

cos ✓. (7.25)

The existence and uniqueness of solutions to the above depends on the link
lengths L

1

, . . . , L
4

. In particular, a solution will fail to exist if �2 ↵2 + �2.
The figure depicts the input-output graph for the choice of link lengths L

1

= 4,
L
2

= 4, L
3

= 3, L
4

= 2. For this set of link lengths, ✓ and � both range from 0
to 2⇡.

One of the distinctive features of this graph is the bifurcation point P

7.3. Singularities 229

Figure 7.7: Configuration space singularities of the planar five-bar linkage.

as indicated in the figure. Here two branches of the curve meet, resulting in a
self-intersection of the curve with itself. If the four-bar is in the configuration
indicated by P , it has the choice of following either branch. At no other point
in the four-bar’s C-space does such branching occur.

We now turn to the five-bar linkage. The kinematic loop constraint equations
can be written

L
1

cos ✓
1

+ . . .+ L
4

cos(✓
1

+ ✓
2

+ ✓
3

+ ✓
4

) = L
5

(7.26)

L
1

sin ✓
1

+ . . .+ L
4

sin(✓
1

+ ✓
2

+ ✓
3

+ ✓
4

) = 0 (7.27)

where we have eliminated in advance the joint variable ✓
5

from the loop closure
conditions. Writing these two equations in the form f(✓

1

, . . . , ✓
4

) = 0, where
f : R4 ! R2, the configuration space can be regarded as a two-dimensional
surface in R4. Like the bifurcation point of the four-bar linkage, self-intersections
of the surface can also occur. At such points the constraint Jacobian loses rank.
For the five-bar, any point ✓ at which

rank

✓
@f

@✓
(✓)

◆
< 2 (7.28)

corresponds to what we call a configuration space singularity. Figure 7.7
illustrates the possible configuration space singularities of the five-bar. Notice
that so far we have made no mention of which joints of the five-bar are actuated,
or where the end-e↵ector frame is placed. The notion of a configuration space
singularity is completely independent of the choice of actuated joints, or where
the end-e↵ector frame is placed.

We now consider the case when two joints of the five-bar are actuated. Re-
ferring to Figure 7.8, the actuated joints are indicated by filled circles. Under
normal operating conditions, the motions of the actuated joints can be indepen-
dently controlled. Alternatively, locking the actuated joints should immobilize
the five-bar and turn it into a rigid structure.

For the nondegenerate actuator singularity shown on the left of Fig-
ure 7.8, rotating the two actuated joints oppositely and outward will pull the
mechanism apart, and rotating them oppositely and inward would either crush

230 Kinematics of Closed Chains

Figure 7.8: Actuator singularities of the planar five-bar linkage: the left is
nondegenerate, while the right is degenerate.

.

the inner two links, or cause the center joint to unpredictably buckle upward
or downward. For the degenerate actuator singularity shown on the right,
even when the actuated joints are locked in place, the inner two links are free
to rotate.

The reason for classifying these singularities as actuator singularities is
that, by relocating the actuators to a di↵erent set of joints, such singularities can
be eliminated. For both the degenerate and nondegenerate actuator singularities
of the five-bar, relocating one of the actuators to one of the three passive joints
eliminates the singularity.

Visualizing the actuator singularities of the planar five-bar is straightfor-
ward enough, but for more complex spatial closed chains this may be di�cult.
Actuator singularities can be characterized mathematically by the rank of the
constraint Jacobian. As before, write the kinematic loop constraints in di↵er-
ential form,

H(q)q̇ =
⇥
H

a

(q) H
p

(q)
⇤ q̇

a

q̇
p

�
= 0, (7.29)

where q
a

2 Ra is the vector of actuated joints, and q
p

2 Rp is the vector of
passive joints. It follows that H(q) 2 Rp⇥(a+p) and that H

p

(q) is a p⇥p matrix.
With the above definitions, we have the following:

• If rank H
p

(q) < p, then q is an actuator singularity. Distinguishing be-
tween degenerate and nondegenerate singularities involves additional
mathematical subtleties, and relies on second-order derivative information
that we do not pursue further here.

• If rank H(q) < p, then q is a configuration space singularity. Note
that under this condition H

p

(q) is also singular (the converse is not true,
however). The configuration space singularities can therefore be regarded
as the intersection of all possible actuator singularities obtained over all
possible combinations of actuated joints.

7.4. Summary 231

Figure 7.9: End-e↵ector singularity of the planar five-bar linkage.
.

The final class of singularities depends on the choice of end-e↵ector frame.
For the five-bar, ignore the orientation of the end-e↵ector frame, and focus
exclusively on its x-y location. Figure 7.9 shows the five-bar in an end-e↵ector
singularity for the given choice of end-e↵ector location. Note that velocities
along the indicated line are not possible in this configuration, similar to the
case for singularities for open chains. To see this, consider the e↵ective 2R open
chain created by the rightmost joint, the link connecting it to the platform,
the joint on the platform, and the e↵ective link connecting the platform joint
to the end-e↵ector frame. Since the two links of the 2R robot are aligned, the
end-e↵ector frame can have no component of motion along the direction of the
links.

End-e↵ector singularities are independent of the choice of actuated joints.
They can be mathematically characterized as follows. Choose any valid set of
actuated joints q

a

such that the mechanism is not at an actuator singularity.
Write the forward kinematics in the form

f(q
a

) = T
sb

. (7.30)

One can then check for rank deficiencies in the Jacobian of f , as was done for
open chains, to determine the presence of an end-e↵ector singularity.

7.4 Summary

• Any kinematic chain that contains one or more loops is called a closed
chain. Parallel mechanisms are a class of closed chain that are char-
acterized by two platforms—one moving and one stationary—connected
by several legs; the legs are typically open chains, but can themselves be
closed chains. Compared to open chains, the kinematic analysis of closed
chains is complicated by the fact that only a subset of joints are actuated,
and the joint variables must satisfy a number of loop-closure constraint
equations, which may or may not be independent depending on the con-
figuration of the mechanism.

232 Kinematics of Closed Chains

• For a parallel mechanism with equal numbers of actuators and degrees of
freedom, the inverse kinematics problem involves finding, from the given
position and orientation of the moving platform, the joint coordinates of all
the actuated joints. For well-known parallel mechanisms like the planar 3⇥
RPR and spatial Stewart-Gough platform, the inverse kinematics admits
unique solutions.

• For a parallel mechanism with equal numbers of actuators and degrees
of freedom, the forward kinematics problem involves finding the position
and orientation of the moving platform given coordinates for all the ac-
tuated joints. For well-known parallel mechanisms like the 3⇥ RPR and
the spatial Stewart-Gough platform, the forward kinematics usually ad-
mits multiple solutions. In the case of the most general Stewart-Gough
platform, a maximum of 40 solutions are possible.

• The di↵erential kinematics of a closed chain relates velocities of the ac-
tuated joints to the linear and angular velocities of the moving platform.
For a closed chain consisting of n one-dof joints, with m actuators and
degrees of freedom, let ✓

a

2 Rm denote the vector of actuated joints and
✓
p

2 Rn�m denote the vector of passive joints. The kinematic loop-closure
constraints are described by an equation of the form h(✓

a

, ✓
p

) = 0, where
g : Rn ! Rn�m. The forward kinematics can be expressed in the form
f(✓

a

) = T , where f : Rm ! SE(3). The di↵erential kinematics involves
derivatives of both f and g with respect to ✓

a

and ✓
p

. For platforms like
the Stewart-Gough platorm, the di↵erential kinematics can also be ob-
tained from a static analysis, by exploiting the fact that just as for open
chains, the external forces F at the end-e↵ector are related to the joint
forces or torques ⌧ by ⌧ = JTF .

• Singularities for closed chains can be classified into three types: (i) config-
uration space singularities at self-intersections of the configuration space
surface (also called bifurcation points for one-dimensional configuration
spaces); (ii) nondegenerate actuator singularities when the actuated joints
cannot be independently actuated, and degenerate actuator singularities
when locking all joints fails to make the mechanism a rigid structure;
and (iii) end-e↵ector singularities when the end-e↵ector loses one or more
degrees of freedom of motion. Configuration space singularities are in-
dependent of the choice of actuated joints, while actuator singularities
depend on which joints are actuated. End-e↵ector singularities depend on
the placement of the end-e↵ector frame, but do not depend on the choice
of actuated joints.

7.5 Notes and References

Several methods exist for finding all solutions to systems polynomial equations,
e.g., methods based on dialytic elimination, Gröbner bases, etc. Of particular

7.5. Notes and References 233

note is the work of Raghavan and Roth [101], who show that there can be at
most forty solutions to the forward kinematics of the general 6-6 Stewart-Gough
Platform, and Husty [44], who develops a computational algorithm to find all
forty solutions.

234 Kinematics of Closed Chains

7.6 Exercises

O
A

P x

y

x

y

1

B1

B2

B3

A3

A2

Figure 7.10: 3⇥RPR planar parallel mechanism.

1. In the 3⇥RPR planar parallel mechanism of Figure 7.10, the prismatic joints
are actuated. Define a

i

2 R2 to be the vector from the fixed frame origin O
to joint A

i

, i = 1, 2, 3, expressed in fixed frame coordinates. Define b
i

2 R2 to
be the vector from the moving platform frame origin P to joint B

i

, i = 1, 2, 3,
defined in terms of the moving platform frame coordinates.
(a) Solve the inverse kinematics.
(b) Derive a procedure to solve the forward kinematics.
(c) Is the configuration shown an end-e↵ector singularity? Explain your an-
swer by examining the inverse kinematics Jacobian. Is this also an actuator
singularity?

2. For the 3⇥RPR planar parallel mechanism shown in Figure 7.11(a), let �
be the angle measured from the {b}-frame x̂-axis to the {s}-frame x̂-axis, and
p 2 R2 be the vector from the {s}-frame origin to the {b}-frame origin, ex-
pressed in {s}-frame coordinates. Let a

i

2 R2 be the vector from the {s}-frame
origin to the three joints fixed to ground, i = 1, 2, 3 (note that two of the joints
are overlapping), expressed in {s}-frame coordinates. Let b

i

2 R2 be the vector
from the {b}-frame origin to the three joints attached to the moving platform,
i = 1, 2, 3 (note that two of the joints are overlapping), expressed in {b}-frame
coordinates. Denote the leg lengths by ✓

1

, ✓
2

, ✓
3

as shown.
(a) Derive a set of independent equations relating (�, p) and (✓

1

, ✓
2

, ✓
3

).
(b) What is the maximum possible number of forward kinematics solutions?
(c) Assuming static equilibrium, given joint torques ⌧ = (1, 0,�1) applied at
joints (✓

1

, ✓
2

, ✓
3

), find the force (f
x

, f
y

) and the moment m
z

2 R generated at

7.6. Exercises 235

the end-e↵ector frame {b}. Express your (f
x

, f
y

) in fixed frame coordinates.
(d) Now construct a mechanism with three connected 3⇥RPR parallel mecha-
nisms as shown in Figure 7.11(b). What is the dof of this mechanism?

x

y
{S}

y
{b}

x

θ1

θ3

θ2

p

2

1

1

45˚

(a) 3⇥RPR planar parallel mechanism

(b) Truss

Figure 7.11: 3XRPR planar parallel mechanism and truss structure.

3. For the 3⇥RRR planar parallel mechanism shown in Figure 7.12, let � be
the orientation of the end-e↵ector frame and p 2 R2 be the vector ~p expressed
in fixed frame coordinates. Let a

i

2 R2 be the vector ~a
i

expresed in fixed frame
coordinates and b

i

2 R2 be the vector ~b
i

expressed in the moving body frame
coordinates.
(a) Derive a set of independent equations relating (�, p) and (✓

1

, ✓
2

, ✓
3

).
(b) What is the maximum possible number of inverse and forward kinematic
solutions for this mechanism?

4. Figure 7.13 shows a six-bar linkage in its zero position. Let (p
x

, p
y

) be the
position of the {b}-frame origin expressed in {s}-frame coordinates, and � be
the orientation of the {b} frame. The inverse kinematics problem is defined as
finding the joint variables (✓,) given (p

x

, p
y

,�).
(a) In order to solve the inverse kinematics problem, how many equations are
needed? Derive these equations.

236 Kinematics of Closed Chains

x

y

P

a1

a2

a3

θ3

θ1

θ2

b1

b3

b2

Figure 7.12: 3⇥RRR planar parallel mechanism

(b) Assume joints A, D, and E are actuated. Determine if the configuration
shown in Figure 7.13 is an actuator singularity by analyzing an equation of the
form

⇥
H

a

H
p

⇤ q
a

q
p

�
= 0,

where q
a

is the vector of actuated joints and q
p

is the vector of passive joints.
(c) Suppose instead that joints A, B, and D are actuated. Find the forward
kinematics Jacobian J

a

in V
s

= J
a

q̇
a

, where V
s

is the velocity twist of the {b}-
frame expressed in {s}-frame coordinates, and q̇

a

is the vector of actuated joint
rates.

5. Consider the 3⇥PSP spatial parallel mechanism of Figure 7.14.
(a) What is the degrees of freedom of this mechanism?
(b) Let R

sb

=Rot(ẑ, ✓)Rot(ŷ,�)Rot(x̂,) be the orientation of the moving body
frame {b}, and p

sb

= (x, y, z) 2 R3 be the vector from the {s}-frame origin to
the {b}-frame origin (both R

sb

and p
sb

are expressed in {s}-frame coordinates).

The vectors ~a
i

,~b
i

,~d
i

, i = 1, 2, 3, are defined as shown in the figure. Derive a set
of independent kinematic constraint equations relating (✓,�, , x, y, z) and the
vectors defined.
(c) Given values for (x, y, z), is it possible to solve for the vertical prismatic
joint values s

i

, where s
i

= kd
i

k, i = 1, 2, 3? If so, derive an algorithm for doing
so.

7.6. Exercises 237

x

y

{b}

x

y

1

1

1 1

1

1 1

{s}

1

θθ

θ

12

3

ψψψ
123

A
B

C

DEF

end-effector

Figure 7.13: A six-bar-linkage.

Prismatic
 joint

Spherical
 joint

Prismatic
 joint

y

z

x{s}

y

z

x

{b}

stationary

120
。

60
。

p

bi

end-effector

→

ai
→

di

→

→

120
。

sb

Figure 7.14: 3⇥PSP spatial parallel manipulator.

6. The Eclipse mechanism of Figure 7.15 is a six-dof parallel mechanism whose
moving platform is capable of ±90� orientations with respect to ground, and
also of rotating 360� about the vertical axis.
(a) Derive the forward and inverse kinematics. How many forward kinematic
solutions are there for general nonsingular configurations?

238 Kinematics of Closed Chains

Figure 7.15: The Eclipse mechanism.

Figure 7.16: The 3⇥UPU mechanism.

(b) Find and classify all singularities of this mechanism.

7. For the Delta robot of Figure 2.8, derive the following:
(a) The forward kinematics.
(b) The inverse kinematics.
(c) The Jacobian J

a

(assume the revolute joints at the fixed base are actuated).
(d) Identify all actuator singularities of the Delta robot.

7.6. Exercises 239

8. In the 3⇥UPU platform of Figure 7.16, the axes of the universal joints are
attached to the fixed and moving platforms in the sequence indicated, i.e., the
first axis is attached orthogonally to the fixed base, while the fourth axis is
attached orthogonally to the moving platform. Derive the following:
(a) The forward kinematics.
(b) The inverse kinematics.
(c) The Jacobian J

a

(assume the revolute joints at the fixed base are actuated).
(d) Identify all actuator singularities of this robot.
(e) If you can, build a mechanical prototype and see if the mechanism behaves
as predicted by your analysis.

240 Kinematics of Closed Chains

Chapter 8

Dynamics of Open Chains

In this chapter we study once again the motion of open-chain robots, but this
time taking into account the forces and torques that cause it; this is the subject
of robot dynamics. The associated dynamic equations—also referred to as
the equations of motion—are a set of second-order di↵erential equations of
the form

⌧ = M(✓)✓̈ + h(✓, ✓̇), (8.1)

where ✓ 2 Rn is the vector of joint variables, ⌧ 2 Rn is the vector of joint forces
and torques, M(✓) 2 Rn⇥n is a symmetric positive-definite matrix called the
mass matrix, and h(✓, ✓̇) 2 Rn are forces that lump together centripetal and
Coriolis, gravity, and friction terms that depend on ✓ and ✓̇. One should not be
deceived by the apparent simplicity of these equations; even for “simple” open
chains, e.g., those with joint axes either orthogonal or parallel to each other,
M(✓) and h(✓, ✓̇) can be extraordinarily complex.

Just as a distinction was made between a robot’s forward and inverse kine-
matics, it is also customary to distinguish between a robot’s forward and in-
verse dynamics. The forward problem is the problem of determining the
robot’s acceleration ✓̈ given the state (✓, ✓̇) and the joint forces and torques,

✓̈ = M�1(✓)
⇣
⌧ � h(✓, ✓̇)

⌘
, (8.2)

and the inverse problem is finding the joint forces and torques ⌧ corresponding
to the robot’s state and a desired acceleration, i.e., Equation (8.1).

A robot’s dynamic equations are typically derived in one of two ways: by
a direct application of Newton and Euler’s dynamic equations for a rigid body
(often called the Newton-Euler formulation), or by the Lagrangian dy-
namics formulation deriving from the kinetic and potential energy of the robot.
The Lagrangian formalism is conceptually elegant and quite e↵ective for robots
with simple structures, e.g., with three or fewer degrees of freedom. However,
the calculations can quickly become cumbersome for robots with more degrees
of freedom. For general open chains, the Newton-Euler formulation leads to ef-
ficient recursive algorithms for both the inverse and forward dynamics that can

241

242 Dynamics of Open Chains

also be assembled into closed-form analytic expressions for, e.g., the mass ma-
trix M(✓) and other terms in the dynamics equation (8.1). The Newton-Euler
formulation also takes advantage of tools we have developed so far in this book.

In this chapter we study both the Lagrangian and Newton-Euler dynamics
formulations for an open-chain robot.

8.1 Lagrangian Formulation

8.1.1 Basic Concepts and Motivating Examples

The first step in the Lagrangian formulation of dynamics is to choose a set of in-
dependent coordinates q 2 Rn that describes the system’s configuration, similar
to what was done in the analysis of a robot’s configuration space. The coor-
dinates q are called generalized coordinates. Once generalized coordinates
have been chosen, these then define another set of coordinates f 2 Rn called
generalized forces. The forces f and the coordinates q are dual to each other
in the sense that the inner product fT q̇ corresponds to power. A Lagrangian
function L(q, q̇) is then defined as the overall system’s kinetic energy K(q, q̇) mi-
nus the potential energy P(q). The equations of motion can now be expressed
in terms of the Lagrangian as follows:

f =
d

dt

@L
@q̇
� @L
@q

, (8.3)

These equations are also referred to as the Euler-Lagrange equations with
external forces.1 The derivation can be found in dynamics texts.

We illustrate the Lagrangian dynamics formulation through two examples.
In the first example, consider a particle of mass m constrained to move on
a vertical line. The particle’s configuration space is this vertical line, and a
natural choice for generalized coordinate is the height of the particle, which we
denote by the scalar variable x 2 R. Suppose the gravitational force mg acts
downward, and an external force f is applied upward. By Newton’s second law,
the equation of motion for the particle is

f �mg = mẍ. (8.4)

We now apply the Lagrangian formalism to derive the same result. The kinetic
energy is mẋ2/2, the potential energy is mgx, and the Lagrangian is

L(x, ẋ) = K(x, ẋ)� P(x) =
1

2
mẋ2 �mgx. (8.5)

The equation of motion is then given by

f =
d

dt

@L
@ẋ
� @L
@x

= mẍ+mg, (8.6)

which matches Equation (8.4).

1
The external force f is zero in the standard form of the Euler-Lagrange equations.

8.1. Lagrangian Formulation 243

θ1

θ2

L1

L2
y^

x^

m1

m2

g

θ = 01

θ = π/22

Figure 8.1: (Left) A 2R open chain in gravity. (Right) At ✓ = (0,⇡/2).

We now derive the dynamic equations for a planar 2R open chain moving
in the presence of gravity (Figure 8.1). The chain moves in the x-y plane, with
gravity g acting in the �y direction. Before the dynamics can be derived, the
mass and inertial properties of all the links must be specified. To keep things
simple the two links are modeled as point masses m

1

and m
2

concentrated at
the ends of each link. The position and velocity of the mass of link 1 are then
given by

x
1

y
1

�
=

L
1

cos ✓
1

L
1

sin ✓
1

�

ẋ
1

ẏ
1

�
=

�L

1

sin ✓
1

L
1

cos ✓
1

�
✓̇
1

,

while those of the link 2 mass are given by

x
2

y
2

�
=

L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

)
L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

)

�

ẋ
2

ẏ
2

�
=

�L

1

sin ✓
1

� L
2

sin(✓
1

+ ✓
2

) �L
2

sin(✓
1

+ ✓
2

)
L
1

cos ✓
1

+ L
2

cos(✓
1

+ ✓
2

) L
2

cos(✓
1

+ ✓
2

)

�
✓̇
1

✓̇
2

�
.

We choose the joint coordinates ✓ = (✓
1

, ✓
2

) to be the generalized coordinates.
The generalized forces ⌧ = (⌧

1

, ⌧
2

) then correspond to joint torques (since ⌧T ✓̇
corresponds to power). The Lagrangian L(✓, ✓̇) is of the form

L(✓, ✓̇) =
2X

i=1

(K
i

� P
i

), (8.7)

where the link kinetic energy terms K
1

and K
2

are

K
1

=
1

2
m

1

(ẋ2

1

+ ẏ2
1

) =
1

2
m

1

L2

1

✓̇2
1

K
2

=
1

2
m

2

(ẋ2

2

+ ẏ2
2

)

=
m

2

2

⇣
(L2

1

+ 2L
1

L
2

cos ✓
2

+ L2

2

)✓̇2
1

+ 2(L2

2

+ L
1

L
2

cos ✓
2

)✓̇
1

✓̇
2

+ L2

2

✓̇2
2

⌘
,

244 Dynamics of Open Chains

and the link potential energy terms P
1

and P
2

are

P
1

= m
1

gy
1

= m
1

gL
1

sin ✓
1

P
2

= m
2

gy
2

= m
2

g(L
1

sin ✓
1

+ L
2

sin(✓
1

+ ✓
2

)).

The Euler-Lagrange equations (8.3) for this example are of the form

⌧
i

=
d

dt

@L
@✓̇

i

� @L
@✓

i

, i = 1, 2. (8.8)

The dynamic equations for the 2R planar chain follow from explicit evaluation
of the right-hand side of (8.8) (we omit the detailed calculations, which are
straightforward but tedious):

⌧
1

=
�
m

1

L2

1

+m
2

(L2

1

+ 2L
1

L
2

cos ✓
2

+ L2

2

)
�
✓̈
1

+

m
2

(L
1

L
2

cos ✓
2

+ L2

2

)✓̈
2

�m
2

L
1

L
2

sin ✓
2

(2✓̇
1

✓̇
2

+ ✓̇2
2

) +

(m
1

+m
2

)L
1

g cos ✓
1

+m
2

gL
2

cos(✓
1

+ ✓
2

)

⌧
2

= m
2

(L
1

L
2

cos ✓
2

+ L2

2

)✓̈
1

+m
2

L2

2

✓̈
2

+m
2

L
1

L
2

✓̇2
1

sin ✓
2

+

m
2

gL
2

cos(✓
1

+ ✓
2

).

We can gather terms together into an equation of the form

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓)| {z }
h(✓,

˙

✓)

, (8.9)

with

M(✓) =

m

1

L2

1

+m
2

(L2

1

+ 2L
1

L
2

cos ✓
2

+ L2

2

) m
2

(L
1

L
2

cos ✓
2

+ L2

2

)
m

2

(L
1

L
2

cos ✓
2

+ L2

2

) m
2

L2

2

�

c(✓, ✓̇) =

�m

2

L
1

L
2

sin ✓
2

(2✓̇
1

✓̇
2

+ ✓̇2
2

)
m

2

L
1

L
2

✓̇2
1

sin ✓
2

�

g(✓) =

(m

1

+m
2

)L
1

g cos ✓
1

+m
2

gL
2

cos(✓
1

+ ✓
2

)
m

2

gL
2

cos(✓
1

+ ✓
2

)

�
,

where M(✓) is the symmetric positive-definite mass matrix, c(✓, ✓̇) is a vector
of Coriolis and centripetal torques, and g(✓) is a vector of gravitational torques.
These reveal that the equations of motion are linear in ✓̈, quadratic in ✓̇, and
trigonometric in ✓. This is true in general for serial chains containing revolute
joints, not just the 2R robot.

The M(✓)✓̈ + c(✓, ✓̇) portion of Equation (8.9) could have been derived by
writing f

i

= m
i

a
i

for each point mass, where the accelerations a
i

are written
in terms of ✓ by di↵erentiating the expressions for (ẋ

1

, ẏ
1

) and (ẋ
2

, ẏ
2

) given

8.1. Lagrangian Formulation 245

above:

f
1

=

2

4
f
x1

f
y1

f
z1

3

5 = m
1

2

4
ẍ
1

ÿ
1

z̈
1

3

5 = m
1

2

4
�L

1

✓̇2
1

c
1

� L
1

✓̈
1

s
1

�L
1

✓̇2
1

s
1

+ L
1

✓̈
1

c
1

0

3

5 (8.10)

f
2

= m
2

2

4
�L

1

✓̇2
1

c
1

� L
2

(✓̇
1

+ ✓̇
2

)2c
12

� L
1

✓̈
1

s
1

� L
2

(✓̈
1

+ ✓̈
2

)s
12

�L
1

✓̇2
1

s
1

� L
2

(✓̇
1

+ ✓̇
2

)2s
12

+ L
1

✓̈
1

c
1

+ L
2

(✓̈
1

+ ✓̈
2

)c
12

0

3

5 , (8.11)

where s
12

indicates sin(✓
1

+ ✓
2

), etc. Defining r
11

as the vector from joint 1 to
m

1

, r
12

as the vector from joint 1 to m
2

, and r
22

as the vector from joint 2 to
m

2

, the moments in world-aligned frames {i} attached to joints 1 and 2 can be
expressed as m

1

= r
11

⇥f
1

+r
12

⇥f
2

and m
2

= r
22

⇥f
2

. (Note that joint 1 must
provide torques to move both m

1

and m
2

, since both masses are outboard of
joint 1, but joint 2 only needs to provide torque to move m

2

.) The joint torques
⌧
1

and ⌧
2

are just the third elements of m
1

and m
2

, i.e., the moments about the
ẑ
i

axes out of the page, respectively.
In (x, y) coordinates, the accelerations of the masses are written simply as

second time-derivatives of the coordinates, e.g., (ẍ
2

, ÿ
2

). This is because the
x̂-ŷ frame is an inertial frame. The joint coordinates (✓

1

, ✓
2

) are not in an
inertial frame, however, so accelerations are expressed as a sum of terms that
are linear in the second derivatives of joint variables, ✓̈, and quadratic of the
first derivatives of joint variables, ✓̇T ✓̇, as seen in Equations (8.10) and (8.11).
Quadratic terms containing ✓̇2

i

are called centripetal terms, and quadratic
terms containing ✓̇

i

✓̇
j

are called Coriolis terms. In other words, ✓̈ = 0 does not
mean zero acceleration of the masses, due to the centripetal and Coriolis terms.

To better understand the centripetal and Coriolis terms, consider the arm
at the configuration (✓

1

, ✓
2

) = (0,⇡/2), i.e., cos ✓
1

= sin(✓
1

+ ✓
2

) = 1, sin ✓
1

=
cos(✓

1

+ ✓
2

) = 0. Assuming ✓̈ = 0, the acceleration (ẍ
2

, ÿ
2

) of m
2

from Equa-
tion (8.11) can be written

ẍ
2

ÿ
2

�
=

�L

1

✓̇2
1

�L
2

✓̇2
1

� L
2

✓̇2
2

�

| {z }
centripetal terms

+

0

�2L
2

✓̇
1

✓̇
2

�

| {z }
Coriolis terms

.

Figure 8.2 shows the centripetal acceleration a
cent1

= (�L
1

✓̇2
1

,�L
2

✓̇2
1

) when
✓̇
2

= 0; the centripetal acceleration a
cent2

= (0,�L
2

✓̇2
2

) when ✓̇
1

= 0; and the
Coriolis acceleration a

cor

= (0,�2L
2

✓̇
1

✓̇
2

) when both ✓̇
1

and ✓̇
2

are positive.
As illustrated in Figure 8.2, each of the centripetal accelerations a

centi

pulls m
2

toward joint i to keep m
2

rotating about about the center of the circle defined
by joint i.2 Therefore a

centi

creates zero torque about joint i. The Coriolis
acceleration a

cor

in this example passes through joint 2, so it creates zero torque
about joint 2, but it creates negative torque about joint 1. Intuitively, the

2
Without this centripetal acceleration, and therefore centripetal force, the mass m2 would

fly o↵ along a tangent to the circle.

246 Dynamics of Open Chains

cent1a
cent1a

cent2a
cent2a

cora

Figure 8.2: Accelerations of m
2

when ✓ = (0,⇡/2) and ✓̈ = 0. (Left) The
centripetal acceleration a

cent1

= (�L
1

✓̇2
1

,�L
2

✓̇2
1

) of m
2

when ✓̇
2

= 0. (Middle)
The centripetal acceleration a

cent2

= (0,�L
2

✓̇2
2

) of m
2

when ✓̇
1

= 0. (Right)
When both joints are rotating with ✓̇

i

> 0, the acceleration is the vector sum of
a
cent1

and a
cent2

and the Coriolis acceleration a
cor

= (0,�2L
2

✓̇
1

✓̇
2

).

torque about joint 1 is negative because m
2

gets closer to joint 1 (due to joint
2’s motion). Therefore the inertia due to m

2

about the ẑ
1

-axis is dropping, and
therefore the positive momentum about joint 1 drops while joint 1’s speed is
constant, and therefore joint 1 must apply a negative torque, since torque is
defined as the rate of change of momentum. Otherwise ✓̇

1

would increase as m
2

gets closer to joint 1, just as a skater’s rotation speed increases as she pulls in
her outstretched arms while doing a spin.

8.1.2 General Formulation

We now describe the Lagrangian dynamics formulation for general n-link open
chains. The first step is to select a set of generalized coordinates ✓ 2 Rn for
the configuration space of the system. For open chains all of whose joints are
actuated, it is convenient and always possible to choose ✓ to be the vector of
joint values. The generalized forces will then be denoted ⌧ 2 Rn. If ✓

i

is a
revolute joint, ⌧

i

will correspond to a torque, while if ✓
i

is a prismatic joint, ⌧
i

will correspond to a force.
Once ✓ has been chosen and the generalized forces ⌧ identified, the next step

is to formulate the Lagrangian L(✓, ✓̇) as

L(✓, ✓̇) = K(✓, ✓̇)� P(✓), (8.12)

where K(✓, ✓̇) is the kinetic energy and P(✓) the potential energy of the overall
system. For rigid-link robots the kinetic energy can always be written in the
form

K(✓) =
1

2

nX

i=1

nX

j=1

m
ij

(✓)✓̇
i

✓̇
j

=
1

2
✓̇TM(✓)✓̇, (8.13)

where m
ij

(✓) is the (i, j) element of the n⇥n mass matrix M(✓); a constructive
proof of this assertion is provided when we examine the Newton-Euler formula-
tion.

8.1. Lagrangian Formulation 247

The dynamic equations are analytically obtained by evaluating the right-
hand side of

⌧
i

=
d

dt

@L
@✓̇

i

� @L
@✓

i

, i = 1, . . . , n. (8.14)

With the kinetic energy expressed as in Equation (8.13), the dynamics can be
written explicitly as

⌧
i

=
nX

j=1

m
ij

(✓)✓̈
j

+
nX

j=1

nX

k=1

�
ijk

(✓)✓̇
j

✓̇
k

+
@P
@✓

i

, i = 1, . . . , n, (8.15)

where the �
ijk

(✓), known as the Christo↵el symbols of the first kind, are
defined as

�
ijk

(✓) =
1

2

✓
@m

ij

@✓
k

+
@m

ik

@✓
j

� @m
jk

@✓
i

◆
. (8.16)

This shows that the Christo↵el symbols, which generate the Coriolis and cen-
tripetal terms c(✓, ✓̇), are derived from the mass matrix M(✓).

As we have already seen, the equations (8.15) are often gathered together in
the form

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓) or M(✓)✓̈ + h(✓, ✓̇),

where g(✓) is simply @P/@✓.
To be more explicit that the Coriolis and centripetal terms are quadratic in

the velocity, we could instead use the form

⌧ = M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓), (8.17)

where �(✓) is an n⇥n⇥nmatrix, and the product ✓̇T�(✓)✓̇ should be interpreted
as

✓̇T�(✓)✓̇ =

2

6664

✓̇T�
1

(✓)✓̇
✓̇T�

2

(✓)✓̇
...

✓̇T�
n

(✓)✓̇

3

7775
,

where �
i

(✓) is an n⇥ n matrix with (j, k) entries �
ijk

.
It is also common to see the dynamics written as

⌧ = M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),

where C(✓, ✓̇) 2 Rn⇥n is called the Coriolis matrix, with (i, j) entries

c
ij

(✓, ✓̇) =
nX

k=1

�
ijk

(✓)✓̇
k

. (8.18)

The following property, referred to as the passivity property, turns out to
have important ramifications in proving the stability of certain robot control
laws, as we will see in Chapter 11.

248 Dynamics of Open Chains

Proposition 8.1. The matrix Ṁ(✓) � 2C(✓, ✓̇) 2 Rn⇥n, where M(✓) 2 Rn⇥n

is the mass matrix and Ṁ(✓) its time derivative, and C(✓, ✓̇) 2 Rn⇥n is the
Coriolis matrix as defined in Equation (8.18), is skew symmetric.

Proof. The (i, j) component of Ṁ � 2C is

ṁ
ij

(✓)� 2c
ij

(✓, ✓̇) =
nX

k=1

@m
ij

@✓
k

✓̇
k

� @m
ij

@✓
k

✓̇
k

� @m
ik

@✓
j

✓̇
k

+
@m

kj

@✓
i

✓̇
k

=
nX

k=1

@m
kj

@✓
i

✓̇
k

� @m
ik

@✓
j

✓̇
k

.

By switching the indices i and j, it can be seen that

ṁ
ji

(✓)� 2c
ji

(✓, ✓̇) = �(ṁ
ij

(✓)� 2c
ij

(✓, ✓̇)),

thus proving that (Ṁ � 2C)T = �(Ṁ � 2C) as claimed.

8.1.3 Understanding the Mass Matrix

The kinetic energy 1

2

✓̇TM(✓)✓̇ is a generalization of the familiar 1

2

mvT v for a
point mass. The fact that the mass matrix M(✓) is positive definite, meaning
that ✓̇TM(✓)✓̇ > 0 for all ✓̇ 6= 0, is a generalization of the fact that the mass of
a point mass is always positive, m > 0. In both cases, if the velocity is nonzero,
the kinetic energy must be positive.

For a point mass with dynamics expressed in Cartesian coordinates as f =
mẍ, the mass is independent of the direction of acceleration, and the acceleration
ẍ is always “parallel” to the force, in the sense that ẍ is a scalar multiple of
f . A mass matrix M(✓), on the other hand, presents di↵erent e↵ective mass in
di↵erent acceleration directions, and ✓̈ is not generally a scalar multiple of ⌧ ,
even when ✓̇ = 0. To visualize the direction dependence of the e↵ective mass,
we can map a unit ball of joint accelerations {✓̈ | ✓̈T ✓̈ = 1} through the mass
matrix M(✓) to generate a joint force/torque ellipsoid when the mechanism is
at rest (✓̇ = 0). An example is shown in Figure 8.3 for the 2R arm of Figure 8.1,
where L

1

= L
2

= m
1

= m
2

= 1. This torque ellipsoid can be interpreted as a
direction-dependent mass ellipsoid: to get the same joint acceleration magnitude
k✓̈k, you must apply a larger torque to joint 1 than you would have to apply
to joint 2. This e↵ect is reduced as link 2 folds back on link 1, reducing the
distance between joint 1 and m

2

, as shown in Figure 8.3. The direction of the
principal axes of the mass ellipsoid are given by the eigenvectors v

i

of M(✓) and
the lengths of the principal semi-axes are given by the corresponding eigenvalues
�
i

. The acceleration ✓̈ is only a scalar multiple of ⌧ when ⌧ is along one of the
principal axes of the ellipsoid.

It is easier to visualize the mass matrix if it is represented as an e↵ective
mass of the end-e↵ector. In other words, if you grabbed the endpoint of the 2R
robot, how massy would it feel depending on the direction you applied force to
it? Let us denote the e↵ective mass matrix at the end-e↵ector as ⇤(✓), and the

8.1. Lagrangian Formulation 249

M(θ)

τ1

τ2

τ1

τ2

θ2
..

θ1
..

θ2
..

θ1
..

M (θ)�1

Figure 8.3: (Bold lines) A unit ball of accelerations in ✓̈ maps through the mass
matrix M(✓) to a torque ellipsoid that depends on the configuration of the 2R
arm. These torque ellipsoids may be interpreted as mass ellipsoids. (Dotted
lines) A unit ball in ⌧ maps through M�1(✓) to an acceleration ellipsoid.

velocity of the end-e↵ector as V = (ẋ, ẏ)T . We know that the kinetic energy of
the robot must be the same regardless of the coordinates we use, so

1

2
✓̇TM(✓)✓̇ =

1

2
V T⇤(✓)V. (8.19)

Assuming the Jacobian J(✓) satisfying V = J(✓)✓̇ is invertible, then Equa-
tion (8.19) can be rewritten as

V T⇤V = (J�1V)TM(J�1V)

= V T (J�TMJ�1)V.

In other words, the end-e↵ector mass matrix is

⇤(✓) = J�T (✓)M(✓)J�1(✓). (8.20)

Figure 8.4 shows the end-e↵ector mass ellipsoids, with principal axes given by
the eigenvectors of ⇤(✓) and principal semi-axis lengths given by the eigenval-
ues, for the same two 2R robot configurations as in Figure 8.3. The endpoint

250 Dynamics of Open Chains

Λ(θ)

..x

..y

fx

fy

fy

fx
..x

..y
Λ (θ)�1

Figure 8.4: (Bold lines) A unit ball of accelerations in (ẍ, ÿ) maps through the
end-e↵ector mass matrix ⇤(✓) to an end-e↵ector force ellipsoid that depends
on the configuration of the 2R arm. For the top right configuration, a force in
the f

y

direction exactly feels both masses m
1

and m
2

, while a force in the f
x

direction feels only m
2

. (Dotted lines) A unit ball in f maps through ⇤�1(✓) to
an acceleration ellipsoid.

acceleration is only a scalar multiple of the force if the force is along one of the
principal axes of the ellipsoid.

The change in apparent endpoint mass as a function of the configuration of
the robot is an issue for robots used as haptic displays. One way to mitigate
this issue is to make the mass of the links as small as possible.

Note that these ellipsoidal interpretations of the relationship between forces
and accelerations are only relevant at zero velocity, where there are no Coriolis
or centripetal terms.

8.1.4 Lagrangian Dynamics vs. Newton-Euler Dynamics

In the rest of this chapter, we focus on the Newton-Euler recursive method
for calculating robot dynamics. Using the tools we have developed so far, the
Newton-Euler formulation allows computationally e�cient computer implemen-
tation, particularly for robots with many degrees of freedom, without the need
for di↵erentiation. The resulting equations of motion are, and must be, identical
to those derived using the energy-based Lagrangian method.

8.2. Dynamics of a Single Rigid Body 251

The Newton-Euler method builds on the dynamics of a single rigid body, so
we begin there.

8.2 Dynamics of a Single Rigid Body

8.2.1 Classical Formulation

Consider a rigid body consisting of a number of rigidly connected point masses,
where point mass i has mass m

i

and the total mass is m =
P

i

m
i

. Let r
i

=
(x

i

, y
i

, z
i

)T be the fixed location of mass i in a body frame {b}, where the origin
of this frame is the unique point such that

X

i

m
i

r
i

= 0.

This point is known as the center of mass. If some other point is erroneously
chosen as the origin, then the frame {b} should be moved to the center of mass
at (1/m)

P
i

m
i

r
i

and the r
i

’s recalculated in this center-of-mass frame.
Now assume that the body is moving with a body twist V

b

= (!
b

, v
b

), and
let p

i

(t) be the time-varying position of m
i

, initially located at r
i

, in the inertial
frame {b}. Then

ṗ
i

= v
b

+ !
b

⇥ p
i

p̈
i

= v̇
b

+
d

dt
!
b

⇥ p
i

+ !
b

⇥ d

dt
p
i

= v̇
b

+ !̇
b

⇥ p
i

+ !
b

⇥ (v
b

+ !
b

⇥ p
i

).

Plugging in p
i

= r
i

and using our skew-symmetric notation, we get

p̈
i

= v̇
b

+ [!̇
b

]r
i

+ [!
b

]v
b

+ [!
b

]2r
i

.

Taking as a given that f
i

= m
i

p̈
i

for a point mass, the force acting on m
i

is

f
i

= m
i

(v̇
b

+ [!̇
b

]r
i

+ [!
b

]v
b

+ [!
b

]2r
i

),

which implies a moment
m

i

= [r
i

]f
i

.

The total force and moment acting on the body is expressed as the wrench F
b

:

F
b

=

m

b

f
b

�
=

 P
i

m
iP

i

f
i

�
.

To simplify the expressions for f
b

and m
b

, keep in mind that
P

i

m
i

r
i

= 0
(and therefore

P
i

m
i

[r
i

] = 0), and for a, b 2 R3, [a] = �[a]T , [a]b = �[b]a, and

252 Dynamics of Open Chains

[a][b] = ([b][a])T . Focusing on the linear dynamics,

f
b

=
X

i

m
i

(v̇
b

+ [!̇
b

]r
i

+ [!
b

]v
b

+ [!
b

]2r
i

)

=
X

i

m
i

(v̇
b

+ [!
b

]v
b

)�
������*

0X

i

m
i

[r
i

]!̇
b

+
⇠⇠⇠⇠⇠⇠⇠⇠:0X

i

m
i

[r
i

][!
b

]!
b

=
X

i

m
i

(v̇
b

+ [!
b

]v
b

)

= m(v̇
b

+ [!
b

]v
b

). (8.21)

Now focusing on the rotational dynamics,

m
b

=
X

i

m
i

[r
i

](v̇
b

+ [!̇
b

]r
i

+ [!
b

]v
b

+ [!
b

]2r
i

)

=

������*
0X

i

m
i

[r
i

]v̇
b

+
⇠⇠⇠⇠⇠⇠⇠⇠:0X

i

m
i

[r
i

][!
b

]v
b

+
X

i

m
i

[r
i

]([!̇
b

]r
i

+ [!
b

]2r
i

)

=
X

i

m
i

�
�[r

i

]2!̇
b

� [r
i

]T [!
b

]T [r
i

]!
b

�

=
X

i

m
i

�
�[r

i

]2!̇
b

� [!
b

][r
i

]2!
b

�

=

�
X

i

m
i

[r
i

]2
!
!̇
b

+ [!
b

]

�
X

i

m
i

[r
i

]2
!
!
b

= I
b

!̇
b

+ [!
b

]I
b

!
b

, (8.22)

where I
b

= �
P

i

m
i

[r
i

]2 2 R3⇥3 is the body’s rotational inertia matrix. In
Equation (8.22), note the presence of a term linear in the angular acceleration,
I
b

!̇
b

, and a term quadratic in the angular velocities, [!
b

]I
b

!
b

, just as we saw
for mechanisms in Section 8.1. Also, I

b

is symmetric and positive definite, just
like the mass matrix for a mechanism, and the rotational kinetic energy is given
by the quadratic

K =
1

2
!T

b

I
b

!
b

.

One di↵erence is that I
b

is constant, whereas the mass matrix M(✓) changes
with the configuration of the mechanism.

Writing out the individual entries of I
b

, we get

I
b

=

2

4

P
m

i

(y2
i

+ z2
i

) �
P

m
i

x
i

y
i

�
P

m
i

x
i

z
i

�
P

m
i

x
i

y
i

P
m

i

(x2

i

+ z2
i

) �
P

m
i

y
i

z
i

�
P

m
i

x
i

z
i

�
P

m
i

y
i

z
i

P
m

i

(x2

i

+ y2
i

)

3

5

=

2

4
I
xx

I
xy

I
xz

I
xy

I
yy

I
yz

I
xz

I
yz

I
zz

3

5 .

8.2. Dynamics of a Single Rigid Body 253

The summations can be replaced by volume integrals over the body B, with the
point masses m

i

replaced by a mass density function ⇢(x, y, z):

I
xx

=

Z Z Z

B
(y2 + z2)⇢(x, y, z) dx dy dz

I
yy

=

Z Z Z

B
(x2 + z2)⇢(x, y, z) dx dy dz

I
zz

=

Z Z Z

B
(x2 + y2)⇢(x, y, z) dx dy dz (8.23)

I
xy

= �
Z Z Z

B
xy⇢(x, y, z) dx dy dz

I
xz

= �
Z Z Z

B
xz⇢(x, y, z) dx dy dz

I
yz

= �
Z Z Z

B
yz⇢(x, y, z) dx dy dz.

If the body has uniform density, I
b

is determined exclusively by the shape of
the rigid body (see Figure 8.5).

Given an inertia matrix I
b

, the principal axes of inertia are given by
the eigenvectors and eigenvalues of I

b

. Let v
1

, v
2

, v
3

be the eigenvectors of
I
b

and �
1

,�
2

,�
3

be the corresponding eigenvalues. Then the principal axes
of inertia are in the directions of v

1

, v
2

, v
3

, and the scalar moments of inertia
about these axes, the principal moments of inertia, are �

1

,�
2

,�
3

> 0. One
of the principal axes maximizes the moment of inertia among all axes passing
through the center of mass, and one of the principal axes minimizes the moment
of inertia. For bodies with symmetry, often the principal axes of inertia are
apparent. The principal axes may not be unique, however; for a uniform-density
solid sphere, for example, any three orthogonal axes intersecting at the center
of mass is a set of principal axes, and the minimum principal moment of inertia
is equal to the maximum principal moment of inertia.

If the principal axes of inertia are aligned with the axes of {b}, the o↵-
diagonal terms of I

b

are all zero, and the eigenvalues are the scalar moments of
inertia I

xx

, I
yy

, and I
zz

about the x̂, ŷ, and ẑ axes, respectively. In this case,
the equations of motion (8.22) simplify to

m
b

=

2

4
I
xx

!̇
x

+ (I
zz

� I
yy

)!
y

!
z

I
yy

!̇
y

+ (I
xx

� I
zz

)!
x

!
z

I
zz

!̇
z

+ (I
yy

� I
xx

)!
x

!
y

3

5 , (8.24)

where !
b

= (!
x

,!
y

,!
z

). When possible, we choose the axes of {b} to be aligned
with the principal axes of inertia, to reduce the number of nonzero entries in I

b

and to simplify the equations of motion.
Examples of common uniform-density solid bodies, their principal axes of

inertia, and the principal moments of inertia obtained by solving the inte-
grals (8.23), are given in Figure 8.5.

254 Dynamics of Open Chains

w

h

y^

x^

z^

rh
y^

x^

z^

c

a b y^x^

z^

rectangular parallelepiped circular cylinder ellipsoid
volume = abc volume = ⇡r2h volume = 4⇡abc/3

I
xx

= m(w2 + h2)/12 I
xx

= m(3r2 + h2)/12 I
xx

= m(b2 + c2)/5
I
yy

= m(`2 + h2)/12 I
yy

= m(3r2 + h2)/12 I
yy

= m(a2 + c2)/5
I
zz

= m(`2 + w2)/12 I
zz

= mr2/2 I
zz

= m(a2 + b2)/5

Figure 8.5: The principal axes and the inertia about the principal axes for
uniform density bodies of mass m. Note that the x̂ and ŷ principal axes of the
cylinder are not unique.

An inertia matrix I
b

can be expressed in a rotated frame {c} described by
the rotation matrix R

bc

. Denoting this inertia matrix as I
c

, and knowing that
the kinetic energy of the rotating body must be identical regardless of the chosen
frame, we have

1

2
!T

c

I
c

!
c

=
1

2
!T

b

I
b

!
b

=
1

2
(R

bc

!
c

)TI
b

(R
bc

!
c

)

=
1

2
!T

c

(RT

bc

I
b

R
bc

)!
c

.

In other words,
I
c

= RT

bc

I
b

R
bc

. (8.25)

If the axes of {b} are not aligned with the principal axes of inertia, then we can
diagonalize the inertia matrix by expressing it instead in the rotated frame {c},
where the columns of R

bc

correspond to eigenvalues of I
b

.
Sometimes it is convenient to represent the inertia matrix in a frame at a

point not at the center of mass of the body, such as at a joint. Steiner’s
theorem can be stated as follows.

Theorem 8.2. The inertia matrix I
q

about a frame aligned with {b}, but at a
point q = (q

x

, q
y

, q
z

)T in {b}, is related to the inertia matrix I
b

calculated at
the center of mass by

I
q

= I
b

+m(qT qI
3

� qqT), (8.26)

where I is the 3⇥ 3 identity matrix and m is the mass of the body.

Steiner’s theorem is a more general statement of the parallel-axis theorem,
which states that the scalar inertia I

d

about an axis parallel to, but a distance

8.2. Dynamics of a Single Rigid Body 255

d from, an axis through the center of mass, is related to the scalar inertia I
cm

about the axis through the center of mass by

I
d

= I
cm

+md2. (8.27)

Proofs of these are left to the exercises.
Equations (8.25) and (8.26) are useful for calculating the inertia of a rigid

body consisting of multiple component rigid bodies. First calculate the inertia
matrices of the n component bodies in terms of frames at their individual centers
of mass. Then choose a common frame {common} and use Equations (8.25) and
(8.26) to express each of the inertia matrices in this common frame. Once the
individual inertia matrices are expressed in {common}, they can be summed to
get the inertia matrix I

common

for the composite rigid body.
In the case of motion confined to the x̂-ŷ plane, where !

b

= (0, 0,!
z

)T and
the inertia of the body about the ẑ-axis through the center of mass is given
by the scalar I

zz

, the spatial rotational dynamics (8.22) reduce to the planar
rotational dynamics

m
z

= I
zz

!̇
z

,

and the rotational kinetic energy is

K =
1

2
I
zz

!2

z

.

8.2.2 Twist-Wrench Formulation

The linear dynamics (8.21) and the rotational dynamics (8.22) can be written
in the following combined form:

m
b

f
b

�
=

I
b

0
0 mI

�
!̇
b

v̇
b

�
+

[!

b

] 0
0 [!

b

]

�
I
b

0
0 mI

�
!
b

v
b

�
, (8.28)

where I is the 3 ⇥ 3 identity matrix. With the benefit of hindsight, and also
making use of the fact that [v]v = v ⇥ v = 0 and [v]T = �[v], we write Equa-
tion (8.28) in the following equivalent form:

m

b

f
b

�
=

I
b

0
0 mI

�
!̇
b

v̇
b

�
+

[!

b

] [v
b

]
0 [!

b

]

�
I
b

0
0 mI

�
!
b

v
b

�

=

I
b

0
0 mI

�
!̇
b

v̇
b

�
�

[!
b

] 0
[v

b

] [!
b

]

�
T

I
b

0
0 mI

�
!
b

v
b

�
.(8.29)

Written this way, each of the terms can now be identified with six-dimensional
spatial quantities as follows:

(i) (!
b

, v
b

) and (m
b

, f
b

) can be respectively identified with the body twist V
b

and body wrench F
b

,

V
b

=

!
b

v
b

�
, F

b

=

m

b

f
b

�
. (8.30)

256 Dynamics of Open Chains

(ii) The spatial inertia matrix G
b

2 R6⇥6 is defined as

G
b

=

I
b

0
0 mI

�
, (8.31)

where I denotes the 3⇥ 3 identity matrix. As an aside, the kinetic energy
of the rigid body can be expressed in terms of the spatial inertia matrix
as

Kinetic Energy =
1

2
!T

b

I
b

!
b

+
1

2
mvT

b

v
b

=
1

2
VT

b

G
b

V
b

. (8.32)

(iii) The spatial momentum P
b

2 R6 is defined as

P
b

=

I
b

!
b

mv
b

�
=

I
b

0
0 mI

�
!
b

v
b

�
= G

b

V
b

. (8.33)

Observe that the P
b

term in Equation (8.29) is left-multiplied by the matrix

�

[!
b

] 0
[v

b

] [!
b

]

�
T

. (8.34)

We now explain the origin and geometric significance of this matrix. First,
recall that the cross product of two vectors !

1

,!
2

2 R3 can be calculated using
skew-symmetric matrix notation as follows:

[!
1

⇥ !
2

] = [!
1

][!
2

]� [!
2

][!
1

]. (8.35)

The matrix in (8.34) can be thought of as a generalization of the cross-product
operation to six-dimensional twists. Specifically, given two twists V

1

= (!
1

, v
1

)
and V

2

= (!
2

, v
2

), we perform a calculation analogous to (8.35):

[!

1

] v
1

0 0

�
[!

2

] v
2

0 0

�
�

[!
2

] v
2

0 0

�
[!

1

] v
1

0 0

�

=

[!

1

][!
2

]� [!
2

][!
1

] [!
1

]v
2

� [!
2

]v
1

0 0

�
=

[!0] v0

0 0

�
,

which can be written more compactly in vector form as

!0

v0

�
=

[!

1

] 0
[v

1

] [!
1

]

�
!
2

v
2

�
.

This generalization of the cross product to two twists V
1

and V
2

is called the
Lie bracket of V

1

and V
2

.

Definition 8.1. Given two twists V
1

= (!
1

, v
1

) and V
2

= (!
2

, v
2

), the Lie
bracket of V

1

and V
2

, written either as [V
1

,V
2

] or adV
1

(V
2

), is defined as follows:

[V
1

,V
2

] =

[!

1

] 0
[v

1

] [!
1

]

�
!
2

v
2

�
= adV

1

(V
2

) 2 se(3). (8.36)

8.3. Newton-Euler Inverse Dynamics 257

Given V = (!, v), we further define the following notation for the 6⇥ 6 matrix
representation [adV]:

[adV] =

[!] 0
[v] [!]

�
2 R6⇥6. (8.37)

With this notation the Lie bracket [V
1

,V
2

] can also be expressed as

[V
1

,V
2

] = adV
1

(V
2

) = [adV
1

]V
2

. (8.38)

Definition 8.2. Given a twist V = (!, v) and wrench F = (m, f), define the
mapping

adTV (F) = [adV]
TF =

[!] 0
[v] [!]

�
T

m
f

�
=

�[!]m� [v]f
�[!]f

�
(8.39)

Using the above notation and definitions, the dynamic equations for a single
rigid body can now be written as

F
b

= G
b

V̇
b

� adTV
b

(P
b

)

= G
b

V̇
b

� [adV
b

]TG
b

V
b

. (8.40)

Note the analogy between Equation (8.40) and the moment equation for a ro-
tating rigid body:

m
b

= I
b

!̇
b

� [!
b

]TI
b

!
b

. (8.41)

Equation (8.41) is simply the rotational component of (8.40).

8.3 Newton-Euler Inverse Dynamics

We now consider the inverse dynamics problem for an n-link open chain con-
nected by one-degree-of-freedom joints. Given the joint positions ✓ 2 Rn, ve-
locities ✓̇ 2 Rn, and accelerations ✓̈ 2 Rn, the objective is to calculate the
right-hand side of the dynamics equation

⌧ = M(✓)✓̈ + h(✓, ✓̇).

The main result is a recursive inverse dynamics algorithm consisting of a for-
ward and backward iteration stage. In the forward iteration, the velocities and
accelerations of each link are propagated from the base to the tip, while in
the backward iteration, the forces and moments experienced by each link are
propagated from the tip to the base.

8.3.1 Derivation

A body-fixed reference frame {i} is attached to the center of mass of each link
i, i = 1, . . . , n. The base frame is denoted {0}, and a frame at the end-e↵ector
is denoted {n+ 1}. This frame is fixed in {n}.

258 Dynamics of Open Chains

When the manipulator is at the home position, with all joint variables zero,
we denote the configuration of frame {j} in {i} as M

i,j

2 SE(3), and the
configuration of {i} in the base frame {0} using the shorthand M

i

= M
0,i

.
With these definitions, M

i�1,i

can be calculated as

M
i�1,i

= M�1

i�1

M
i

. (8.42)

The screw axis for joint i, expressed in the link frame {i}, is A
i

. This same
screw axis is expressed in the space frame {0} as S

i

, where the two are related
by

A
i

= Ad
M

�1

i

(S
i

).

Defining T
i,j

2 SE(3) to be the configuration of frame {j} in {i} for arbitrary
joint variables ✓, then the configuration of {i} relative to {i� 1} given the joint
variable ✓

i

is
T
i�1,i

(✓
i

) = M
i�1,i

e[Ai

]✓

i .

We further define the following notation:

(i) Denote the twist of link frame {i}, expressed in frame {i} coordinates, by
V
i

= (!
i

, v
i

).

(ii) Denote the wrench transmitted through joint i to link frame {i}, expressed
in frame {i} coordinates, by F

i

= (m
i

, f
i

).

(iii) Let G
i

2 R6⇥6 denote the spatial inertia matrix of link i, expressed relative
to link frame {i}. Since we assume that all link frames are situated at the
link center of mass, G

i

has the block-diagonal form

G
i

=

I
i

0
0 m

i

I

�
, (8.43)

where I
i

denotes the 3⇥ 3 rotational inertia matrix of link i and m
i

is the
link mass.

With these definitions, we can recursively calculate the twist and acceleration
of each link, moving from the base to the tip. The twist of link i, expressed in
{i}, is the sum of the twist of link i � 1, V

i�1

, but expressed in {i}, and the
added twist due to the joint rate ✓̇

i

:

V
i

= Ad
T

i,i�1

(V
i�1

) +A
i

✓̇
i

. (8.44)

The accelerations V̇
i

can also be found recursively. Noting that

[V̇
i

] =
d

dt
T
i�1,i

[V
i

]T�1

i�1,i

+ T
i�1,i

[V̇
i

]T�1

i�1,i

+ T
i�1,i

[V
i

]
d

dt
T�1

i�1,i

+ [A
i

]✓̈
i

,

and

d

dt
T
i�1,i

= M
i�1,i

[A
i

]e[Ai

]✓

i ✓̇
i

= M
i�1,i

e[Ai

]✓

i [A
i

]✓̇
i

d

dt
T�1

i�1,i

= �T�1

i�1,i

Ṫ
i�1,i

T�1

i�1,i

,

8.3. Newton-Euler Inverse Dynamics 259

{i}
Fi

Vi

Vi

-AdT (Fi+1)
i+1,i

*

Joint
Axis i ●

Figure 8.6: Free body diagram illustrating the moments and forces exerted on
link i.

it can be shown that

V̇
i

= A
i

✓̈
i

+Ad
T

i,i�1

(V̇
i�1

) + [Ad
T

i�1,i

(V
i�1

),A
i

✓̇
i

], (8.45)

where
h
Ad

T

i�1,i

(V
i�1

),A
i

✓̇
i

i
denotes the Lie bracket of Ad

T

i�1,i

(V
i�1

) with

A
i

✓̇
i

. Note that since [A
i

,A
i

] = 0 and Ad
T

i,i�1

(V
i�1

) = V
i

� A
i

✓̇
i

, we ob-
tain the alternative but equivalent formula

V̇
i

= A
i

✓̈
i

+Ad
T

i,i�1

(V̇
i�1

) + [V
i

,A
i

✓̇
i

]. (8.46)

Once we have determined all the link twists and accelerations moving out-
ward from the base, we can calculate the joint torques or forces by moving
inward from the tip. The rigid-body dynamics (8.40) tells us the total wrench
that acts on link i given V

i

and V̇
i

, and the total wrench acting on link i is the
sum of the wrench F

i

transmitted through joint i and the wrench applied to
the link through joint i+1 (or, for link n, the wrench applied to the link by the
environment at the end-e↵ector frame {n+ 1}) expressed in the frame i:

G
i

V̇
i

� adTV
i

(G
i

V
i

) = F
i

�AdT
T

i+1,i

(F
i+1

). (8.47)

See Figure 8.6. Solving from the tip toward the base, at each link we solve for
the only unknown in Equation (8.47): F

i

. Since joint i has only one degree
of freedom, five dimensions of the six-vector F

i

are provided “for free” by the
structure of the joint, and the actuator only has to provide the force or torque
in the direction of the joint’s screw axis:

⌧
i

= FT

i

A
i

. (8.48)

These equations provide the torques required at each joint, solving the inverse
dynamics problem.

260 Dynamics of Open Chains

8.3.2 Newton-Euler Inverse Dynamics Algorithm

Initialization: Attach a frame {0} to the base, frames {1} to {n} to the
centers of mass of links {1} to {n}, and a frame {n + 1} at the end-e↵ector,
fixed in the frame {n}. Define M

i�1,i

to be the configuration of {i} in {i � 1}
when ✓

i

= 0. Let A
i

be the screw axis of joint i expressed in {i}, and G
i

be
the 6 ⇥ 6 spatial inertia matrix of link i. Define V

0

to be the twist of the base
frame {0} expressed in base frame coordinates. (This quantity is typically zero.)
Let g 2 R3 be the gravity vector expressed in base frame {0} coordinates, and
define V̇

0

= (0,�g). (Gravity is treated as an acceleration of the base in the
opposite direction.) Define F

n+1

= F
tip

= (m
tip

, f
tip

) to be the wrench applied
applied to the environment by the end-e↵ector expressed in the end-e↵ector
frame {n+ 1}.

Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

T
i�1,i

= M
i�1,i

e[Ai

]✓

i (8.49)

V
i

= Ad
T

i,i�1

(V
i�1

) +A
i

✓̇
i

(8.50)

V̇
i

= Ad
T

i,i�1

(V̇
i�1

) + [V
i

,A
i

]✓̇
i

+A
i

✓̈
i

. (8.51)

Backward iterations: For i = n to 1 do

F
i

= AdT
T

i+1,i

(F
i+1

) + G
i

V̇
i

� adTV
i

(G
i

V
i

) (8.52)

⌧
i

= FT

i

A
i

. (8.53)

8.4 Dynamic Equations in Closed Form

In this section we show how the equations in the recursive inverse dynamics
algorithm can be organized into a closed-form set of dynamics equations of the
form ⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓).

Before doing so, we prove our earlier assertion that the total kinetic energy
K of the robot can be expressed as K = 1

2

✓̇TM(✓)✓̇. We do so by noting that K
can be expressed as the sum of the kinetic energies of each link:

K =
1

2

nX

i=1

VT

i

G
i

V
i

, (8.54)

where V
i

is the twist of link frame {i}, and G
i

is the spatial inertia matrix
of link i as defined by Equation (8.31) (both are expressed in link frame {i}
coordinates). Let T

0i

(✓
1

, . . . , ✓
i

) denote the forward kinematics from the base
frame {0} to link frame {i}, and let J

ib

(✓) denote the body Jacobian obtained
from T�1

0i

Ṫ
0i

. Note that J
ib

as defined is a 6⇥ i matrix; we turn it into a 6⇥ n
matrix by filling in all entries of the last n � i columns with zeros. With this
definition of J

ib

, we can write

V
i

= J
ib

(✓)✓̇, i = 1, . . . , n.

8.4. Dynamic Equations in Closed Form 261

The kinetic energy can then be written

K =
1

2
✓̇T

nX

i=1

JT

ib

(✓)G
i

J
ib

(✓)

!
✓̇. (8.55)

The term inside the parentheses is precisely the mass matrix M(✓):

M(✓) =
nX

i=1

JT

ib

(✓)G
i

J
ib

(✓). (8.56)

We now return to the original task of deriving a closed-form set of dynamic
equations. We start by defining the following stacked vectors:

V =

2

64
V
1

...
V
n

3

75 2 R6n (8.57)

F =

2

64
F

1

...
F

n

3

75 2 R6n. (8.58)

Further define the following matrices:

A =

2

6664

A
1

0 · · · 0
0 A

2

· · · 0
...

...
. . .

...
0 · · · · · · A

n

3

7775
2 R6n⇥n (8.59)

G =

2

6664

G
1

0 · · · 0
0 G

2

· · · 0
...

...
. . .

...
0 · · · · · · G

n

3

7775
2 R6n⇥6n (8.60)

[adV] =

2

6664

[adV
1

] 0 · · · 0
0 [adV

2

] · · · 0
...

...
. . .

...
0 · · · · · · [adV

n

]

3

7775
2 R6n⇥6n (8.61)

⇥
adA ˙

✓

⇤
=

2

6664

[adA
1

˙

✓

1

] 0 · · · 0
0 [adA

2

˙

✓

2

] · · · 0
...

...
. . .

...
0 · · · · · · [adA

n

˙

✓

n

]

3

7775
2 R6n⇥6n (8.62)

S(✓) =

2

666664

0 0 · · · 0 0
[Ad

T

21

] 0 · · · 0 0
0 [Ad

T

32

] · · · 0 0
...

...
. . .

...
...

0 0 · · ·
⇥
Ad

T

n,n�1

⇤
0

3

777775
2 R6n⇥6n.(8.63)

262 Dynamics of Open Chains

We write S(✓) to emphasize the dependence of S on ✓. Finally, define the
following stacked vectors:

V
base

=

2

6664

Ad
T

10

(V
0

)
0
...
0

3

7775
2 R6n (8.64)

V̇
base

=

2

6664

Ad
T

10

(V̇
0

)
0
...
0

3

7775
2 R6n (8.65)

F
tip

=

2

6664

0
...
0

AdT
T

n+1,n

(F
n+1

)

3

7775
2 R6n. (8.66)

Note that A 2 R6n⇥n and G 2 R6n⇥6n are constant block-diagonal matrices,
in which A contains only the kinematic parameters, while G contains only the
mass and inertial parameters for each link.

With the above definitions, our earlier recursive inverse dynamics algorithm
can be assembled into the following set of matrix equations:

V = S(✓)V +A✓̇ + V
base

(8.67)

V̇ = S(✓)V̇ +A✓̈ � [adA ˙

✓

](S(✓)V + V
base

) + V̇
base

(8.68)

F = ST (✓)F + GV̇ � [adV]
TGV + F

tip

(8.69)

⌧ = ATF . (8.70)

S(✓) has the property that Sn(✓) = 0 (such a matrix is said to be nilpotent
of order n), and one consequence verifiable through direct calculation is that
(I � S(✓))�1 = I + S(✓) + . . .+ Sn�1(✓). Defining L(✓) = (I � S(✓))�1, it can
further be verified via direct calculation that

L(✓) =

2

666664

I 0 0 · · · 0
[Ad

T

21

] I 0 · · · 0
[Ad

T

31

] [Ad
T

32

] I · · · 0
...

...
...

. . .
...

[Ad
T

n1

] [Ad
T

n2

] [Ad
T

n3

] · · · I

3

777775
2 R6n⇥6n. (8.71)

We write L(✓) to emphasize the dependence of L on ✓. The earlier matrix

8.5. Forward Dynamics of Open Chains 263

equations can now be reorganized as

V = L(✓)
⇣
A✓̇ + V

base

⌘
(8.72)

V̇ = L(✓)
⇣
A✓̈ + [adA ˙

✓

]S(✓)V + [adA ˙

✓

]V
base

+ V̇
base

⌘
(8.73)

F = LT (✓)
⇣
GV̇ � [adV]

TGV + F
tip

⌘
(8.74)

⌧ = ATF . (8.75)

If the robot applies an external wrench F
tip

at the end-e↵ector, this can be
included into the following dynamics equation,

⌧ = M(✓)✓̈ + c(✓, ✓̇) + g(✓) + JT (✓)F
tip

, (8.76)

where J(✓) denotes the Jacobian of the forward kinematics expressed in the
same reference frame as F

tip

, and

M(✓) = ATLT (✓)GL(✓)A (8.77)

c(✓, ✓̇) = �ATLT (✓)
�
GL(✓) [adA ˙

✓

]S(✓) + [adV]
TG

�
L(✓)A✓̇ (8.78)

g(✓) = ATLT (✓)GL(✓)V̇
base

. (8.79)

8.5 Forward Dynamics of Open Chains

The forward dynamics problem is to solve

M(✓)✓̈ = ⌧(t)� h(✓, ✓̇)� JT (✓)F
tip

(8.80)

for ✓̈, given ✓, ✓̇, ⌧ , and the wrench F
tip

applied by the end-e↵ector (if ap-
plicable). The term h(✓, ✓̇) can be computed by calling the inverse dynamics
algorithm with ✓̈ = 0 and F

tip

= 0. The inertia matrix M(✓) can be computed
using Equation (8.56). An alternative is to use n calls of the inverse dynamics
algorithm to build M(✓) column by column. In each of the n calls, set g = 0,
✓̇ = 0, and F

tip

= 0. In the first call, the column vector ✓̈ is all zeros except
for a 1 in the first row. In the second call, ✓̈ is all zeros except for a 1 in the
second row, and so on. The ⌧ vector returned by the ith call is the ith column
of M(✓), and after n calls the n⇥ n matrix M(✓) is constructed.

With M(✓), h(✓, ✓̇), and F
tip

, we can use any e�cient algorithm for solving
Equation (8.80), an equation of the form M ✓̈ = b, for ✓̈.

The forward dynamics can be used to simulate the motion of the robot given
its initial state, the joint forces/torques ⌧(t), and an optional external wrench
F

tip

(t), for t 2 [0, t
f

]. First define the function ForwardDynamics returning the
solution to Equation (8.80), i.e.,

✓̈ = ForwardDynamics(✓, ✓̇, ⌧,F
tip

).

264 Dynamics of Open Chains

Defining the variables q
1

= ✓, q
2

= ✓̇, the second-order dynamics (8.80) can be
converted to two first-order di↵erential equations

q̇
1

= q
2

q̇
2

= ForwardDynamics(q
1

, q
2

, ⌧,F
tip

).

The simplest method for numerically integrating a system of first-order di↵er-
ential equations of the form q̇ = f(q, t), q 2 Rn, is the first-order Euler iteration

q(t+ �t) = q(t) + �tf(q(t), t),

where the positive scalar �t denotes the timestep. The Euler integration of the
robot dynamics is thus

q
1

(t+ �t) = q
1

(t) + q
2

(t)�t

q
2

(t+ �t) = q
2

(t) + ForwardDynamics(q
1

, q
2

, ⌧,F
tip

)�t.

Given a set of initial values for q
1

(0) = ✓(0) and q
2

(0) = ✓̇(0), the above
equations can be iterated forward in time to numerically obtain the motion
✓(t) = q

1

(t).

Euler Integration Algorithm for Forward Dynamics

• Inputs: Initial conditions ✓(0) and ✓̇(0), input torques ⌧(t) and wrenches
at the end-e↵ector F

tip

(t) for t 2 [0, t
f

], and the number of integration
steps N .

• Initialization: Set timestep �t = t
f

/N , ✓[0] = ✓(0), ✓̇[0] = ✓̇(0).

• Iteration: For k = 0 to N � 1 do

✓̈[k] = ForwardDynamics(✓[k], ✓̇[k], ⌧(k�t),F
tip

(k�t))

✓[k + 1] = ✓[k] + ✓̇[k]�t

✓̇[k + 1] = ✓̇[k] + ✓̈[k]�t

• Output: Joint trajectory ✓(k�t) = ✓[k], ✓̇(k�t) = ✓̇[k], k = 0, . . . , N .

The result of the numerical integration converges to the theoretical result
as the number of integration steps N goes to infinity. Higher-order numerical
integration schemes, such as fourth-order Runge-Kutta, can yield closer approx-
imations with fewer computations than the simple first-order Euler method.

8.6 Dynamics in Task Space Coordinates

In this section we consider how the dynamic equations change under a trans-
formation to coordinates of the end-e↵ector frame (task space coordinates). To

8.6. Dynamics in Task Space Coordinates 265

keep things simple we consider a six-degree-of-freedom open chain with joint
space dynamics

⌧ = M(✓)✓̈ + h(✓, ✓̇), ✓ 2 R6, ⌧ 2 R6. (8.81)

We also ignore for the time being any end-e↵ector forces F
tip

. The twist V =
(!, v) of the end-e↵ector is related to the joint velocity ✓̇ by

V = J(✓)✓̇, (8.82)

with the understanding that V and J(✓) are always expressed in terms of the
same reference frame. The time derivative V̇ is then

V̇ = J̇(✓)✓̇ + J(✓)✓̈. (8.83)

At configurations ✓ where J(✓) is invertible, we have

✓̇ = J�1V (8.84)

✓̈ = J�1V̇ � J�1J̇J�1V. (8.85)

Substituting for ✓̇ and ✓̈ in Equation (8.81) leads to

⌧ = M(✓)
⇣
J�1V̇ � J�1J̇J�1V

⌘
+ h(✓, J�1V), (8.86)

where J�T denotes (J�1)T = (JT)�1. Pre-multiply both sides by J�T to get

J�T ⌧ = J�TMJ�1V̇ � J�TMJ�1J̇J�1V
+J�Th(✓, J�1V). (8.87)

Expressing J�T ⌧ as the wrench F , the above can be written

F = ⇤(✓)V̇ + ⌘(✓,V), (8.88)

where

⇤(✓) = J�TM(✓)J�1 (8.89)

⌘(✓,V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V. (8.90)

These are the dynamic equations expressed in end-e↵ector frame coordinates.
If an external wrench F is applied to the end-e↵ector frame, then assuming
zero actuator e↵ort, the motion of the end-e↵ector frame is governed by these
equations. Note the dependence of ⇤(✓) and ⌘(✓,V) on ✓. If ✓ were replaced by
its inverse kinematics solution ✓ = T�1(X), then one would obtain a di↵erential
equation strictly in terms of the end-e↵ector frame’s displacement X 2 SE(3)
and twist V. In practice, since X is usually obtained by measuring ✓ and
substituting into the forward kinematics, it is preferable to leave the dependence
on ✓ explicit.

266 Dynamics of Open Chains

8.7 Constrained Dynamics

Now consider the case that the n-joint robot is subject to a set of k holonomic
or nonholonomic Pfa�an velocity constraints of the form

A(✓)✓̇ = 0, A(✓) 2 Rk⇥n. (8.91)

(See Chapter 2.4 for an introduction to Pfa�an constraints.) Such constraints
can come from loop-closure constraints. As an example, the motion of the end-
e↵ector of a robot arm opening a door is subject to k = 5 constraints due to the
hinges of the door. As another example, a robot writing with a pen is subject
to k = 1 constraint that keeps the height of the tip of the pen above the paper
at zero. In any case, we assume that the constraints do no work on the robot,
i.e., the generalized forces ⌧

con

due to the constraints satisfy

⌧T
con

✓̇ = 0.

This assumption means that ⌧
con

must be a linear combination of the columns
of AT (✓), i.e., ⌧

con

= AT (✓)� for some � 2 Rk, since these are the generalized
forces that do no work when ✓̇ is subject to the constraints (8.91):

(AT (✓)�)T ✓̇ = �TA(✓)✓̇ = 0 for all � 2 Rk.

For the writing robot example, the assumption that the constraint is workless
means that there is no friction between the pen and the paper.

Adding the constraint forces AT (✓)� to the equations of motion, we can
write the n + k constrained equations of motion in the n + k unknowns {✓̈,�}
(forward dynamics) or the n+ k unknowns {⌧,�} (inverse dynamics):

⌧ = M(✓)✓̈ + h(✓, ✓̇) +AT (✓)� (8.92)

A(✓)✓̇ = 0, (8.93)

where � is a set of Lagrange multipliers and AT (✓)� are the forces the robot
creates against the constraints. From these equations, it should be clear that
the robot has n� k velocity freedoms and k “force freedoms”—the robot is free
to create any generalized force of the form AT (✓)�. (For the writing robot, this
is not quite true; the robot can only apply pushing forces into the paper and
table, not pulling forces.)

Often it is convenient to reduce the n+ k equations in n+ k unknowns to n
equations in n unknowns, without explicitly calculating the Lagrange multipliers
�. To do this, we can solve for � in terms of the other quantities and plug our
solution into Equation (8.92). Since the constraints are satisfied at all times,
the time rate of change of the constraints satisfies

Ȧ(✓)✓̇ +A(✓)✓̈ = 0. (8.94)

Assuming that M(✓) and A(✓) are full rank, we solve Equation (8.92) for ✓̈, plug
in to Equation (8.94), and omit the dependencies on ✓ and ✓̇ for conciseness to
get

Ȧ✓̇ +AM�1(⌧ � h�AT�) = 0. (8.95)

8.8. Robot Dynamics in the URDF 267

Using A✓̈ = �Ȧ✓̇, after some manipulation, we get

� = (AM�1AT)�1(AM�1(⌧ � h)�A✓̈). (8.96)

Plugging Equation (8.96) into Equation (8.92) and manipulating further, we get

P ⌧ = P (M ✓̈ + h) (8.97)

where
P = I �AT (AM�1AT)�1AM�1, (8.98)

where I is the n⇥ n identity matrix. The n⇥ n matrix P (✓) is rank n� k, and
it maps the joint generalized forces ⌧ to P (✓)⌧ , projecting away the generalized
force components against the constraints while retaining the generalized forces
that do work on the robot. The complementary projection (I � P (✓)) maps ⌧
to (I � P (✓))⌧ , the joint forces that act on the constraints and do no work on
the robot.

Using P (✓), we can solve the inverse dynamics by evaluating the right-hand
side of Equation (8.97). The solution P (✓)⌧ is a set of generalized joint forces
that achieves the feasible components of the desired joint acceleration ✓̈. To
this solution we can add any constraint forces AT (✓)� without changing the
acceleration of the robot.

We can rearrange Equation (8.97) to the form

P
¨

✓

✓̈ = P
¨

✓

M�1(⌧ � h), (8.99)

where
P

¨

✓

= M�1PM = I �M�1AT (AM�1AT)�1A. (8.100)

The rank n� k projection matrix P
¨

✓

(✓) 2 Rn⇥n projects away the components

of an arbitrary joint acceleration ✓̈ that violate the constraints, leaving only the
components P

¨

✓

(✓)✓̈ that satisfy the constraints. To solve the forward dynamics,

evaluate the right-hand side of Equation (8.99), and the resulting P
¨

✓

✓̈ is the set
of joint accelerations.

In Chapter 11.4 we discuss the related topic of hybrid motion-force control, in
which the goal at each instant is to simultaneously achieve a desired acceleration
satisfying A✓̈ = 0 (consisting of n�k motion freedoms) and a desired constraint
force AT (�) (consisting of k force freedoms). In that chapter, we use the task-
space dynamics to represent the task-space end-e↵ector motions and forces more
naturally.

8.8 Robot Dynamics in the URDF

As described in Chapter 4.2 and illustrated in the UR5 Universal Robot De-
scription Format file, the inertial properties of link i are described in the URDF
by the link elements mass, origin (the position and orientation of the center of
mass frame relative to a frame attached at joint i), and inertia, which speci-
fies the six elements of the symmetric rotational inertia matrix on or above the

268 Dynamics of Open Chains

diagonal. To fully write the robot’s dynamics, for joint i we need the element
origin, specifying the position and orientation of link i’s joint frame relative to
link i� 1’s joint frame when ✓

i

= 0, and the element axis, which specifies the
axis of motion of joint i. It is left to the exercises to translate these elements to
the quantities needed for the Newton-Euler inverse dynamics algorithm.

8.9 Actuation, Gearing, and Friction

Until now we have been assuming the existence of actuators that directly provide
commanded forces and torques. In practice, there are many types of actuators
(e.g., electric, hydraulic, and pneumatic) and mechanical power transformers
(e.g., gearheads), and the actuators can be located at the joints themselves or
remotely, with mechanical power transmitted by cables or timing belts. Each
combination of these has its own characteristics that can play a significant role
in the “extended dynamics” mapping the actual control inputs (e.g., the current
requested of amplifiers connected to electric motors) to the motion of the robot.

In this section we provide an introduction to some of the issues associated
with one particular, and common, configuration: geared DC electric motors
located at each joint. This is the configuration used in the Universal Robots
UR5, for example.

Figure 8.7 shows the electrical block diagram for a typical n-joint robot
driven by DC electric motors. For concreteness, we assume each joint is revo-
lute. A power supply converts the wall AC voltage to a DC voltage to power
the amplifier associated with each motor. A control box takes user input, for
example in the form of a desired trajectory, as well as position feedback from
encoders located at each joint. Using the desired trajectory, a model of the
robot’s dynamics, and any errors in the current robot state relative to the de-
sired robot state, the controller calculates the torque required of each actuator.
Since DC electric motors nominally provide a torque proportional to the current
through the motor, this torque command is equivalent to a current command.
Each motor amplifier then uses a current sensor (shown external to the amplifier
in Figure 8.7, but actually internal to the amplifier) to continually adjust the
voltage across the motor to try to achieve the requested current.3 The motion
of the motor is sensed by the motor encoder, and the position information is
sent back to the controller.

The commanded torque/current is typically updated in the neighborhood of
1000 times per second (1 kHz), and the amplifier’s voltage control loop may be
updated at a rate ten times that or more.

Figure 8.8 is a conceptual representation of the motor and other components
for a single axis. The motor has a single shaft extending from both ends of
the motor: one end drives a rotary encoder, which measures the position of
the joint, and the other end becomes the input to a gearhead. The gearhead
increases the torque while reducing the speed, since most DC electric motors

3
The voltage is typically a time-averaged voltage achieved by the duty cycle of a voltage

rapidly switching between a maximum positive voltage and a maximum negative voltage.

8.9. Actuation, Gearing, and Friction 269

AC
voltage

DC
voltage

torque/
current

commands

encoder signals

controller,
dynamics

model

power
supply

motor 1
+ encoder

current
sensor

amp 1

motor n
+ encoder

current
sensor

amp n

motor 2
+ encoder

current
sensor

amp 2

I1 I1

In In

I2 I2

user input

Figure 8.7: A block diagram of a typical n-joint robot. Bold lines correspond
to high-power signals, while thin lines correspond to communication signals.

encoder motor gearhead bearing link i+1

position
feedback

current

Figure 8.8: The outer cases of the encoder, motor, gearhead, and bearing are
fixed in link i, while the gearhead output shaft supported by the bearing is fixed
in link i+ 1.

with an appropriate power rating provide torques that are too low to be useful
for robotics applications. The purpose of the bearing is to support the gearhead
output, freely transmitting torques about the gearhead axis while isolating the
gearhead (and motor) from wrench components due to link i + 1 in the other
five directions. The outer cases of the encoder, motor, gearhead, and bearing
are all fixed relative to each other and to link i. It is also common for the motor
to have some kind of brake, not shown.

270 Dynamics of Open Chains

8.9.1 DC Motors and Gearing

A DC motor consists of a stator and a rotor that rotates relative to the stator.
DC electric motors create torque by sending current through windings in a
magnetic field created by permanent magnets, where the magnets are attached
to the stator and the windings are attached to the rotor, or vice-versa. A DC
motor has multiple windings, some of which are energized and some of which
are inactive at any given time. The windings that are energized are chosen as a
function of the angle of the rotor relative to the stator. This “commutation” of
the windings occurs mechanically using brushes (brushed motors) or electrically
using control circuitry (brushless motors). Brushless motors have the advantage
of no brush wear and higher continuous torque, since the windings are typically
attached to the motor housing where the heat due to the resistance of the
windings can be more easily dissipated. In our basic introduction to DC motor
modeling, we do not distinguish between brushed and brushless motors.

Figure 8.9 shows a brushed DC motor with an encoder and a gearhead.
The torque ⌧ , measured in newton-meters (Nm), created by a DC motor is

governed by the equation
⌧ = k

t

I,

where I, measured in amps (A), is the current through the windings. The
constant k

t

, measured in newton-meters per amp (Nm/A), is called the torque
constant. The power dissipated as heat by the windings, measured in watts
(W), is governed by

P
heat

= I2R,

where R is the resistance of the windings in ohms (⌦). To keep the motor
windings from overheating, the continuous current flowing through the motor
must be limited. Accordingly, in continuous operation, the motor torque must
be kept below a continuous torque limit ⌧

cont

determined by thermal properties
of the motor.

A simplified model of a DC motor, where all units are in the SI system, can
be derived by equating the electrical power consumed by the motor P

elec

= IV
in watts (W) with the mechanical power P

mech

= ⌧w (also in W) and other
power produced by the motor,

IV = ⌧w + I2R+ LI
dI

dt
+ friction and other power,

where V is the voltage applied to the motor in volts (V), w is the angular speed
of the motor in radians per second (1/s), and L is the inductance due to the
windings in henries (H). The terms on the right-hand side are the mechanical
power produced by the motor, the power lost to heating the windings due to the
resistance of the wires, the power consumed or produced by energizing or de-
energizing the inductance of the windings (since the energy stored in an inductor
is 1

2

LI2, and power is the time derivative of energy), and power lost to friction
in bearings, etc. Dropping this last term, replacing ⌧w by k

t

Iw, and dividing

8.9. Actuation, Gearing, and Friction 271

Encoder Commutator

Brush

Windings
Motor shaft

Ball bearings

Planetary
gearhead

Motor output pinion
(input to gearhead)

Magnet

Torsional
spring

Housing
(magnetic return)

Gearhead
output shaft

Shaft

Housing

Magnet

Commutator Windings

Brush

Figure 8.9: (Top) A cutaway view of a Maxon brushed DC motor with an en-
coder and gearhead. (Cutaway image courtesy of Maxon Precision Motors, Inc.,
maxonmotorusa.com.) The motor’s rotor consists of the windings, commutator
ring, and shaft. Each of the several windings connects di↵erent segments of the
commutator, and as the motor rotates, the two brushes slide over the commu-
tator ring and make contact with di↵erent segments, sending current through
one or more windings. One end of the motor shaft turns the encoder, and the
other end is input to the gearhead. (Bottom) A simplified cross-section of the
motor only, showing the stator (brushes, housing, and magnets) in dark gray
and the rotor (windings, commutator, and shaft) in light gray.

by I, we get the voltage equation

V = k
t

w + IR+ L
dI

dt
. (8.101)

Often Equation (8.101) is written with the electrical constant k
e

(with units
of Vs) instead of the torque constant k

t

, but in SI units (Vs or Nm/A), the nu-
merical value of the two is identical; they represent the same constant property
of the motor. So we prefer to use k

t

.
The voltage term k

t

w in Equation (8.101) is called the back electromotive

272 Dynamics of Open Chains

0w

contτ

continuous
operating

region

stallτ τ

w

–I

 li

m
it

m
ax

+I

 li

m
it

m
ax

–V limit

max

+V limit

max

rated mechanical power =
τ wcont cont

Figure 8.10: The operating region of a current- and voltage-limited DC electric
motor, and its continuous operating region.

force or back-emf for short, and it is what di↵erentiates a motor from simply
being a resistor and inductor in series. It also allows a motor, which we usually
think of as converting electrical power to mechanical power, to be a generator,
converting mechanical power to electrical power. If the motor’s electrical inputs
are disconnected (so no current can flow) and the shaft is forced to turn by some
external torque, you can measure the back-emf voltage k

t

w across the motor’s
inputs.

For simplicity in the rest of this section, we ignore the LdI/dt term. This as-
sumption is exactly satisfied when the motor is operating at a constant current.
With this assumption, Equation (8.101) can be rearranged to

w =
1

k
t

(V � IR) =
V

k
t

� R

k2
t

⌧,

expressing the speed w as a linear function of ⌧ (with a slope of�R/k2
t

) for a con-
stant V . Now assume that the voltage across the motor is limited to the range
[�V

max

,+V
max

] and the current through the motor is limited to [�I
max

,+I
max

],
perhaps by the amplifier or power supply. Then the operating region of the mo-
tor in the torque-speed plane is as shown in Figure 8.10. Note that the signs of ⌧
and w are opposite in the second and fourth quadrants of this plane, and there-
fore the product ⌧w is negative. When the motor operates in these quadrants,
it is actually consuming mechanical power, not producing mechanical power.
The motor is acting like a damper.

8.9. Actuation, Gearing, and Friction 273

Focusing on the first quadrant (⌧ � 0, w � 0, ⌧w � 0), the bounding line
segment of the operating region is called the speed-torque curve. The no-
load speed w

0

= V
max

/k
t

at one end of the speed-torque curve is the speed
the motor spins at when it is powered by V

max

but providing no torque. In
this operating condition, the back-emf k

t

w is equal to the applied voltage, so
there is no voltage remaining to create current (or torque). The stall torque
⌧
stall

= k
t

V
max

/R at the other end of the speed-torque curve is achieved when
the shaft is blocked from spinning, so there is no back-emf.

Figure 8.10 also indicates the continuous operating region where |⌧ | ⌧
cont

.
The motor may be operated intermittently outside the continuous operating
region, but extended operation outside the continuous operating region raises
the possibility that the motor will overheat.

The motor’s rated mechanical power is P
rated

= ⌧
cont

w
cont

, where w
cont

is
the speed on the speed-torque curve corresponding to ⌧

cont

. Even if the motor’s
rated power is su�cient for a particular application, the torque generated by a
DC motor is typically too low to be useful. Gearing is therefore used to increase
the torque while also decreasing the speed. For a gear ratio G, the output speed
of the gearhead is

w
gear

= w
motor

/G.

For an ideal gearhead, zero power is lost in the conversion, i.e., ⌧
motor

w
motor

=
⌧
gear

w
gear

, which implies
⌧
gear

= G⌧
motor

.

In practice, some mechanical power is lost due to friction and impact between
gear teeth, bearings, etc., so

⌧
gear

= ⌘G⌧
motor

,

where ⌘ 1 is the e�ciency of the gearhead.
Figure 8.11 shows the operating region of the motor from Figure 8.10 when

the motor is geared by G = 2 (with ⌘ = 1). The achievable torque doubles,
while the achievable speed shrinks by a factor of two. Since many DC motors
are capable of no-load speeds of 10,000 rpm or more, robot joints often have
gear ratios of 100 or more to achieve an appropriate compromise between speed
and torque.

8.9.2 Apparent Inertia

The motor’s stator is attached to one link and the rotor is attached to another
link, possibly through a gearhead. Therefore, when calculating the contribution
of a motor to the masses and inertias of the links, the mass and inertia of the
stator must be assigned to one link and the mass and inertia of the rotor must
be assigned to the other link.

Consider a stationary link 0 with the stator of the joint 1 gearmotor attached
to it. The rotational speed of joint 1, the output of the gearhead, is ✓̇. Therefore

274 Dynamics of Open Chains

τ

w

Figure 8.11: The original motor operating region, and the operating region with
a gear ratio G = 2 showing the increased torque and decreased speed.

the motor’s rotor rotates at G✓̇. The kinetic energy of the rotor is therefore

K =
1

2
I
rotor

(G✓̇)2 =
1

2
G2I

rotor| {z }
apparent inertia

✓̇2,

where I
rotor

is the rotor’s scalar inertia about the rotation axis and G2I
rotor

is
the apparent inertia (often called the reflected inertia) of the rotor about
the axis. In other words, if you were to grab link 1 and rotate it manually, the
inertia contributed by the rotor would feel as if it were a factor G2 larger than
its actual inertia, due to the gearhead.

While the inertia I
rotor

is typically much less than the inertia I
link

of the
rest of the link about the rotation axis, the apparent inertia G2I

rotor

may be
on the order of, or even larger than, I

link

.
One consequence as the gear ratio becomes large is that the inertia seen by

joint i becomes increasingly dominated by the apparent inertia of the rotor. In
other words, the torque required of joint i becomes relatively more dependent
on ✓̈

i

than on other joint accelerations, i.e., the robot’s mass matrix becomes
more diagonal. In the limit when the mass matrix has negligible o↵-diagonal
components (and in the absence of gravity), the dynamics of the robot are
decoupled—the dynamics at one joint have no dependence on the configuration
or motion of other joints.

As an example, consider the 2R arm of Figure 8.1 with L
1

= L
2

= m
1

=
m

2

= 1. Now assume that each of joint 1 and joint 2 has a motor of mass 1,
with a stator of inertia 0.005 and a rotor of inertia 0.00125, and a gear ratio G
(with ⌘ = 1). With a gear ratio G = 10, the mass matrix is

M(✓) =

4.13 + 2 cos ✓

2

1.01 + cos ✓
2

1.01 + cos ✓
2

1.13

�
.

8.9. Actuation, Gearing, and Friction 275

.
. .

.
..

Joint axis i Joint axis i+1

F
{i+1}

L

{i}
L F

F{i}
R

{i+1}
L

{i}
L

{i-1}
L

{i+1}
R

{i}
R

(a)

V

.

.

{i}
R

{i}
L

{i}
R

V{i}
R

V{i}
L

V{i}
L

(b)

Figure 8.12

With a gear ratio G = 100, the mass matrix is

M(✓) =

16.5 + 2 cos ✓

2

1.13 + cos ✓
2

1.13 + cos ✓
2

13.5

�
.

The o↵-diagonal components are relatively less important for the second robot.
The available joint torques of the second robot are ten times that of the first
robot, so despite the increases in the mass matrix, the second robot is capable
of significantly higher accelerations and end-e↵ector payloads. The top speed
of each joint of the second robot is ten times less than that of the first robot,
however.

If the apparent inertia of the rotor is non-negligible relative to the inertia
of the rest of the link, the Newton-Euler inverse dynamics algorithm must be
modified to account for it. One approach is to treat the link as consisting of
two separate bodies, the geared rotor driving the link and the rest of the link,
each with its own center of mass and inertial properties (where the link includes
the mass and inertia of the stator of any motor mounted to it); calculate the
twist and acceleration of each during the forward iterations, accounting for the
gearhead in calculating the rotor’s motion; calculate the wrench on the link as
in Equation (8.52) and the wrench on the rotor during the backward iterations;
express the rotor wrench in the link’s frame and sum the wrenches to get the
total wrench F

i

on the link; and project the total wrench to the motor axis
as in Equation (8.53) to calculate the required motor torque ⌧ . The current
command to the DC motor is then I

com

= ⌧/(⌘k
t

G).
Taking into account apparent inertias, the recursive Newton-Euler inverse

dynamics algorithm can be modified as follows:

Initialization: Attach a frame {0}
L

to the base, frames {1}
L

to {n}
L

to the
centers of mass of links {1} to {n}, and frames {1}

R

to {n}
R

to the centers of
mass of rotors {1} to {n} as in Figure 8.12. Frame {n+ 1}

L

is attached to the

276 Dynamics of Open Chains

end-e↵ector and assumed fixed with respect to frame {n}
L

. M
(i�1)

L

,i

L

is the
configuration of {i}

L

relative to {i � 1}
L

when ✓
i

= 0. A
i

is the screw axis of
joint i expressed in {i}

L

. Similarly, S
i

is the screw axis of joint i expressed in
{i}

R

. G
i

L

is the 6⇥ 6 spatial inertia matrix of link i that includes the inertia of
the attached stator, and G

i

R

is the 6⇥ 6 spatial inertia matrix of rotor i. G
i

is
the gear ratio of motor i. Lastly, V

0

L

, V̇
0

L

and F
(n+1)

L

are defined in the same

way as V
0

, V̇
0

and F
n+1

in Section 8.3.2.

Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

T
(i�1)

L

,i

L

= M
(i�1)

L

,i

L

e[Ai

]✓

i (8.102)

V
i

L

= Ad
T

i

L

,(i�1)

L

(V
(i�1)

L

) +A
i

✓̇
i

(8.103)

V̇
i

L

= Ad
T

i

L

,(i�1)

L

(V̇
(i�1)

L

) + [V
i

L

,A
i

]✓̇
i

+A
i

✓̈
i

(8.104)

V
i

R

= S
i

G
i

✓̇
i

(8.105)

V̇
i

R

= S
i

G
i

✓̈
i

. (8.106)

Backward iterations: For i = n to 1 do

F
i

L

= AdT
T

(i+1)

L

,i

L

(F
(i+1)

L

) + G
i

L

V̇
i

L

� adTV
i

L

(G
i

L

V
i

L

) (8.107)

F
i

R

= G
i

R

V̇
i

R

(8.108)

⌧
i

= FT

i

L

A
i

+G
i

FT

i

R

S
i

. (8.109)

Note that all of the above discussion neglects the mass and inertia due to
the gearhead itself. If there is no gearing, then no modification to the original
Newton-Euler inverse dynamics algorithm is necessary; the stator is attached to
one link and the rotor is attached to another link. Robots constructed with a
motor at each axis and no gearheads are sometimes called direct-drive robots.

8.9.3 Friction

The Lagrangian and Newton-Euler dynamics do not account for friction at the
joints, but friction forces and torques in gearheads and bearings may be signif-
icant. Friction is a complex phenomenon which is the subject of considerable
current research, and any friction model is a gross attempt to capture average
behavior of the micromechanics of contact.

Friction models often include a static friction term and a velocity-dependent
viscous friction term. The static friction term means that nonzero torque is
required to cause the joint to begin to move. The viscous friction term indicates
that the amount of friction torque increases with increasing velocity of the joint.
See Figure 8.13 for some examples of velocity-dependent friction.

Other factors may contribute to the friction at a joint, including the loading
of the joint bearings, the time the joint has been at rest, temperature, etc. The
friction in a gearhead often increases as the gear ratio G increases.

8.10. Summary 277

ff

v

f

v

f

v

f

vω

u

ωω vq.θ
.

q. q. q.

(a) (b) (c) (d) (e) (f)

τ fric τ fric τ fricτ fricτ fricτ fric

θ
.

θ
.

θ
.

θ
.

θ
.

Figure 8.13: Examples of velocity-dependent friction models. (a) Viscous fric-
tion, ⌧

fric

= b
viscous

✓̇. (b) Coulomb friction, ⌧
fric

= b
static

sgn(✓̇). ⌧
fric

can
take any value in [�b

static

, b
static

] at zero velocity. (c) Static plus viscous fric-
tion, ⌧

fric

= b
static

sgn(✓̇) + b
viscous

✓̇. (d) Static and kinetic friction, requiring
⌧
fric

� |b
static

| to initiate motion, and then ⌧
fric

= b
kinetic

sgn(✓̇) during motion,
where b

static

> b
kinetic

. (e) Static, kinetic, and viscous friction. (f) A friction
law exhibiting the Stribeck e↵ect—at low velocities, friction decreases as velocity
increases.

8.9.4 Joint and Link Flexibility

In practice, a robot’s joints and links are likely to exhibit some flexibility. For
example, the flexspline element of a harmonic drive gearhead achieves essentially
zero backlash by being somewhat flexible. A model of a joint with harmonic
drive gearing, then, could include a relatively sti↵ torsional spring between the
motor’s rotor and the link the gearhead attaches to.

Similarly, links themselves are not infinitely sti↵. The finite sti↵ness is ex-
hibited as vibrations along the link.

Flexible joints and links introduce extra states to the dynamics of the robot,
significantly complicating the dynamics and control. While many robots are
designed to be sti↵ to try to minimize these complexities, in some cases this is
impractical due to the extra link mass required to create the sti↵ness.

8.10 Summary

• Given a set of generalized coordinates ✓ and generalized forces ⌧ , the
Euler-Lagrange equations can be written

⌧ =
d

dt

@L
@✓̇
� @L

@✓
,

where L(✓, ✓̇) = K(✓, ✓̇) � P(✓), K is the kinetic energy of the robot, and
P is the potential energy of the robot.

• The equations of motion of a robot can be written in the following equiv-

278 Dynamics of Open Chains

alent forms:

⌧ = M(✓)✓̈ + h(✓, ✓̇)

= M(✓)✓̈ + c(✓, ✓̇) + g(✓)

= M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓)

= M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),

where M(✓) is the n⇥n symmetric positive-definite mass matrix, h(✓, ✓̇) is
the sum of generalized forces due to gravity and quadratic velocity terms,
c(✓, ✓̇) are quadratic velocity forces, g(✓) are gravitational forces, �(✓) is
an n⇥ n⇥ n matrix of Christo↵el symbols of the first kind obtained from
partial derivatives of M(✓) with respect to ✓, and C(✓, ✓̇) is the n ⇥ n
Coriolis matrix whose (i, j) entry is given by

c
ij

(✓, ✓̇) =
nX

k=1

�
ijk

(✓)✓̇
k

.

If the end-e↵ector of the robot is applying a wrench F
tip

to the environ-
ment, the term JT (✓)F

tip

should be added to the right-hand side of the
robot’s dynamic equations.

• The symmetric positive-definite rotational inertia matrix of a rigid body
is

I
b

=

2

4
I
xx

I
xy

I
xz

I
xy

I
yy

I
yz

I
xz

I
yz

I
zz

3

5 ,

where

I
xx

=
R
B(y

2 + z2)⇢(x, y, z)dV I
yy

=
R
B(x

2 + z2)⇢(x, y, z)dV
I
zz

=
R
B(x

2 + y2)⇢(x, y, z)dV I
xy

= �
R
B xy⇢(x, y, z)dV

I
xz

= �
R
B xz⇢(x, y, z)dV I

yz

= �
R
B yz⇢(x, y, z)dV,

B is the body, dV is a di↵erential volume element, and ⇢(x, y, z) is the
density function.

• If I
b

is defined in a frame {b} at the center of mass, with axes aligned
with the principal axes of inertia, then I

b

is diagonal.

• If {b} is at the center of mass but its axes are not aligned with the principal
axes of inertia, there always exists a rotated frame {c} defined by the
rotation matrix R

bc

such that I
c

= RT

bc

I
b

R
bc

is diagonal.

• If I
b

is defined in a frame {b} at the center of mass, then I
q

, the inertia
in a frame {q} aligned with {b}, but displaced from the origin of {b} by
q 2 R3 in {b} coordinates, is

I
q

= I
b

+m(qT qI
3

� qqT).

8.10. Summary 279

• The spatial inertia matrix G
b

expressed in a frame {b} at the center of
mass is defined as the 6⇥ 6 matrix

G
b

=

I
b

0
0 mI

�
.

• The Lie bracket of two twists V
1

and V
2

is

[V
1

,V
2

] = adV
1

(V
2

) = [adV
1

]V
2

,

where

[adV] =

[!] 0
[v] [!]

�
2 R6⇥6.

• The twist-wrench formulation of the rigid-body dynamics of a single rigid
body is

F
b

= G
b

V̇
b

� [adV
b

]TG
b

V
b

.

• The kinetic energy of a rigid body is 1

2

VT

b

G
b

V
b

, and the kinetic energy of

an open-chain robot is 1

2

✓̇TM(✓)✓̇.

• The forward-backward Newton-Euler inverse dynamics algorithm is the
following:
Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

T
i�1,i

= M
i�1,i

e[Ai

]✓

i

V
i

= Ad
T

i,i�1

(V
i�1

) +A
i

✓̇
i

V̇
i

= Ad
T

i,i�1

(V̇
i�1

) + [V
i

,A
i

]✓̇
i

+A
i

✓̈
i

.

Backward iterations: For i = n to 1 do

F
i

= AdT
T

i+1,i

(F
i+1

) + G
i

V̇
i

� adTV
i

(G
i

V
i

)

⌧
i

= FT

i

A
i

.

• Let J
ib

(✓) to be the Jacobian relating ✓̇ to the body twist V
i

in link i’s
center-of-mass frame {i}. Then the mass matrix M(✓) of the manipulator
can be expressed as

M(✓) =
nX

i=1

JT

ib

(✓)G
i

J
ib

(✓).

• The forward dynamics problem is to solve

M(✓)✓̈ = ⌧(t)� h(✓, ✓̇)� JT (✓)F
tip

for ✓̈, using any e�cient solver of equations of the form Ax = b.

280 Dynamics of Open Chains

• The robot’s dynamics M(✓)✓̈ + h(✓, ✓̇) can be expressed in the task space
as

F = ⇤(✓)V̇ + ⌘(✓,V),

where F is the wrench applied to the end-e↵ector, V is the twist of the end-
e↵ector, and F , V, and the Jacobian J(✓) are all defined in the same frame.
The task-space mass matrix ⇤(✓) and gravity and quadratic velocity forces
⌘(✓,V) are

⇤(✓) = J�TM(✓)J�1

⌘(✓,V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V.

• Define two n⇥ n projection matrices of rank n� k

P (✓) = I �AT (AM�1AT)�1AM�1

P
¨

✓

(✓) = M�1PM = I �M�1AT (AM�1AT)�1A

corresponding to the k Pfa�an constraints acting on the robot, A(✓)✓̇ = 0,
A 2 Rk⇥n. Then the n+ k constrained equations of motion

⌧ = M(✓)✓̈ + h(✓, ✓̇) +AT (✓)�

A(✓)✓̇ = 0

can be reduced to these equivalent forms by eliminating the Lagrange
multipliers �:

P ⌧ = P (M ✓̈ + h)

P
¨

✓

✓̈ = P
¨

✓

M�1(⌧ � h).

The matrix P projects away joint force/torque components that act on the
constraints without doing work on the robot, and the matrix P

¨

✓

projects
away acceleration components that do not satisfy the constraints.

• An ideal gearhead (100% e�cient) with a gear ratioGmultiplies the torque
at the output of a motor by a factor G and divides the speed by a factor
G, leaving the mechanical power unchanged. The inertia of the motor’s
rotor about its axis of rotation, as apparent at the output of the gearhead,
is G2I

rotor

.

8.11 Software

adV = ad(V)
Computes [adV].

taulist = InverseDynamics(thetalist,dthetalist,ddthetalist,g,Ftip,
Mlist,Glist,Slist)

8.11. Software 281

Uses Newton-Euler inverse dynamics to compute the n-vector ⌧ of required joint
forces/torques given ✓, ✓̇, ✓̈, g, F

tip

, a list of transforms M
i�1,i

specifying the
configuration of the center-of-mass frame of link {i} relative to {i�1} when the
robot is at its home position, a list of link spatial inertia matrices G

i

, and a list
of joint screw axes S

i

expressed in the base frame.

M = MassMatrix(thetalist,Mlist,Glist,Slist)
Computes the mass matrix M(✓) given the joint configuration ✓, a list of trans-
forms M

i�1,i

, a list of link spatial inertia matrices G
i

, and a list of joint screw
axes S

i

expressed in the base frame.

c = VelQuadraticForces(thetalist,dthetalist,Mlist,Glist,Slist)
Computes c(✓, ✓̇) given the joint configuration ✓, joint velocities ✓̇, a list of
transforms M

i�1,i

, a list of link spatial inertia matrices G
i

, and a list of joint
screw axes S

i

expressed in the base frame.

grav = GravityForces(thetalist,g,Mlist,Glist,Slist)
Computes g(✓) given the joint configuration ✓, the gravity vector g, a list of
transforms M

i�1,i

, a list of link spatial inertia matrices G
i

, and a list of joint
screw axes S

i

expressed in the base frame.

JTFtip = EndEffectorForces(thetalist,Ftip,Mlist,Glist,Slist)
Computes JT (✓)F

tip

given the joint configuration ✓, the wrench F
tip

applied by
the end-e↵ector, a list of transforms M

i�1,i

, a list of link spatial inertia matrices
G
i

, and a list of joint screw axes S
i

expressed in the base frame.

ddthetalist = ForwardDynamics(thetalist,dthetalist,taulist,g,Ftip,
Mlist,Glist,Slist)
Computes ✓̈ given the joint configuration ✓, joint velocities ✓̇, joint forces/torques
⌧ , the gravity vector g, the wrench F

tip

applied by the end-e↵ector, a list of
transforms M

i�1,i

, a list of link spatial inertia matrices G
i

, and a list of joint
screw axes S

i

expressed in the base frame.

[thetalistNext,dthetalistNext] = EulerStep(thetalist,dthetalist,
ddthetalist,dt)
Computes a first-order Euler approximation to {✓(t+�t), ✓̇(t+�t)} given the joint
configuration ✓(t), joint velocities ✓̇(t), joint accelerations ✓̈(t), and a timestep
�t.

taumat = InverseDynamicsTrajectory(thetamat,dthetamat,ddthetamat,
g,Ftipmat,Mlist,Glist,Slist)
The variable thetamat is an N ⇥ n matrix of robot joint variables ✓, where the
ith row corresponds to the n-vector of joint variables ✓(t) at time t = (i� 1)�t,
where �t is the timestep. The variables dthetamat, ddthetamat, and Ftipmat
similarly represent ✓̇, ✓̈, and F

tip

as a function of time. Other inputs include the
gravity vector g, a list of transforms M

i�1,i

, a list of link spatial inertia matrices
G
i

, and a list of joint screw axes S
i

expressed in the base frame. This function
computes an N ⇥ n matrix taumat representing the joint forces/torques ⌧(t)

282 Dynamics of Open Chains

required to generate the trajectory specified by ✓(t) and F
tip

(t). Note that it is
not necessary to specify �t. The velocities ✓̇(t) and accelerations ✓̈(t) should be
consistent with ✓(t).

[thetamat,dthetamat] = ForwardDynamicsTrajectory(thetalist,
dthetalist,taumat,g,Ftipmat,Mlist,Glist,Slist,dt,intRes)
This function numerically integrates the robot’s equations of motion using Euler
integration. The outputs are N ⇥ n matrices thetamat and dthetamat, where
the ith rows correspond to the n-vectors ✓((i � 1)�t) and ✓̇((i � 1)�t). Inputs
are the initial state ✓(0) and ✓̇(0), an N ⇥ n matrix of joint forces/torques ⌧(t),
the gravity vector g, an N ⇥ n matrix of end-e↵ector wrenches F

tip

(t), a list
of transforms M

i�1,i

, a list of link spatial inertia matrices G
i

, a list of joint
screw axes S

i

expressed in the base frame, the timestep �t, and the number of
integration steps to take during each timestep (a positive integer).

8.12 Notes and References

8.13. Exercises 283

8.13 Exercises

1. Center of mass and link inertias for some standard shapes.

2. Given a linear mapping L : U ! V between two vector spaces U and V ,
a choice of basis for U and V then leads to a particular matrix representation
for L; di↵erent bases for U and V then lead to di↵erent matrix representations
for L. It is also possible to think of the spatial inertia matrix as a coordinate
representation for a rigid body’s kinetic energy, in the following sense. Given
a body-fixed reference frame {b} attached to the rigid body, let V

b

denote the
rigid body’s body twist, and G

b

2 R6⇥6 be the spatial inertia matrix expressed
relative to {b}. The kinetic energy, recall, is then given by

Kinetic Energy =
1

2
VT

b

G
b

V
b

.

Now, given a di↵erent choice of body-fixed reference frame, say {a}, denote
by V

a

and G
a

2 R6⇥6 the twist and spatial inertia matrix expressed relative
to frame {b}, respectively. Since the kinetic energy is a physical invariant and
should not depend on the choice of reference frame coordinates, it follows that

1

2
VT

b

G
b

V
b

. =
1

2
VT

a

G
a

V
a

.

It is therefore customary to express kinetic energy in the following reference
frame-invariant way:

Kinetic energy = hV,Vi = 1

2
VTGV,

with the understanding that both V and G are always expressed with respect
to the same body-fixed reference frame.
(a) Determine the appropriate transformation rule between G

a

and G
b

such
that the kinetic energy as defined above is reference frame-invariant.
(b) Given a body-fixed reference frame {b}, Recall that the spatial momentum
expressed in frame {b}, denoted P

b

, was defined as

P
b

= G
b

V
b

.

Suppose one wishes to express the spatial momentum in terms of another body-
fixed reference fame {a}. Determine the appropriate transformation rule be-
tween P

b

and P
a

.
(c) The dynamic equations for a single rigid body expressed in terms of a body-
fixed reference frame {b} are of the form

F
b

= G
b

V̇
b

� [adV
b

]TP
b

.

Given a di↵erence choice of body-fixed reference frame, say {a}, such that T
ab

is constant, show that the corresponding dynamic equation expressed relative

284 Dynamics of Open Chains

to the {a} frame is given by

F
a

= G
a

V̇
a

� [adV
a

]TP
a

.

As a result the rigid body dynamic equations can be expressed in the general
form

F = GV̇ � [adV]
TP,

without explicit reference to a body-fixed frame.

Solution: (a) Recalling that V
a

= Ad
T

ab

(V
b

), and writing the kinetic energy in
terms of V

a

as 1

2

V T

a

G
a

V
a

, it then follows that

V T

b

G
b

V
b

= V T

a

G
a

V
a

= V T

b

[Ad
T

ab

]T G
a

[Ad
T

ab

]V
b

where

[Ad
T

ab

] =

✓
R

ab

0
[p

ab

]R
ab

R
ab

◆
.

From the above it follows that

G
b

= [Ad
T

ab

]T G
a

[Ad
T

ab

]

G
a

= [Ad
T

ba

]T G
b

[Ad
T

ba

] .

(b) Recalling also that the kinetic energy can also be expressed in terms of the
spatial momentum of the moving rigid body, i.e., as 1

2

PT

b

V
b

, The transformation
rule for P

b

now follows from the invariance of the kinetic energy: if {a} denotes a
second body-fixed frame as before, then clearly PT

b

V
b

= PT

b

Ad
T

ba

(V
a

), implying
that P

a

and P
b

must be related by

P
a

= Ad⇤
T

ba

(P
b

).

(The above also follows fromG
a

V
a

= [Ad
T

ba

]T G
b

[Ad
T

ba

] [Ad
T

ab

]V
b

= [Ad
T

ba

]T G
b

V
b

.)
The coordinate transformation rule for P

b

is thus given by the transpose of the
adjoint map AdT , which is the same as for the wrench F

b

.

3. Show that the time derivative of the mass matrix, Ṁ(✓), can be explicitly
written

Ṁ = ATLT�T [adA ˙

✓

]TLTGLA+ATLTGL[adA ˙

✓

]�A.

4. In the dynamic equations for an open chain, i.e.,

⌧ = M(✓)✓̈ + c(✓, ✓̇) + n(✓),

8.13. Exercises 285

Figure 8.14: *

c(✓, ✓̇) is often referred to as the Corlios terms. Earlier in Equation (8.78) we
showed that c(✓, ✓̇) can expressed as c(✓, ✓̇) = A(✓, ✓̇)✓̇, where

A(✓, ✓̇) = ATLT

�
GL [adA ˙

✓

]�� [adV]
TG

�
LA 2 Rn⇥n. (8.110)

In the Lagrangian formulation we further showed that the Coriolis terms can
be expressed as c(✓, ✓̇) = C(✓, ✓̇)✓̇, where the (k, j) entry of C(✓, ✓̇) 2 Rn⇥n is
given by

C
kj

=
nX

i=1

�
ijk

✓̇
i

,

where the �
ijk

are the Christo↵el symbols of the first kind associated with the
mass matrix M(✓) = (m

ij

) 2 Rn⇥n. It turns out that the matrix Ṁ � 2C with
C defined as above is skew-symmetric; this property turns out to be important
in proving the stability of certain dynamic model-based control laws (our later
chapter on robot control also relies upon this result).
(a) Show that Ṁ � 2C is skew-symmetric.
(b) Show that Ṁ � 2A with A defined as above is not skew-symmetric.
(c) (See Ploen thesis

5. E�cient recursive formulas for evaluating the mass matrix.

6.

7. Assuming the joint space dynamics are of the form

⌧ = M(✓)✓̈ + C(✓, ✓̇) +N(✓), (8.111)

and the di↵erential forward kinematics is of the form V = J(✓)✓̇, where V 2
se(3) denotes the velocity of the tip frame, the corresponding dynamics in SE(3)
assume the form

F = M̂V̇ + Ĉ + N̂ , (8.112)

where F = J�T ⌧ 2 se(3)⇤ corresponds to the moment-force pair at the tip, and

M̂ =
�
JM�1JT

��1

(8.113)

Ĉ = J�TM

✓
d

dt
J�1

◆
V + J�TC (8.114)

N̂ = J�TN. (8.115)

The above can be verified by noting that V̇ = J̇ ✓̇ + J ✓̈, and replacing ✓̈ in the
original dynamics equations by ✓̈ = J�1V̇ + (d

dt

J�1)V .

286 Dynamics of Open Chains

The physical meaning that can be associated with these equations is that,
assuming zero joint torques, and given an external input force F (t) 2 se(3)⇤

applied at the tip frame, the motion of the tip frame is then governed by (8.112).
Note the dependence of M̂(✓), C(✓, ✓̇), and N̂ on ✓ and ✓̇; if ✓ and ✓̇ in (8.112)
are replaced by their inverse kinematics solutions ✓ = f�1(X) and ✓̇ = J�1(✓)V̇ ,
then a di↵erential equation strictly in terms of the tip frame parameters X 2
SE(3) and V 2 se(3) can be obtained. In practice, however, integrating these
equations is cumbersome; to obtain the resulting tip frame trajectory X(t), it is
far more preferable to integrate JTF = M(✓)✓̈ + C(✓, ✓̇) +N(✓) to obtain ✓(t),
and to substitute this into the forward kinematics relation to obtain X(t) =
f(✓(t)).

8.
The 2R open chain robot of Figure 8.15(a) is shown in its zero configuration.

Assuming the mass of each link is concentrated at the tip and neglecting its
thickness, the robot can be modeled as shown in Figure 8.15(b). Assume m

1

=
m

2

= 2, L
1

= L
2

= 1, g = 10 m/sec, and the link inertias I
1

and I
2

(expressed
in their respective link body frames {b}

1

and {b}
2

) are

I
1

=

2

4
0 0 0
0 4 0
0 0 4

3

5 , I
2

=

2

4
4 0 0
0 4 0
0 0 0

3

5 ,

Assume the total potential energy of the robot at its zero configuration is zero.
(a) For arbitrary ✓

1

, ✓
2

, ✓̇
1

, ✓̇
2

, ✓̈
1

, ✓̈
2

, determine the body twists V
b

1

and V
b

2

of
the link frames {b

1

} and {b
2

}.
(b) For arbitrary ✓

1

, ✓
2

, ✓̇
1

, ✓̇
2

, ✓̈
1

, ✓̈
2

, determine the kinetic energies E
k

1

and
E

k

2

of the two links, and the total potential energy E
p

of the robot.
(c) Use the Lagrangian method to derive the dynamic equations, and determine
the input torques ⌧

1

and ⌧
2

when ✓
1

= ✓
2

= ⇡/4 and ✓̇
1

= ✓̇
2

= ✓̈
1

= ✓̈
2

= 0.
(d) Determine the mass matrix M(✓) when ✓

1

= ✓
2

= ⇡/4.

Solution:
See figure.

9. Intuitively explain the shapes of the end-e↵ector force ellipsoids in Figure 8.4
based on the the point masses and the Jacobians.

10. Prove the parallel axis theorem, and then prove Steiner’s theorem. If it is
helpful, you may assume the rigid body consists of point masses and that the
axes of {b} are aligned with the principal axes of inertia of the body, but then
you should show that these assumptions are not needed.

11. Provide a general expression for the rotational inertia matrix I
c

in a frame

8.13. Exercises 287

θ1
τ1

<Zero Postion>

g

rod1

θ2
τ2 τ2

<Zero Postion>

τ1
θ1

θ2

(m1)

(m2)
m2

m1

rod2

L2

x1

z1

y1

{b1}
^

^

^

x1

z1

y1

{b1}
^

^

^

Z

Y
X {s}
^

^

^

Z

Y
X {s}
^

^

^

x2

z2
y2

{b2}

^

^

^

x2

z2
y2

{b2}

^

^

^

L2 g

L1
L1

Figure 8.15: 2R open chain.

{c} in terms of T
bc

= (R
bc

, p) and I
b

expressed in a center-of-mass frame {b}.

12. Consider a cast iron dumbbell consisting of a cylinder connecting two solid
spheres at either end of the cylinder. The density of the dumbbell is 7500 kg/m3.
The cylinder has a diameter of 4 cm and a length of 20 cm. Each sphere has
a diameter of 20 cm. (a) Find the approximate rotational inertia matrix I

b

in
a frame {b} at the center of mass with axes aligned with the principal axes of
inertia of the dumbbell. (b) Write the spatial inertia matrix G

b

.

13. Program a function to e�ciently calculate h(✓, ✓̇) = c(✓, ✓̇) + g(✓) using
Newton-Euler inverse dynamics.

14. (a) Conceptually develop a computationally e�cient algorithm for de-
termining the mass matrix M(✓) using Equation (8.56). (b) Implement this
algorithm.

15. The function InverseDynamicsTrajectory requires the user to enter not
only a time sequence of joint variables thetamat, but also a time sequence of
joint velocities dthetamat and accelerations ddthetamat. Instead, the func-
tion could use numerical di↵erencing to approximately find the joint velocities
and accelerations at each timestep, using only thetamat. Write an alternative
InverseDynamicsTrajectory function that does not require the user to enter
dthetamat and ddthetamat. Verify that it yields similar results.

16. Give the steps that rearrange Equation (8.97) to get Equation (8.99).
Remember that P (✓) is not full rank and cannot be inverted.

17. Give the equations that would convert the joint and link descriptions in a
robot’s URDF file to the data Mlist, Glist, and Slist, suitable for using with

288 Dynamics of Open Chains

the Newton-Euler algorithm InverseDynamicsTrajectory.

18. Consider a motor with rotor inertia I
rotor

connected through a gearhead of
gear ratio G to a load with a scalar inertia I

link

about the rotation axis. The
load and motor are said to be inertia matched if, for any given torque ⌧

m

at
the motor, the acceleration of the load is maximized. The acceleration of the
load can be written

✓̈ =
G⌧

m

I
link

+G2I
rotor

.

Solve for the inertia matching gear ratio
p
I
link

/I
rotor

by solving d✓̈/dG = 0.
Show your work.

Chapter 9

Trajectory Generation

During robot motion, the robot controller is provided with a steady stream of
goal positions and velocities to track. This specification of the robot position
as a function of time is called a trajectory. In some cases, the trajectory is
completely specified by the task—for example, the end-e↵ector may be required
to track a known moving object. In other cases, as when the task is simply to
move from one position to another in a given time, we have freedom to design the
trajectory to meet these constraints. This is the domain of trajectory planning.
The trajectory should be a su�ciently smooth function of time, and it should
respect any given limits on joint velocities, accelerations, or torques.

In this chapter we consider a trajectory as the combination of a path, a
purely geometric description of the sequence of configurations achieved by the
robot, and a time scaling, which specifies the times when those configurations
are reached. We consider three cases: point-to-point straight-line trajectories
in both joint space and task space; trajectories passing through a sequence of
timed via points; and minimum-time trajectories along specified paths. Finding
paths that avoid obstacles is left to Chapter 10.

9.1 Definitions

A path ✓(s) maps a scalar path parameter s, assumed to be zero at the start
of the path and one at the end, to a point in the robot’s configuration space
⇥, ✓ : [0, 1] ! ⇥. As s increases from 0 to 1, the robot moves along the path.
Sometimes s is taken to be time, and is allowed to vary from time s = 0 to
the total motion time s = T , but it is often useful to separate the role of the
geometric path parameter s from the time parameter t. A time scaling s(t)
assigns a value s to each time t 2 [0, T], s : [0, T]! [0, 1].

Together a path and time scaling define a trajectory ✓(s(t)), or ✓(t) for short.
Using the chain rule, the velocity and acceleration along the trajectory can be

289

290 Trajectory Generation

written as

✓̇ =
d✓

ds
ṡ (9.1)

✓̈ =
d✓

ds
s̈+

d2✓

ds2
ṡ2. (9.2)

To ensure that the robot’s acceleration (and therefore dynamics) are well de-
fined, each of ✓(s) and s(t) must be twice di↵erentiable.

9.2 Point-to-Point Trajectories

The simplest type of motion is from rest at one configuration to rest at another.
We call this a point-to-point motion. The simplest type of path for point-to-
point motion is a straight line. Straight-line paths and their time scalings are
discussed below.

9.2.1 Straight-Line Paths

A “straight line” from a start configuration ✓
start

to an end configuration ✓
end

could be defined in joint space or in task space. The advantage of a straight-line
path from ✓

start

to ✓
end

in joint space is simplicity: since joint limits typically
take the form ✓

i,min

 ✓
i

 ✓
i,max

for each joint i, the allowable joint configu-
rations form a convex set ⇥

free

in joint space, so the straight line between any
two endpoints in ⇥

free

also lies in ⇥
free

. The straight line can be written

✓(s) = ✓
start

+ s(✓
end

� ✓
start

), s 2 [0, 1] (9.3)

with derivatives

d✓

ds
= ✓

end

� ✓
start

(9.4)

d2✓

ds2
= 0. (9.5)

Straight lines in joint space generally do not yield straight-line motion of the
end-e↵ector in task space. If task space straight-line motions are desired, the
start and end configurations can be specified by X

start

and X
end

in task space.
If X

start

and X
end

are represented by a minimum set of coordinates, then a
straight line is defined as X(s) = X

start

+ s(X
end

�X
start

), s 2 [0, 1]. Compared
to joint coordinates, however, the following are issues that must be addressed:

• If the path passes near a kinematic singularity, joint velocities may become
unreasonably large for almost all time scalings of the path.

• Since the robot’s reachable task space may not be convex inX coordinates,
some points on a straight line between two reachable endpoints may not
be reachable (Figure 9.1).

9.2. Point-to-Point Trajectories 291

θ (deg)1

θ (deg)2

-90 90 180

180

90

-90

θ (deg)1

θ (deg)2

-90 90 180

180

90

-90

θ 1

θ 2

θstart

θend

θstart

θend

Figure 9.1: (Left) A 2R robot with joint limits 0� ✓
1

 180�, 0� ✓
2

 150�.
(Top right) A straight-line path in joint space and the corresponding motion of
the end-e↵ector in task space. The reachable endpoint configurations, subject
to joint limits, are indicated in gray. (Bottom right) A straight-line path in task
space would violate the joint limits.

In addition to the issues above, ifX
start

andX
end

are represented as elements
of SE(3) instead of as a minimum set of coordinates, then there is the question
of how to define a “straight” line in SE(3). A configuration of the form X

start

+
s(X

end

�X
start

) does not generally lie in SE(3).
One option is to use the screw motion (simultaneous rotation about and

translation along a fixed screw axis) that moves the robot’s end-e↵ector from
X

start

= X(0) to X
end

= X(1). To derive this X(s), we can write the start and
end configurations explicitly in the {s} frame as X

s,start

and X
s,end

and use our
subscript cancellation rule to express the end configuration in the start frame:

X
start,end

= X
start,s

X
s,end

= X�1

s,start

X
s,end

.

Then log(X�1

s,start

X
s,end

) is the matrix representation of the twist, expressed in
the {start} frame, that takes X

start

to X
end

in unit time. The path can therefore
be written as

X(s) = X
start

exp(log(X�1

start

X
end

)s) (9.6)

where X
start

is post-multiplied by the matrix exponential since the twist is

292 Trajectory Generation

Xstart

Xend

screw path

 decoupled rotation and translation

Figure 9.2: A path following a constant screw motion vs. a decoupled path where
the frame origin follows a straight line and the angular velocity is constant.

represented in the {start} frame, not the fixed world frame {s}.
This screw motion provides a “straight-line” motion in the sense that the

screw axis is constant. The origin of the end-e↵ector does not generally follow a
straight line in Cartesian space, however, since it follows a screw motion. It may
be preferable to decouple the rotational motion from the translational motion.
Writing X = (R, p), we can define the path

p(s) = p
start

+ s(p
end

� p
start

) (9.7)

R(s) = R
start

exp(log(RT

start

R
end

)s) (9.8)

where the frame origin follows a straight line while the axis of rotation is constant
in the body frame. Figure 9.2 illustrates a screw path and a decoupled path for
the same X

start

and X
end

.

9.2.2 Time Scaling a Straight-Line Path

A time scaling s(t) of a path should ensure that the motion is appropriately
smooth and that any constraints on robot velocity and acceleration are satisfied.
For a straight-line path in joint space of the form (9.3), the time-scaled joint
velocities and accelerations are ✓̇ = ṡ(✓

end

� ✓
start

) and ✓̈ = s̈(✓
end

� ✓
start

),
respectively. For a straight-line path in task space, parametrized by minimum
coordinates X 2 Rm, simply replace ✓, ✓̇, and ✓̈ by X, Ẋ, and Ẍ.

9.2.2.1 Polynomial Time Scaling

Third-order Polynomials A convenient form for the time scaling s(t) is a
cubic polynomial of time,

s(t) = a
0

+ a
1

t+ a
2

t2 + a
3

t3. (9.9)

A point-to-point motion in time T imposes the initial constraints s(0) = ṡ(0) = 0
and the terminal constraints s(T) = 1 and ṡ(T) = 0. Evaluating Equation (9.9)
and its derivative

ṡ(t) = a
1

+ 2a
2

t+ 3a
3

t2 (9.10)

9.2. Point-to-Point Trajectories 293

T t

s(t)

1

T t

ds/dt

T t

d s/dt 22

0

3
2T

6
 T 2

Figure 9.3: Plots of s(t), ṡ(t), and s̈(t) for a third-order polynomial time scaling.

at t = 0 and t = T and solving the four constraints for a
0

, . . . , a
3

, we find

a
0

= 0, a
1

= 0, a
2

=
3

T 2

, a
3

= � 2

T 3

.

Plots of s(t), ṡ(t), and s̈(t) are shown in Figure 9.3.
Plugging s = a

2

t2 + a
3

t3 into Equation (9.3) yields

✓(t) = ✓
start

+

✓
3t2

T 2

� 2t3

T 3

◆
(✓

end

� ✓
start

) (9.11)

✓̇(t) =

✓
6t

T 2

� 6t2

T 3

◆
(✓

end

� ✓
start

) (9.12)

✓̈(t) =

✓
6

T 2

� 12t

T 3

◆
(✓

end

� ✓
start

). (9.13)

The maximum joint velocities are achieved at the halfway point of the motion
t = T/2:

✓̇
max

=
3

2T
(✓

end

� ✓
start

).

The maximum joint accelerations and decelerations are achieved at t = 0 and
t = T :

✓̈
max

=

����
6

T 2

(✓
end

� ✓
start

)

���� , ✓̈
min

= �
����
6

T 2

(✓
end

� ✓
start

)

���� .

If there are known limits on the maximum joint velocities |✓̇| ✓̇
limit

and max-
imum joint accelerations |✓̈| ✓̈

limit

, these bounds can be checked to see if the
requested motion time T is feasible. Alternatively, T could be solved for to find
the minimum possible motion time that satisfies the most restrictive velocity or
acceleration constraint.

Fifth-order Polynomials Because the third-order time scaling does not con-
strain the endpoint path accelerations s̈(0) and s̈(T) to be zero, the robot is
asked to achieve a discontinuous jump in acceleration at both t = 0 and t = T .
This implies infinite jerk, the derivative of acceleration, which may cause vibra-
tion of the robot.

294 Trajectory Generation

T t

s(t)

1

T t

ds/dt
15
8T

T t

d s/dt 22

0

10
T 3√2

Figure 9.4: Plots of s(t), ṡ(t), and s̈(t) for a fifth-order polynomial time scaling.

T t

s(t)

1

T t

ds/dt

ta T - ta

v

slo
pe

 =
 a slope = -a

Figure 9.5: Plots of s(t) and ṡ(t) for a trapezoidal motion profile.

One solution is to constrain the endpoint accelerations to s̈(0) = s̈(T) = 0.
The addition of these two constraints requires the addition of two more design
freedoms in the polynomial, yielding a quintic polynomial of time, s(t) = a

0

+
. . . + a

5

t5. We can use the six terminal position, velocity, and acceleration
constraints to solve uniquely for a

0

. . . a
5

(Exercise 5), which yields a smoother
motion with a higher maximum velocity than a cubic time scaling. A plot of
the time scaling is shown in Figure 9.4.

9.2.2.2 Trapezoidal Motion Profiles

Trapezoidal time scalings are quite common in motor control, particularly for
the motion of a single joint, and they get their name from their velocity profiles.
The point-to-point motion consists of a constant acceleration phase s̈ = a of
time t

a

, followed by a constant velocity phase ṡ = v of time t
v

= T � 2t
a

,
followed by a constant deceleration phase s̈ = �a of time t

a

. The resulting ṡ
profile is a trapezoid and the s profile is the concatenation of a parabola, linear
segment, and parabola as a function of time (Figure 9.5).

The trapezoidal time scaling is not as smooth as the cubic time scaling, but
it has the advantage that if there are known limits on joint velocities ✓̇

limit

2 Rn

and joint accelerations ✓̈
limit

2 Rn, the trapezoidal motion using the largest v

9.2. Point-to-Point Trajectories 295

and a satisfying

|(✓
end

� ✓
start

)v| ✓̇
limit

(9.14)

|(✓
end

� ✓
start

)a| ✓̈
limit

(9.15)

is the fastest straight-line motion possible. (See Exercise 8.)
If v2/a > 1, the robot never reaches the velocity v during the motion (Ex-

ercise 10). The three-phase accelerate-coast-decelerate motion becomes a two-
phase accelerate-decelerate “bang-bang” motion, and the trapezoidal profile ṡ(t)
in Figure 9.5 becomes a triangle.

Assuming that v2/a 1, the trapezoidal motion is fully specified by v, a,
t
a

, and T , but only two of these can be specified independently, since they
must satisfy s(T) = 1 and v = at

a

. It is unlikely that we would specify t
a

independently, so we can eliminate it from the equations of motion by the sub-
stitution t

a

= v/a. The motion profile during the three stages (acceleration,
coast, deceleration) can then be written in terms of v, a, and T as

0 t v

a
: s̈(t) = a (9.16)

ṡ(t) = at (9.17)

s(t) =
1

2
at2 (9.18)

v

a
< t T � v

a
: s̈(t) = 0 (9.19)

ṡ(t) = v (9.20)

s(t) = vt� v2

2a
(9.21)

T � v

a
< t T : s̈(t) = �a (9.22)

ṡ(t) = a(T � t) (9.23)

s(t) =
2avT � 2v2 � a2(t� T)2

2a
. (9.24)

Since only two of v, a, and T can be chosen independently, we have three
options:

• Choose v and a such that v2/a 1, assuring a three-stage trapezoidal
profile, and solve s(T) = 1 (Equation (9.24)) for T :

T =
a+ v2

va
.

If v and a correspond to the highest possible joint velocities and acceler-
ations, this is the minimum possible time for the motion.

296 Trajectory Generation

ds/dt

v

tT

slo
pe

= a slope = -a

1 2 3 4 5 6 7

Figure 9.6: Plot of ṡ(t) for an S-curve motion profile consisting of seven stages:
(1) constant positive jerk, (2) constant acceleration, (3) constant negative jerk,
(4) constant velocity, (5) constant negative jerk, (6) constant deceleration, and
(7) constant positive jerk.

• Choose v and T such that 2 � vT > 1, assuring a three-stage trapezoidal
profile and that the top speed v is su�cient to reach s = 1 in time T , and
solve s(T) = 1 for a:

a =
v2

vT � 1
.

• Choose a and T such that aT 2 � 4, assuring that the motion is completed
in time, and solve s(T) = 1 for v:

v =
1

2

⇣
aT �

p
a
p
aT 2 � 4

⌘
.

9.2.2.3 S-Curve Time Scalings

Just as cubic polynomial time scalings lead to infinite jerk at the beginning and
end of the motion, trapezoidal motions cause discontinuous jumps in accelera-
tion at t 2 {0, t

a

, T � t
a

, T}. A solution is a smoother S-curve time scaling, a
popular motion profile in motor control because it avoids vibrations or oscilla-
tions induced by step changes in acceleration. An S-curve time scaling consists
of seven stages: (1) constant jerk s(3) = J until a desired acceleration s̈ = a is
achieved; (2) constant acceleration until the desired ṡ = v is being approached;
(3) constant negative jerk �J until s̈ equals zero exactly at the time ṡ reaches
v; (4) coasting at constant v; (5) constant negative jerk �J ; (6) constant decel-
eration �a; and (7) constant positive jerk J until s̈ and ṡ reach zero exactly at
the time s reaches 1.

The ṡ(t) profile for an S-curve is shown in Figure 9.6.
Given some subset of v, a, J , and the total motion time T , algebraic ma-

nipulation reveals the switching time between stages and conditions that ensure
that all seven stages are actually achieved, similar to the case of the trapezoidal
motion profile.

9.3. Polynomial Via Point Trajectories 297

start end start end

via 2 via 3

via 2 via 3

(a) (b)

y^

x^

y^

x^

Figure 9.7: Two paths in an (x, y) space corresponding to piecewise-cubic tra-
jectories interpolating four via points, including one start point and one end
point. The velocities at the start and end are zero, and the velocities at vias 2
and 3 are indicated by dashed tangent vectors. The shape of the path depends
on the velocities specified at the via points.

9.3 Polynomial Via Point Trajectories

If the goal is to have the robot joints pass through a series of via points at
specified times, without a strict specification on the shape of path between con-
secutive points, a simple solution is to use polynomial interpolation to directly
find joint histories ✓(t) without first specifying a path ✓(s) and then a time
scaling s(t) (Figure 9.7).

Let the trajectory be specified by k via points, with the start point occurring
at T

1

= 0 and the final point at T
k

= T . Since each joint history is interpolated
individually, we focus on a single joint variable and call it � to avoid proliferation
of subscripts. At each via point i 2 {1 . . . k}, the user specifies the desired
position �(T

i

) = �
i

and velocity �̇(T
i

) = �̇
i

. The trajectory has k� 1 segments,
and the duration of segment j 2 {1, . . . , k � 1} is �T

j

= T
j+1

� T
j

. The joint
trajectory during segment j is expressed as the third-order polynomial

�(T
j

+�t) = a
j0

+ a
j1

�t+ a
j2

�t2 + a
j3

�t3 (9.25)

in terms of the time �t elapsed in segment j, where 0 �t �T
j

. Segment j
is subject to the four constraints

�(T
j

) = �
j

�̇(T
j

) = �̇
j

�(T
j

+�T
j

) = �
j+1

�̇(T
j

+�T
j

) = �̇
j+1

.

298 Trajectory Generation

T1 T4T3T2 t

po
si
tio
n

T1 T4T3T2 t

ve
lo
ci
ty

xy

y.
x.

Figure 9.8: The coordinate time histories for the cubic via point interpolation
of Figure 9.7(a).

Solving these constraints for a
j0

, . . . , a
j3

yields

a
j0

= �
j

(9.26)

a
j1

= �̇
j

(9.27)

a
j2

=
3�

j+1

� 3�
j

� 2�̇
j

�T
j

� �̇
j+1

�T
j

�T 2

j

(9.28)

a
j3

=
2�

j

+ (�̇
j

+ �̇
j+1

)�T
j

� 2�
j+1

�T 3

j

. (9.29)

Figure 9.8 shows the time histories for the interpolation of Figure 9.7(a). In
this 2D (x, y) coordinate space, the via points 1 . . . 4 occur at times T

1

= 0,
T
2

= 1, T
3

= 2, and T
4

= 3. The via points are at (0, 0), (0, 1), (1, 1), and (1, 0)
with velocities (0, 0), (1, 0), (0,�1), and (0, 0).

Two issues are worth mentioning:

• The quality of the interpolated trajectories is improved by “reasonable”
combinations of via point times and via point velocities. For example,
if the user wants to specify a via point location and time, but not the
velocity, a heuristic could be used to choose a via velocity based on the
times and coordinate vectors to the via points before and after the via in
question. As an example, the trajectory of Figure 9.7(b) is smoother than
the trajectory of Figure 9.7(a).

• Cubic via point interpolation ensures that velocities are continuous at via
points, but not accelerations. The approach is easily generalized to use
fifth-order polynomials and specifications of the accelerations at the via
points, at the cost of increased complexity of the solution.

If only two points are used (the start and end point), and the velocities
at each are zero, the resulting trajectory is identical to the straight-line cubic
polynomial time-scaled trajectory discussed in Section 9.2.2.1.

9.4. Time-Optimal Time Scaling 299

s = 0s = 1

R

(x , y)c c

y^

x^

Figure 9.9: A path planner has returned a semicircular path of radius R around
an obstacle in (x, y) space for a robot with two prismatic joints. The path can
be represented as a function of a path parameter s as x(s) = x

c

+R cos s⇡ and
y(s) = y

c

� R sin s⇡ for s 2 [0, 1]. For a 2R robot, inverse kinematics would be
used to express the path as a function of s in joint coordinates.

There are many other methods for interpolating a set of via points. For
example, B-spline interpolation is popular. In B-spline interpolation, the path
may not pass exactly through the via points, but the path is guaranteed to be
confined to the convex hull of the via points, unlike the paths in Figure 9.7.
This can be important to ensure that joint limits or workspace obstacles are
respected.

9.4 Time-Optimal Time Scaling

In the case that the path ✓(s) is fully specified by the task or an obstacle-
avoiding path planner (e.g., Figure 9.9), the trajectory planning problem reduces
to finding a time scaling s(t). One could choose the time scaling to minimize
energy consumed while meeting a time constraint, or to prevent spilling a glass
of water the robot is carrying. One of the most useful time scalings, however,
is the one that minimizes the time of motion along the path, subject to the
robot’s actuator limits. Such time-optimal trajectories maximize the robot’s
productivity.

While the trapezoidal time scalings of Section 9.2.2.2 can yield time-optimal
trajectories, this is only under the assumption of straight-line motions and con-
stant maximum acceleration a and maximum coasting velocity v. For most
robots, because of state-dependent joint actuator limits and the state-dependent
dynamics

M(✓)✓̈ + c(✓, ✓̇) + g(✓) = ⌧, (9.30)

the maximum available velocities and accelerations change along the path.

300 Trajectory Generation

In this section we consider the problem of finding the fastest possible time
scaling s(t) that respects the robot’s actuator limits. We write the limits on the
ith actuator as

⌧min

i

(✓, ✓̇) ⌧
i

 ⌧max

i

(✓, ✓̇). (9.31)

The available actuator torque is typically a function of the current joint speed
(see Chapter 8.9.1). For example, for a given maximum voltage of a DC motor,
the maximum torque available from the motor drops linearly with the motor’s
speed.

Before proceeding, we note that the quadratic velocity terms c(✓, ✓̇) in Equa-
tion (9.30) can be written equivalently as

c(✓, ✓̇) = ✓̇T�(✓)✓̇,

where �(✓) is the three-dimensional tensor of Christo↵el symbols constructed
of partial derivatives of components of the mass matrix M(✓) with respect to
✓. This form more clearly shows the quadratic dependence on velocities. Now
beginning with Equation (9.30), replacing ✓̇ by (d✓/ds)ṡ and ✓̈ by (d✓/ds)s̈ +
(d2✓/ds2)ṡ2, and rearranging, we get

✓
M(✓(s))

d✓

ds

◆

| {z }
m(s)2Rn

s̈+

M(✓(s))

d2✓

ds2
+

✓
d✓

ds

◆
T

�(✓(s))
d✓

ds

!

| {z }
c(s)2Rn

ṡ2+g(✓(s))| {z }
g(s)2Rn

= ⌧, (9.32)

expressed more compactly as the vector equation

m(s)s̈+ c(s)ṡ2 + g(s) = ⌧, (9.33)

where m(s) is the e↵ective inertia of the robot confined to the path ✓(s), c(s)ṡ2

are the quadratic velocity terms, and g(s) is the gravitational torque.
Similarly, the actuation constraints (9.31) can be expressed as a function of

s:
⌧min

i

(s, ṡ) ⌧
i

 ⌧max

i

(s, ṡ). (9.34)

Plugging in the components of Equation (9.33), we get

⌧min

i

(s, ṡ) m
i

(s)s̈+ c
i

(s)ṡ2 + g
i

(s) ⌧max

i

(s, ṡ). (9.35)

Let L
i

(s, ṡ) and U
i

(s, ṡ) be the minimum and maximum accelerations s̈ sat-
isfying the ith component of Equation (9.35). Depending on the sign of m

i

(s),

9.4. Time-Optimal Time Scaling 301

we have three possibilities:

if m
i

(s) > 0 : L
i

(s) =
⌧min

i

(s, ṡ)� c(s)ṡ2 � g(s)

m
i

(s)

U
i

(s) =
⌧max

i

(s, ṡ)� c(s)ṡ2 � g(s)

m
i

(s)

if m
i

(s) < 0 : L
i

(s) =
⌧max

i

(s, ṡ)� c(s)ṡ2 � g(s)

m
i

(s)
(9.36)

U
i

(s) =
⌧min

i

(s, ṡ)� c(s)ṡ2 � g(s)

m
i

(s)

if m
i

(s) = 0 : zero-inertia point, discussed in Section 9.4.3

Defining

L(s, ṡ) = max
i

L
i

(s, ṡ) and U(s, ṡ) = min
i

U
i

(s, ṡ),

the actuator limits (9.35) can be written as the state-dependent time-scaling
constraints

L(s, ṡ) s̈ U(s, ṡ). (9.37)

The time-optimal time-scaling problem can now be stated:

Given a path ✓(s), s 2 [0, 1], an initial state (s
0

, ṡ
0

) = (0, 0), and a final state
(s

f

, ṡ
f

) = (1, 0), find a monotonically increasing twice-di↵erentiable time scaling
s : [0, T]! [0, 1] that

(i) satisfies s(0) = ṡ(0) = ṡ(T) = 0 and s(T) = 1, and

(ii) minimizes the total travel time T along the path while respecting the actu-
ator constraints (9.37).

The problem formulation is easily generalized to the case of nonzero initial
and final velocity along the path, ṡ(0) > 0 and ṡ(T) > 0.

9.4.1 The (s, ṡ) Phase Plane

The problem is easily visualized in the (s, ṡ) phase plane of the path-constrained
robot, with s running from 0 to 1 on a horizontal axis and ṡ on a vertical
axis. Since s(t) is monotonically increasing, ṡ(t) � 0 for all times t and for all
s 2 [0, 1]. A time scaling of the path is any curve in the phase plane that moves
monotonically to the right from (0, 0) to (1, 0) (Figure 9.10). Not all such curves
satisfy the acceleration constraints (9.37), however.

To see the e↵ect of the acceleration constraints, at each (s, ṡ) in the phase
plane, we can plot the limits L(s, ṡ) s̈ U(s, ṡ) as a cone, as illustrated in
Figure 9.11(a). If L(s, ṡ) � U(s, ṡ), the cone disappears—there are no actuator
commands that can keep the robot on the path at this state. These inadmissible
states are indicated in gray in Figure 9.11(a). For any s, typically there is a

302 Trajectory Generation

s

s.

0
0 1

time scaling s(s).

Figure 9.10: A time scaling in the (s, ṡ) phase plane is a curve with ṡ � 0 at all
times connecting the initial path position and velocity (0, 0) to the final position
and velocity (1, 0).

s

s.

0
0 1

U(s,s).

s.
L(s,s).

(a) (b)

s

s.

0
0 1

velocity
limit curve

Figure 9.11: (a) Acceleration-limited motion cones at four di↵erent states. The
upper ray of the cone is the sum of U(s, ṡ) plotted in the vertical direction
(change in velocity) and ṡ plotted in the horizontal direction (change in posi-
tion). The lower ray of the cone is constructed from L(s, ṡ) and ṡ. Points in
gray, bounded by the velocity limit curve, have L(s, ṡ) � U(s, ṡ)—the state is
inadmissible. On the velocity limit curve, the cone is reduced to a single tangent
vector. (b) The proposed time scaling is infeasible because the tangent to the
curve is outside the motion cone at the state indicated.

single limit velocity ṡ
lim

(s) above which all velocities are inadmissible. The
function ṡ

lim

(s) is called the velocity limit curve. On the velocity limit curve,
L(s, ṡ) = U(s, ṡ), and the cone reduces to a single vector.

For a time scaling to satisfy the acceleration constraints, the tangent of the
time-scaling curve must lie inside the feasible cone at all points on the curve.
This shows that the time scaling in Figure 9.11(b) is infeasible; it demands more
deceleration than the actuators can provide at the state indicated.

For a minimum-time motion, the “speed” ṡ must be as high as possible

9.4. Time-Optimal Time Scaling 303

s

s.

0
0 1

optimal bang-bang
 time scaling

non-optimal

s

s.

0

(a) (b)

U(s,s).

L(s,s).

s*

Figure 9.12: (a) A time-optimal bang-bang time scaling integrates U(s, ṡ) from
(0, 0) and switches to L(s, ṡ) at a switching point s⇤. Also shown is a non-
optimal time scaling with a tangent inside a motion cone. (b) Sometimes the
velocity limit curve prevents a single-switch solution.

at every s while still satisfying the acceleration constraints and the endpoint
constraints. To see this, consider that the total time of motion T is given by

T =

Z
T

0

1 dt. (9.38)

Making the substitution ds/ds = 1, and changing the limits of integration from
0 to T (time) to 0 to 1 (s), we get

T =

Z
T

0

1 dt =

Z
T

0

ds

ds
dt =

Z
T

0

dt

ds
ds =

Z
1

0

ṡ�1(s) ds. (9.39)

Thus for time to be minimized, ṡ�1(s) should be as small as possible, and
therefore ṡ(s) must be as large as possible, at all s, while still satisfying the
acceleration constraints (9.37) and the boundary constraints.

This implies that the time scaling must always operate at the limit U(s, ṡ) or
L(s, ṡ), and our only choice is when to switch between these limits. A common
solution is a bang-bang trajectory: maximum acceleration U(s, ṡ) followed by
a switch to maximum deceleration L(s, ṡ). (This is similar to the trapezoidal
motion profile that never reaches the coasting velocity v in Section 9.2.2.2.)
In this case, the time scaling is calculated by numerically integrating U(s, ṡ)
forward in s from (0, 0), integrating L(s, ṡ) backward in s from (1, 0), and finding
the intersection of these curves (Figure 9.12(a)). The switch between maximum
acceleration and maximum deceleration occurs at the intersection.

In some cases, however, the velocity limit curve prevents a single-switch
solution (Figure 9.12(b)). These cases require an algorithm to find multiple
switching points.

304 Trajectory Generation

9.4.2 The Time-Scaling Algorithm

Finding the optimal time scaling is reduced to finding the switches between
maximum acceleration U(s, ṡ) and maximum deceleration L(s, ṡ), maximizing
the “height” of the curve in the (s, ṡ) phase plane.

Time-scaling algorithm.

1. Initialize an empty list of switches S = {} and a switch counter i = 0. Set
(s

i

, ṡ
i

) = (0, 0).

2. Integrate the equation s̈ = L(s, ṡ) backward in time from (1, 0) until L(s, ṡ) >
U(s, ṡ) (the velocity limit curve is penetrated) or s = 0. Call this phase plane
curve F .

3. Integrate the equation s̈ = U(s, ṡ) forward in time from (s
i

, ṡ
i

) until it crosses
F or until U(s, ṡ) < L(s, ṡ) (the velocity limit curve is penetrated). Call this
curve A

i

. If A
i

crosses F , then increment i, set (s
i

, ṡ
i

) to the (s, ṡ) value at
which the crossing occurs, and append s

i

to the list of switches S. This is a
switch from maximum acceleration to maximum deceleration. The problem
is solved and S is the set of switches expressed in the path parameter. If
instead the velocity limit curve is penetrated, let (s

lim

, ṡ
lim

) be the point of
penetration and proceed to the next step.

4. Perform a binary search on the velocity in the range [0, ṡ
lim

] to find the
velocity ṡ0 such that the curve integrating s̈ = L(s, ṡ) forward from (s

lim

, ṡ0)
touches the velocity limit curve without penetrating it. The binary search is
initiated with ṡ

high

= ṡ
lim

and ṡ
low

= 0.

(a) Set the test velocity halfway between ṡ
low

and ṡ
high

, ṡ
test

= (ṡ
high

+
ṡ
low

)/2. The test point is (s
lim

, ṡ
test

).

(b) If the curve from the test point penetrates the velocity limit curve, set
ṡ
high

equal to ṡ
test

. If instead the curve from the test point hits ṡ = 0,
set ṡ

low

equal to ṡ
test

. Return to step 4a.

Continue the binary search until a specified tolerance. Let (s
tan

, ṡ
tan

) equal
the point where the resulting curve just touches the velocity limit curve
tangentially (or comes closest to the curve without hitting). The motion
cone at this point is reduced to a single tangent vector (L(s, ṡ) = U(s, ṡ)),
tangent to the velocity limit curve.

5. Integrate s̈ = L(s, ṡ) backwards from (s
tan

, ṡ
tan

) until it intersects A
i

. Incre-
ment i, set (s

i

, ṡ
i

) to the (s, ṡ) value at the intersection, and label as A
i

the
curve segment from (s

i

, ṡ
i

) to (s
tan

, ṡ
tan

). Append s
i

to the list of switches
S. This is a switch from maximum acceleration to maximum deceleration.

6. Increment i and set (s
i

, ṡ
i

) to (s
tan

, ṡ
tan

). Append s
i

to the list of switches
S. This is a switch from maximum deceleration to maximum acceleration.
Go to step 3.

The algorithm is illustrated in Figure 9.13.

9.4. Time-Optimal Time Scaling 305

Step 3: i = 0, S = {}

s

s.

0
0 1

F

(s , s)lim lim
 .

A0

s

s.

0
0 1

FA0

(s , s)tan tan
 .

Step 4: i = 0, S = {}

s

s.

0
0 1

FA0

A1

Step 5: i = 1, S = {s }1

(s , s)1 1
.

 s1

s

s.

0
0 1

FA0

A1

Step 6: i = 2, S = {s , s }1 2

 s1 s2

s

s.

0
0 1

Step 2: i = 0, S = {}

F

velocity
limit curve

(s , s)0 0
.

s

s.

0
0 1

FA0

A1

Step 3: i = 3, S = {s , s , s }1 2 3

 s1 s2

A2

 s3

(s , s)3 3
.

(s , s)2 2
.

(s , s)tan tan
 .

acc dec acc dec

1

2

3
4

Figure 9.13: The time-scaling algorithm. (Step 2) Integrating s̈ = L(s, ṡ) back-
ward from (1, 0) until the velocity limit curve is reached. (Step 3) Integrating
s̈ = U(s, ṡ) forward from (0, 0) to the intersection (s

lim

, ṡ
lim

) with the velocity
limit curve. (Step 4) Binary search to find (s

lim

, ṡ0) from which s̈ = L(s, ṡ),
integrated forward from (s

lim

, ṡ0), touches the velocity limit curve tangentially.
(Step 5) Integrating backward along L(s, ṡ) from (s

tan

, ṡ
tan

) to find the first
switch from acceleration to deceleration. (Step 6) The second switch, from de-
celeration to acceleration, is at (s

2

, ṡ
2

) = (s
tan

, ṡ
tan

). (Step 3) Integrating for-
ward along U(s, ṡ) from (s

2

, ṡ
2

) results in intersection with F at (s
3

, ṡ
3

), where
a switch occurs from acceleration to deceleration. The optimal time scaling
consists of switches at S = {s

1

, s
2

, s
3

}.

306 Trajectory Generation

9.4.3 Assumptions and Caveats

The description above covers the major points of the optimal time-scaling algo-
rithm. A few assumptions were glossed over, however; they are made explicit
below.

• Static posture maintenance. The algorithm, as described, assumes that the
robot can maintain its configuration against gravity at any state (s, ṡ = 0).
This ensures the existence of valid time scalings, namely, time scalings
that move the robot along the path arbitrarily slowly. For some robots
and paths, this assumption may be violated due to weak actuators. For
example, some paths may require momentum to carry motion through
configurations the robot cannot maintain statically. The algorithm can be
modified to handle such cases.

• Inadmissible states. The algorithm assumes that at every s there is a
unique velocity limit ṡ

lim

(s) > 0 such that all velocities ṡ ṡ
lim

(s) are
admissible and all velocities ṡ > ṡ

lim

(s) are inadmissible. For some models
of actuator dynamics or friction, this assumption may be violated—there
may be isolated “islands” of inadmissible states. The algorithm can be
modified to handle this case.

• Zero-inertia points. The algorithm assumes no zero-inertia points (Equa-
tion (9.36)). If m

i

(s) = 0 in (9.36), then the torque provided by actuator
i has no dependence on the acceleration s̈, and the ith actuator constraint
in (9.35) directly defines a velocity constraint on ṡ. At a point s with
one or more zero components in m(s), the velocity limit curve is defined
by the minimum of (a) the velocity constraints defined by the zero-inertia
components and (b) the ṡ values satisfying L

i

(s, ṡ) = U
i

(s, ṡ) for the other
components. For the algorithm as described, singular arcs of zero-inertia
points on the velocity limit curve may lead to rapid switching between
s̈ = U(s, ṡ) and s̈ = L(s, ṡ). In such cases, choosing an acceleration tan-
gent to the velocity limit curve, and between U(s, ṡ) and L(s, ṡ), preserves
time optimality without chattering controls.

It is worth noting that the time-scaling algorithm generates trajectories with
discontinuous acceleration, which could lead to vibrations. Beyond this, inaccu-
racies in models of robot inertial properties and friction make direct application
of the time-scaling algorithm impractical. Finally, since a minimum-time time
scaling always saturates at least one actuator, if the robot gets o↵ the planned
trajectory, there may be no torque left for corrective action by a feedback con-
troller.

Despite these drawbacks, the time-scaling algorithm provides a deep under-
standing of the true maximum capabilities of a robot following a path.

9.5. Summary 307

9.5 Summary

• A trajectory ✓(t), ✓ : [0, T]! ⇥, can be written as ✓(s(t)), the composition
of a path ✓(s), ✓ : [0, 1]! ⇥, and a time scaling s(t), s : [0, T]! [0, 1].

• A straight-line path in joint space can be written ✓(s) = ✓
start

+ s(✓
end

�
✓
start

), s 2 [0, 1]. A similar form holds for straight-line paths in a minimum
set of task space coordinates. A “straight-line” path in SE(3), where
X = (R, p), can be decoupled to a Cartesian path and a rotation path:

p(s) = p
start

+ s(p
end

� p
start

) (9.40)

R(s) = R
start

exp(log(RT

start

R
end

)s). (9.41)

• A cubic polynomial s(t) = a
0

+a
1

t+a
2

t2+a
3

t3 can be used to time scale a
point-to-point motion with zero initial and final velocity. The acceleration
undergoes a step change (infinite jerk) at t = 0 and t = T , however. An
impulse in jerk can cause vibration of the robot.

• A quintic polynomial s(t) = a
0

+a
1

t+a
2

t2+a
3

t3+a
4

t4+a
5

t5 can be used
to time-scale a point-to-point motion with zero initial and final velocities
and accelerations. Jerk is finite at t = 0 and t = T .

• The trapezoidal motion profile is a popular time scaling in point-to-point
control, particularly control of a single motor. The motion consists of
three phases: constant acceleration, constant velocity, and constant decel-
eration, resulting in a trapezoid in ṡ(t). Trapezoidal motion involves step
changes in acceleration.

• The S-curve motion profile is also popular in point-to-point control of a
motor. It consists of seven phases: (1) constant positive jerk, (2) constant
acceleration, (3) constant negative jerk, (4) constant velocity, (5) constant
negative jerk, (6) constant deceleration, and (7) constant positive jerk.

• Given a set of via points including a start state, a goal state, and other
via states through which the robot’s motion must pass, as well as the
times T

i

these states should be reached, a series of cubic polynomial time
scalings can be used to generate a trajectory ✓(t) interpolating the via
points. To prevent step changes in the acceleration at the via points, a
series of quintic polynomials can be used instead.

• Given a robot path ✓(s), the dynamics of the robot, and limits on the
actuator torques, the actuator constraints can be expressed in terms of
(s, ṡ) as the vector inequalities

L(s, ṡ)s̈ s̈ U(s, ṡ).

The time-optimal time scaling is the s(t) such that the “height” of the
curve in the (s, ṡ) phase plane is maximized while satisfying s(0) = ṡ(0) =

308 Trajectory Generation

ṡ(T) = 0, s(T) = 1, and the actuator constraints. The optimal solution al-
ways operates at maximum acceleration U(s, ṡ) or maximum deceleration
L(s, ṡ).

9.6 Software

s = CubicTimeScaling(Tf,t)
Computes s(t) for a cubic time-scaling, given t and the total time of motion
T
f

.

s = QuinticTimeScaling(Tf,t)
Computes s(t) for a quntic time-scaling, given t and the total time of motion
T
f

.

traj = JointTrajectory(thetastart,thetaend,Tf,N,method)
Computes a straight-line trajectory in joint space as an N ⇥ n matrix, where
each of the N rows is an n-vector of joint variables at an instant in time. The
first row is ✓

start

and the Nth row is ✓
end

. The elapsed time between each row
is T

f

/(N � 1). The parameter method is either 3 for a cubic time scaling or 5
for a quintic time scaling.

traj = ScrewTrajectory(Xstart,Xend,Tf,N,method)
Computes a trajectory as a list of N SE(3) matrices, where each matrix repre-
sents the configuration of the end-e↵ector at an instant in time. The first matrix
is X

start

, the Nth matrix is X
end

, and the motion is along a constant screw axis.
The elapsed time between each matrix is T

f

/(N � 1). The parameter method is
either 3 for a cubic time scaling or 5 for a quintic time scaling.

traj = CartesianTrajectory(thetastart,thetaend,Tf,N,method)
Computes a trajectory as a list of N SE(3) matrices, where each matrix repre-
sents the configuration of the end-e↵ector at an instant in time. The first matrix
is X

start

, the Nth matrix is X
end

, and the origin of the end-e↵ector frame fol-
lows a straight line, decoupled from the rotation. The elapsed time between
each matrix is T

f

/(N � 1). The parameter method is either 3 for a cubic time
scaling or 5 for a quintic time scaling.

9.7 Notes and References

In 1985, Bobrow et al. [12] and Shin and McKay [122] published papers nearly
simultaneously that independently derived the essence of the time-optimal time-
scaling algorithm outlined in Section 9.4. A year earlier, Hollerbach addressed
the restricted problem of finding dynamically feasible time-scaled trajectories for
uniform time scalings where the time variable t is replaced by ct for c > 0 [41].

The original papers of Bobrow et al. and Shin and McKay were followed by
a number of papers refining the methods by addressing singularities, algorithm

9.7. Notes and References 309

e�ciency, and even the presence of constraints and obstacles [99, 126, 117,
118, 119, 120, 121]. Other research has focused on numerical methods such as
dynamic programming or nonlinear optimization to minimize cost functions such
as actuator energy. One early example of work in this area is by Vukobratović
and Kirćanski [138].

310 Trajectory Generation

x

y

(0,0)

(2,1)

(4,0)

(2,-1)

Figure 9.14: An elliptical path.

9.8 Exercises

1. Consider an elliptical path in the (x, y) plane. The path starts at (0, 0)
and proceeds clockwise to (2, 1), (4, 0), (2,�1), and back to (0, 0) (Figure 9.14).
Write the path as a function of s 2 [0, 1].

2. A cylindrical path in X = (x, y, z) is given by x = cos 2⇡s, y = sin 2⇡s,
z = 2s, s 2 [0, 1], and its time scaling is s(t) = 1

4

t+ 1

8

t2, t 2 [0, 2]. Write Ẋ and

Ẍ.

3. Consider a path from X(0) = X
start

2 SE(3) to X(1) = X
end

2 SE(3)
consisting of motion along a constant screw axis. The path is time scaled by
some s(t). Write the twist V and acceleration V̇ at any point on the path given
ṡ and s̈.

4. Consider a straight-line path ✓(s) = ✓
start

+ s(✓
end

� ✓
start

), s 2 [0, 1] from
✓
start

= (0, 0) to ✓
end

= (⇡,⇡/3). The feasible joint velocities are |✓̇
1

|, |✓̇
2

|
2 rad/s and the feasible joint accelerations are |✓̈

1

|, |✓̈
2

| 0.5 rad/s2. Find the
fastest motion time T using a cubic time scaling that satisfies the joint velocity
and acceleration limits.

5. Find the fifth-order polynomial time scaling that satisfies s(T) = 1 and
s(0) = ṡ(0) = s̈(0) = ṡ(T) = s̈(T) = 0.

6. As a function of the total time of motion T , find the times at which the accel-
eration s̈ of the fifth-order polynomial point-to-point time scaling is maximum
and minimum.

7. If you want to use a polynomial time scaling for point-to-point motion
with zero initial and final velocity, acceleration, and jerk, what would be the

9.8. Exercises 311

minimum order of the polynomial?

8. Prove that the trapezoidal time scaling, using the maximum allowable ac-
celeration a and velocity v, minimizes the time of motion T .

9. Plot by hand the acceleration profile s̈(t) for a trapezoidal time scaling.

10. If v and a are specified for a trapezoidal time scaling, prove that v2/a 1
is a necessary condition for the robot to reach the maximum velocity v during
the path.

11. If v and T are specified for a trapezoidal time scaling, prove that vT > 1
is a necessary condition for the motion to be able to complete in time T . Prove
that vT 2 is a necessary condition for a three-stage trapezoidal motion.

12. If a and T are specified for a trapezoidal time scaling, prove that aT 2 � 4
is a necessary condition to ensure that the motion completes in time.

13. Consider the case where the maximum velocity v is never reached in a
trapezoidal time scaling. The motion becomes a bang-bang motion: constant
acceleration a for time T/2 followed by constant deceleration �a for time T/2.
Write the position s(t), velocity ṡ(t), and acceleration s̈(t) for both phases,
analogous to Equations (9.16)-(9.24).

14. Plot by hand the acceleration profile s̈(t) for an S-curve time scaling.

15. A seven-stage S-curve is fully specified by the time t
J

(duration of constant
positive or negative jerk), the time t

a

(duration of constant positive or negative
acceleration), the time t

v

(duration of constant velocity), the total time T , the
jerk J , the acceleration a, and the velocity v. Of these seven quantities, how
many can be specified independently? You may assume that any inequality
constraints needed for a seven-stage profile are satisfied.

16. A nominal S-curve has seven stages, but it can have fewer if certain inequal-
ity constraints are not satisfied. Indicate which cases are possible with fewer
than seven stages. By hand, approximately draw the ṡ(t) velocity profiles for
these cases.

17. If the S-curve achieves all seven stages and uses jerk J , acceleration a, and
velocity v, what is the constant velocity coasting time t

v

in terms of v, a, J ,
and the total motion time T?

18. Write your own via-point cubic polynomial interpolation trajectory gener-

312 Trajectory Generation

s

s.

0
0 1

A

B C a b c

Figure 9.15: A, B, and C are candidate integral curves, originating from the
dots indicated, while a, b, and c are candidate motion cones at ṡ = 0. Two of
the integral curves and two of the motion cones are incorrect.

ator program for a 2-DOF robot. A new position and velocity specification is
required for each joint at 1000 Hz. The user specifies a sequence of via point
positions, velocities, and times, and the program generates an array consisting
of the joint angles and velocities at every 1 ms from time t = 0 to time t = T ,
the total duration of the movement. For a test case with at least three via
points (start and end at rest, and at least one more via), plot (a) the path in
the joint angle space (similar to Figure 9.7) and (b) the position and velocity of
each joint as a function of time (similar to Figure 9.8).

19. Via points with specified positions, velocities, and accelerations can be
interpolated using fifth-order polynomials of time. For a fifth-order polynomial
segment between via points j and j+1, of duration�T

j

, with �
j

, �
j+1

, �̇
j

, �̇
j+1

,
�̈
j

, and �̈
j+1

specified, solve for the coe�cients of the fifth-order polynomial
(similar to Equations (9.26)–(9.29)). A symbolic math solver will simplify the
problem.

20. By hand or by computer, plot a trapezoidal motion profile in the (s, ṡ)
plane.

21. Figure 9.15 shows three candidate motion curves in the (s, ṡ) plane (A, B,
and C) and three candidate motion cones at ṡ = 0 (a, b, and c). Two of the
three curves and two of the three motion cones cannot be correct for any robot
dynamics. Indicate which are incorrect and explain your reasoning. Explain
why the others are possibilities.

22. Under the assumptions of Section 9.4.3, explain why the time-scaling al-
gorithm of Section 9.4.2 is correct. In particular, (a) explain why in the binary
search of Step 4, the curve integrated forward from (s

lim

, ṡ
test

) must either hit

9.8. Exercises 313

(or run tangent to) the velocity limit curve or hit the ṡ = 0 axis (and does not
hit the curve F , for example); (b) explain why the final time scaling can only
touch the velocity limit curve tangentially; and (c) explain why the acceleration
switches from minimum to maximum at points where the time scaling touches
the velocity limit curve.

23. Explain how the time-scaling algorithm should be modified, if at all, to
handle the case where the initial and final velocity, at s = 0 and s = 1, are
nonzero.

24. Explain how the time-scaling algorithm should be modified if the robot’s
actuators are too weak to hold it statically at some configurations of the path
(static posture maintenance assumption is violated), but the assumptions on
inadmissible states and zero-inertia points are satisfied. Valid time scalings
may no longer exist. Under what condition(s) should the algorithm terminate
and indicate that no valid time scaling exists? (Under the assumptions of Sec-
tion 9.4.3, the original algorithm always finds a solution, and therefore does not
check for failure cases.) What do the motion cones look like at states (s, ṡ = 0)
where the robot cannot hold itself statically?

25. Create a computer program that plots the motion cones in the (s, ṡ) plane
for a 2R robot in a horizontal plane. The path is a straight line in joint space
from (✓

1

, ✓
2

) = (0, 0) to (⇡/2,⇡/2). First derive the dynamics of the arm, then
rewrite the dynamics in terms of s, ṡ, s̈ instead of ✓, ✓̇, ✓̈. The actuators can
provide torques in the range �⌧

i,limit

� b✓̇
i

 ⌧
i

 ⌧
i,limit

� b✓̇
i

, where b > 0
indicates the velocity dependence of the torque. The cones should be drawn at
a grid of points in (s, ṡ). To keep the figure manageable, normalize each cone
ray to the same length.

314 Trajectory Generation

Chapter 10

Motion Planning

Motion planning is the problem of finding a robot motion from a start state to
a goal state while avoiding obstacles in the environment and satisfying other
constraints, such as joint limits or torque limits. Motion planning is one of the
most active subfields of robotics, and it is the subject of entire books. The
purpose of this chapter is to provide a practical overview of a few common
techniques, using robot arms and mobile robots as the primary example systems
(Figure 10.1).

The chapter begins with a brief overview of motion planning, followed by
foundational material including configuration space obstacles, and concludes
with summaries of several di↵erent planning methods.

10.1 Overview of Motion Planning

A key concept in motion planning is configuration space, or C-space for short.
Every point in the C-space C corresponds to a unique configuration q of the
robot, and every configuration of the robot can be represented as a point in

Figure 10.1: (Left) A robot arm executing an obstacle-avoiding motion plan.
The motion plan was generated using MoveIt! [132] and visualized using rviz in
ROS (the Robot Operating System). (Right) A car-like mobile robot parallel
parking.

315

316 Motion Planning

C-space. For example, the configuration of a robot arm with n joints can be
represented as a list of n joint positions, q = (✓

1

, . . . , ✓
n

). The free C-space C
free

consists of the configurations where the robot does not penetrate any obstacle
nor violate a joint limit.

In this chapter, unless otherwise stated, we assume that q is an n-vector and
that C ⇢ Rn. With some generalization, however, the concepts of this chapter
apply to non-Euclidean C-spaces like C = SE(3) (n = 6).

The control inputs available to drive the robot are written as an m-vector
u 2 U ⇢ Rm, where m = n for a typical robot arm. If the robot has second-
order dynamics, like a robot arm, and the control inputs are forces (equivalently,
accelerations), the state of the robot is its configuration and velocity, x = (q, v) 2
X . For q 2 Rn, typically we write v = q̇. If we can treat the control inputs as
velocities, the state x is simply the configuration q. The notation q(x) indicates
the configuration q corresponding to the state x, and X

free

= {x | q(x) 2 C
free

}.
The equations of motion of the robot are written

ẋ = f(x, u), (10.1)

or, in integral form,

x(T) = x(0) +

Z
T

0

f(x(t), u(t))dt. (10.2)

10.1.1 Types of Motion Planning Problems

Given the definitions above, a fairly broad specification of the motion planning
problem is the following:

Given an initial state x(0) = x
start

and a desired final state x
goal

, find a
time T and a set of controls u : [0, T]! U such that the motion (10.2) satisfies
x(T) = x

goal

and q(x(t)) 2 C
free

for all t 2 [0, T].

It is assumed that a feedback controller (Chapter 11) is available to ensure
that the planned motion x(t), t 2 [0, T], is followed closely. It is also assumed
that an accurate geometric model of the robot and environment is available to
evaluate C

free

during motion planning.
There are many variations of the basic problem; some are discussed below.

Path planning vs. motion planning. The path planning problem is a sub-
problem of the general motion planning problem. Path planning is the
purely geometric problem of finding a collision-free path q(s), s 2 [0, 1],
from a start configuration q(0) = q

start

to a goal configuration q(1) = q
goal

,
without concern for dynamics, the duration of motion, or constraints on
the motion or control inputs. It is assumed that the path returned by the
path planner can be time scaled to create a feasible trajectory (Chapter 9).
This problem is sometimes called the piano mover’s problem, emphasizing
the focus on the geometry of cluttered spaces.

10.1. Overview of Motion Planning 317

Control inputs: m = n vs. m < n. If there are fewer control inputs m than
degrees of freedom n, the robot is incapable of following many paths, even
if they are collision-free. For example, a car has n = 3 (position and
orientation of the chassis in the plane) but m = 2 (forward/backward
motion and steering)—it cannot slide directly sideways into a parking
space.

Online vs. o✏ine. A motion planning problem requiring an immediate result,
perhaps because obstacles appear, disappear, or move unpredictably, calls
for a fast, online planner. If the environment is static, a slower o✏ine
planner may su�ce.

Optimal vs. satisficing. In addition to reaching the goal state, we might want
the motion plan to minimize (or approximately minimize) a cost J , e.g.,

J =

Z
T

0

L(x(t), u(t))dt.

For example, minimizing with L = 1 yields a time-optimal motion while
minimizing with L = uT (r)u(r) yields a “minimum-e↵ort” motion.

Exact vs. approximate. We may be satisfied with a final state x(T) that is
su�ciently close to x

goal

, e.g., kx(T)� x
goal

k < ✏.

With or without obstacles. The motion planning problem can be challeng-
ing even in the absence of obstacles, particularly if m < n or optimality is
desired.

10.1.2 Properties of Motion Planners

Planners must conform to the properties of the motion planning problem as
outlined above. In addition, planners can be distinguished by the following
properties:

Multiple-query vs. single-query planning. If the environment is unchang-
ing and the robot will be asked to solve a number of motion planning
problems in the environment, it may be worth spending the time to build
a data structure that accurately represents C

free

. This data structure can
then be searched to e�ciently solve multiple planning queries. Single-
query planners solve each new problem from scratch.

“Anytime” planning. An anytime planner is one that continues to look for
better solutions after a first solution is found. The planner can be stopped
at any time, for example when a specified time limit has passed, and the
best solution is returned.

Completeness. A motion planner is said to be complete if it is guaranteed to
find a solution in finite time if one exists, and to report failure if there is
no feasible motion plan. A weaker notion is resolution completeness.

318 Motion Planning

A planner is resolution complete if it is guaranteed to find a solution if
one exists at the resolution of a discretized representation of the problem,
such as the resolution of a grid representation of C

free

. Finally, a planner
is probabilistically complete if the probability of finding a solution, if
one exists, tends to 1 as planning time goes to infinity.

Computational complexity. The computational complexity of a planner refers
to characterizations of the amount of time the planner takes to run or the
amount of memory it requires. These are measured in terms of the de-
scription of the planning problem, such as the dimension of the C-space
or the number of vertices in the representation of the robot and obsta-
cles. For example, the time for a planner to run may be exponential in
n, the dimension of the C-space. The computational complexity may be
expressed in terms of the average case or the worst case. Some planning
algorithms lend themselves easily to computational complexity analysis,
while others do not.

10.1.3 Motion Planning Methods

There is no single planner applicable to all motion planning problems. Below
is a broad overview of some of the many motion planners available. Details are
left to the sections indicated.

Complete methods (Section 10.3). These methods focus on exact repre-
sentations of the geometry or topology of C

free

, ensuring completeness.
For all but simple or low-degree-of-freedom problems, these representa-
tions are mathematically or computationally prohibitive to derive.

Grid methods (Section 10.4). These methods discretize C
free

into a grid and
search the grid for a motion from q

start

to a grid point in the goal region.
Modifications of the approach may discretize the state space or control
space, or use multi-scale grids to refine the representation of C

free

near
obstacles. These methods are relatively easy to implement and can return
optimal solutions, but for a fixed resolution, the memory required to store
the grid, and the time to search it, grows exponentially with the number
of dimensions of the space. This limits the approach to low-dimensional
problems.

Sampling methods (Section 10.5). A generic sampling method relies on a
random or deterministic function to choose a sample from the C-space
or state space; a function to evaluate whether the sample is in X

free

; a
function to determine the “closest” previous free-space sample; and a lo-
cal planner to try to connect to, or move toward, the new sample from
the previous sample. This process builds up a graph or tree representing
feasible motions of the robot. Sampling methods are easy to implement,
tend to be probabilistically complete, and can even solve high-degree-of-
freedom motion planning problems. The solutions tend to be satisficing,

10.2. Foundations 319

not optimal, and it can be di�cult to characterize the computational com-
plexity.

Virtual potential fields (Section 10.6). Virtual potential fields create forces
on the robot that pull it toward the goal and push it away from obstacles.
The approach is relatively easy to implement, even for high-degree-of-
freedom systems, and fast to evaluate, often allowing online implementa-
tion. The drawback is local minima in the potential function: the robot
may get stuck in configurations where the attractive and repulsive forces
cancel, but the robot is not at the goal state.

Nonlinear optimization (Section 10.7). The motion planning problem can
be converted to a nonlinear optimization problem by representing the path
or controls by a finite number of design parameters, such as the coe�cients
of a polynomial or a Fourier series. The problem is to solve for the design
parameters that minimize a cost function while satisfying constraints on
the controls, obstacles, and goal. While these methods can produce near-
optimal solutions, they require an initial guess at the solution. Because
the objective function and feasible solution space are generally not convex,
the optimization process can get stuck far away from a solution, let alone
an optimal solution.

Smoothing (Section 10.8). Often the motions found by a planner are jerky.
A smoothing algorithm can be run on the result of the motion planner to
improve the smoothness.

The major trend in recent years has been toward sampling methods, which
are easy to implement and can handle high-dimensional problems.

10.2 Foundations

Before discussing motion planning algorithms, we establish concepts used in
many of them: configuration space obstacles, collision detection, graphs, and
graph search.

10.2.1 Configuration Space Obstacles

Determining whether a robot at a configuration q is in collision with a known
environment generally requires a complex operation involving a CAD model of
the environment and robot. There are a number of free and commercial software
packages that can perform this operation, and we will not delve into them here.
For our purposes, it is enough to know that the workspace obstacles partition
the configuration space C into two sets, the free space C

free

and the obstacle
space C

obs

, where C = C
free

S
C
obs

. Joint limits are treated as obstacles in the
configuration space.

With the concepts of C
free

and C
obs

, the path planning problem becomes the
problem of finding a path for a point robot among the obstacles C

obs

. If the

320 Motion Planning

A

B

C

A

A

A

B C

0 2π

2π

0

θ 1

θ 2

2θ

1θ

start

end

start

end

Figure 10.2: (Left) The joint angles of a 2R robot arm. (Middle) The arm
navigating among obstacles. (Right) The same motion in C-space.

obstacles break C
free

into disconnected connected components, and q
start

and
q
goal

do not lie in the same connected component, then there is no collision-free
path.

The explicit mathematical representation of a C-obstacle can be exceedingly
complex, and for that reason C-obstacles are rarely represented exactly. Despite
this, the concept of C-obstacles is very important for understanding motion
planning algorithms. The ideas are best illustrated by examples.

10.2.1.1 A 2R Planar Arm

Figure 10.2 shows a 2R planar robot arm, with configuration q = (✓
1

, ✓
2

), among
obstacles A, B, and C in the workspace. The C-space of the robot is represented
by a portion of the plane with 0 ✓

1

< 2⇡, 0 ✓
2

< 2⇡. In fact, however, the
topology of the C-space is a torus (or doughnut), since the edge of the square
at ✓

1

= 2⇡ is connected to the edge ✓
1

= 0; similarly, ✓
2

= 2⇡ is connected
to ✓

2

= 0. The square region of R2 is obtained by slicing the surface of the
doughnut twice, at ✓

1

= 0 and ✓
2

= 0, and laying it flat on the plane.
The C-space in Figure 10.2 shows the workspace obstacles A, B, and C

represented as C-obstacles. Any configuration inside a C-obstacle corresponds
to penetration of the obstacle by the robot arm in the workspace. A free path for
the robot arm from one configuration to another is shown in both the workspace
and C-space. The path and obstacles illustrate the topology of the C-space.
Note that the obstacles break C

free

into three connected components.

10.2.1.2 A Circular Planar Mobile Robot

Figure 10.3 shows a top view of a circular mobile robot whose configuration is
given by the location of its center, (x, y) 2 R2. The robot translates in a plane
with a single obstacle. The corresponding C-obstacle is obtained by “growing”
the workspace obstacle by the radius of the mobile robot. Any point outside

10.2. Foundations 321

(x,y) (x,y)

(a) (b)

y^

x^

y^

x^

Figure 10.3: (a) A circular mobile robot (white) and a workspace obstacle (gray).
The configuration of the robot is represented by (x, y), the center of the robot.
(b) In the C-space, the obstacle is “grown” by the radius of the robot and the
robot is treated as a point. Any (x, y) configuration outside the dark boundary
is collision-free.

Figure 10.4: The grown C-space obstacles corresponding to two workspace ob-
stacles and a circular mobile robot. The overlapping boundaries mean that the
robot cannot move between the two obstacles.

this C-obstacle represents a free configuration of the robot. Figure 10.4 shows
the workspace and C-space for two obstacles, indicating that the mobile robot
cannot pass between the two obstacles.

10.2.1.3 A Polygonal Planar Mobile Robot That Translates

Figure 10.5 shows the C-obstacle for a polygonal mobile robot translating in
the presence of a polygonal obstacle. The C-obstacle is obtained by sliding the
robot along the boundary of the of the obstacle and tracing the position of the
robot’s reference point.

322 Motion Planning

(x,y)

(a) (b)

(x,y)

y^

x^

y^

x^

Figure 10.5: (a) The configuration of a triangular mobile robot, which can
translate but not rotate, is represented by the (x, y) location of a reference
point. Also shown is a workspace obstacle in gray. (b) The corresponding
C-space obstacle is obtained by sliding the robot around the boundary of the
obstacle and tracing the position of the reference point.

10.2.1.4 A Polygonal Planar Mobile Robot That Translates and Rotates

Figure 10.6 illustrates the C-obstacle for the workspace obstacle and triangular
mobile robot of Figure 10.5 if the robot is now allowed to rotate. The C-space
is now three-dimensional, given by (x, y, ✓) 2 R2 ⇥ S1. The three-dimensional
C-obstacle is the union of two-dimensional C-obstacle slices at angles ✓ 2 [0, 2⇡).
Even for this relatively low-dimensional C-space, an exact representation of the
C-obstacle is quite complex. For this reason, C-obstacles are rarely described
exactly.

10.2. Foundations 323

θ
^

θ
^ (x,y)

θ

y^x^ y^x^

Figure 10.6: (Top) A triangular mobile robot that can rotate and translate,
represented by the configuration (x, y, ✓). (Left) The C-space obstacle from
Figure 10.5(b) when the robot is restricted to ✓ = 0. (Right) The full 3-D
C-space obstacle shown in slices at 10� increments.

10.2.2 Distance to Obstacles and Collision Detection

Given a C-obstacle B and a configuration q, let d(q,B) be the distance between
the robot and the obstacle, where

d(q,B) > 0 no contact with the obstacle

d(q,B) = 0 contact

d(q,B) < 0 penetration.

The distance could be defined as the Euclidean distance between the two closest
points of the robot and the obstacle.

A distance-measurement algorithm is one that determines d(q,B). A
collision-detection routine determines whether d(q,B

i

) 0 for any C-obstacle
B
i

. A collision-detection routine returns a binary result, and may or may not
utilize a distance-measurement algorithm at its core.

One popular distance-measurement algorithm is called the GJK (Gilbert-
Johnson-Keerthi) algorithm, which e�ciently computes the distance between
two convex bodies, possibly represented by triangular meshes. Any robot or
obstacle can be treated as the union of multiple convex bodies. Extensions of
this algorithm are used in many distance-measurement algorithms and collision-
detection routines for robotics, graphics, and game physics engines.

A simpler approach is to approximate the robot and obstacles as unions
of overlapping spheres. Approximations must always be conservative—the ap-
proximation must cover all points of the object—so that if a collision-detection

324 Motion Planning

Figure 10.7: A lamp represented by spheres. The approximation improves as
the number of spheres used to represent the lamp increases. Figure from [43]
used with permission.

routine indicates a free configuration q, we are guaranteed that the actual ge-
ometry is collision-free. As the number of spheres in the representation of the
robot and obstacles increases, the closer the approximations come to the actual
geometry. An example is shown in Figure 10.7.

Given a robot at q represented by k spheres of radius R
i

centered at r
i

(q),
i = 1 . . . k, and an obstacle B represented by ` spheres of radius B

j

centered at
b
j

, j = 1 . . . `, the distance between the robot and the obstacle can be calculated
as

d(q,B) = min
i,j

kr
i

(q)� b
j

k �R
i

�B
j

.

Apart from determining whether a particular configuration of the robot is
in collision, another useful operation is determining whether the robot collides
during a particular motion segment. While exact solutions have been developed
for particular object geometries and motion types, the general approach is to
sample the path at finely spaced points and to “grow” the robot to ensure that
if two consecutive configurations are collision-free for the grown robot, then
the swept volume of the actual robot between the two configurations is also
collision-free.

10.2.3 Graphs and Trees

Many motion planners explicitly or implicitly represent the C-space or state
space as a graph. A graph consists of a collection of nodes N and a collection
of edges E , where each edge e connects two nodes. In motion planning, a node
typically represents a configuration or state, while an edge between nodes n

1

and
n
2

indicates the ability to move from n
1

to n
2

without penetrating an obstacle
or violating other constraints.

10.2. Foundations 325

4

2.5 3
1

8

2

a

b c d

e

a

b c d

e

1.1 5

8
3

2

(a) (b) (c)

root

b c d

e f g

h

a

Figure 10.8: (a) A weighted digraph. (b) A weighted undirected graph. (c) A
tree. Leaves are shaded gray.

A graph can be either directed or undirected. In an undirected graph, each
edge is bidirectional: if the robot can travel from n

1

to n
2

, then it can also
travel from n

2

to n
1

. In a directed graph, or digraph for short, each edge allows
travel in only one direction. The same two nodes can have two edges between
them, in opposite directions.

Graphs can also be weighted or unweighted. In a weighted graph, each edge
has its own positive cost associated with traversing it. In an unweighted graph,
each edge has the same cost (e.g., 1). Thus the most general type of graph we
consider is a weighted digraph.

A tree is a digraph in which (1) there are no cycles and (2) each node has at
most one parent node (i.e., at most one edge leading to the node). A tree has
one root node with no parents and a number of leaf nodes with no children.

A digraph, undirected graph, and tree are illustrated in Figure 10.8.
Given N nodes, any graph can be represented by a matrix A 2 RN⇥N , where

element a
ij

of the matrix represents the cost of the edge from node i to node j
(a zero indicates no edge between the nodes). A tree can be represented more
compactly as a list of nodes, each with a link (and perhaps a cost) to at most
one parent and a list of links (and costs) to its children.

10.2.4 Graph Search

Once the free space is represented as a graph, a motion plan can be found by
searching the graph for a path from the start to the goal. One of the most
powerful and popular graph search algorithms is A⇤ (pronounced “A star”)
search.

10.2.4.1 A⇤ Search

A⇤ search e�ciently finds a minimum-cost path on a graph when the cost of the
path is simply the sum of the positive edge costs along the path.

Given a graph described by a set of nodes N = {1, . . . , N}, where node
1 is the start node, and a set of edges E , A⇤ makes use of the following data
structures:

326 Motion Planning

• a sorted list OPEN of the nodes to be explored from, and a list CLOSED of
nodes that have already been explored from;

• a matrix cost[node1,node2] encoding the set of edges, where the positive
value corresponds to the cost of moving from node1 to node2 (a negative
value indicates that no edge exists);

• an array past_cost[node] of the minimum cost found so far to reach
node node from the start node; and

• a search tree defined by an array parent[node], which contains a link for
each node to the node preceding it in the shortest path found so far from
the start node to node.

To initialize the search, the matrix cost is constructed to encode the edges,
the list OPEN is initialized to the start node 1, the cost to reach the start node
(past_cost[1]) is initialized as 0, and past_cost[node] for node 2 {2, . . . , N}
is initialized as infinity (or a large number), indicating that we currently have
no idea of the cost to reach those nodes.

At each step of the algorithm, the first node in OPEN is removed from OPEN
and called current. The node current is also added to CLOSED. The first node
in OPEN is one that minimizes the total estimated cost of the best path to the
goal that passes through that node, and it is calculated as

est_total_cost[node] = past_cost[node] +
heuristic_cost_to_go(node)

where heuristic_cost_to_go(node) � 0 is an optimistic (underestimating)
estimate of the actual cost-to-go to the goal from node. For the visibility graph
example, an appropriate choice for the heuristic is the straight-line distance to
the goal, ignoring any obstacles.

Because OPEN is a sorted list according to the estimated total cost, inserting
a new node at the correct location in OPEN entails a small computational price.

If the node current is in the goal set, then the search is finished, and the
path is reconstructed from the parent links. If not, for each neighbor nbr of
current in the graph, which is not also in CLOSED, the tentative_past_cost
for nbr is calculated as past cost[current] + cost[current,nbr]. If
tentative_past_cost < past_cost[nbr], then nbr can be reached less ex-
pensively than previously thought, so past_cost[nbr] is set to tentative_past_cost
and parent[nbr] is set to current. The node nbr is then added (or moved) in
OPEN according to its estimated total cost.

The algorithm proceeds by returning to pop o↵ of OPEN the node with the
lowest estimated total cost. If OPEN is empty, then there is no solution.

The A⇤ algorithm is guaranteed to return a minimum-cost path, as nodes
are only checked for inclusion in the goal set when they have the minimum
total estimated cost of all nodes. If the node current is in the goal set, then
heuristic_cost_to_go(current) is zero, and since all edge costs are positive,
we know that any path found in the future must have a cost greater than

10.2. Foundations 327

or equal to past_cost[current]. Therefore the path to current must be a
shortest path. (There may be other paths of the same cost.)

If the heuristic cost-to-go is calculated exactly, considering obstacles, then
A⇤ will expand the minimum number of nodes necessary to solve the problem.
Of course, calculating the cost-to-go exactly is equivalent to solving the path
planning problem, so this is impractical. Instead, the heuristic cost-to-go should
be calculated quickly and should be as close as possible to the actual cost-to-
go to ensure that the algorithm runs e�ciently. Using an optimistic cost-to-go
ensures an optimal solution.

A⇤ is an example of the general class of best-first searches, which always
explore from the node currently deemed “best” by some measure. Not all types
of best-first searches are guaranteed to return a minimum-cost path, however.

The A⇤ search algorithm is described in pseudocode in Algorithm 1.

Algorithm 1 A⇤ search.

1: OPEN {1}
2: past_cost[1] 0, past_cost[node] infinity for node 2 {2, . . . , N}
3: while OPEN is not empty do
4: current first node in OPEN, remove from OPEN
5: add current to CLOSED
6: if current is in the goal set then
7: return SUCCESS and the path to current
8: end if
9: for each nbr of current not in CLOSED do

10: tentative_past_cost past_cost[current] + cost[current,nbr]
11: if tentative past cost < past cost[nbr] then
12: past_cost[nbr] tentative_past_cost
13: parent[nbr] current
14: put (or move) nbr in sorted list OPEN according to

est_total_cost[nbr] past_cost[nbr] +
heuristic_cost_to_go(nbr)

15: end if
16: end for
17: end while
18: return FAILURE

10.2.4.2 Other Search Methods

• Dijkstra’s method. If the heuristic cost-to-go is always estimated as zero,
then A⇤ always explores from the OPEN node that has been reached with
minimum past cost. This variant is called Dijkstra’s algorithm, which
preceded A⇤ historically. Dijkstra’s algorithm is also guaranteed to find a
minimum-cost path, but on many problems it runs slower than A⇤ due to
the lack of a heuristic look-ahead function to help guide the search.

328 Motion Planning

• Breadth-first search. If each edge in E has the same cost, Dijkstra’s algo-
rithm reduces to breadth-first search. All nodes one edge away from the
start node are considered first, then all nodes two edges away, etc. The
first solution found is therefore a minimum-cost path.

• Suboptimal A⇤ search. If the heuristic cost-to-go is overestimated by mul-
tiplying the optimistic heuristic by a constant factor ⌘ > 1, A⇤ search
will be biased to explore from nodes closer to the goal rather than nodes
with a low past cost. This may cause a solution to be found more quickly,
but unlike the case of an optimistic cost-to-go heuristic, the solution will
not be guaranteed to be optimal. One possibility is to run A⇤ with an
inflated cost-to-go to find an initial solution, then re-run the search with
progressively smaller values of ⌘ until the time allotted for the search has
expired or a solution is found with ⌘ = 1.

10.3 Complete Path Planners

Complete path planners rely on an exact representation of C
free

. These tech-
niques tend to be mathematically and algorithmically sophisticated, and im-
practical for many real systems, so we do not delve into them in detail.

One approach to complete path planning, which we will see in modified form
in Section 10.5, is based on representing the complex, high-dimensional space
C
free

by a one-dimensional roadmap R with the following properties:

(i) Reachability. From every point q 2 C
free

, a free path to a point q0 2 R can
be found trivially (e.g., a straight-line path).

(ii) Connectivity. For each connected component of C
free

, there is one con-
nected component of R.

With such a roadmap, the planner can find a path between any two points in
the same connected component of C

free

by simply finding paths from q
start

to
a point q0

start

2 R, from a point q0
goal

2 R to q
goal

, and from q0
start

to q0
goal

on
the roadmap R. If a path can be found trivially between q

start

and q
goal

, the
roadmap may not even be used.

While constructing a roadmap of C
free

is complex in general, some problems
admit simple roadmaps. For example, consider a polygon translating among
polygonal obstacles in the plane. As we have seen in Figure 10.5, the C-obstacles
in this case are also polygons. A suitable roadmap is the weighted undirected
visibility graph, with nodes at the vertices of the C-obstacles and edges between
nodes that can “see” each other (i.e., the line segment between the vertices
does not intersect an obstacle). The weight associated with each edge is the
Euclidean distance between the nodes.

Not only is this a suitable roadmap R, but it allows us to use A⇤ search
to find a shortest path between any two configurations in the same connected
component of C

free

, as the shortest path is guaranteed to either be a straight line
from q

start

to q
goal

, or consist of a straight line from q
start

to a node q0
start

2 R, a

10.4. Grid Methods 329

(a) (b) (c)

(d) (e) (f)

start goal

Figure 10.9: (a) The start and goal configurations for a square mobile robot
(reference point shown) in an environment with a triangular and a rectangular
obstacle. (b) The grown C-obstacles. (c) The visibility graph roadmap R of
C
free

. (d) The full graph consists of R plus nodes at q
start

and q
goal

, along with
the links connecting these nodes to visible nodes of R. (e) Searching the graph
results in the shortest path in bold. (f) The robot traversing the path.

straight line from a node q0
goal

2 R to q
goal

, and a path along the straight edges
of R from q0

start

to q0
goal

(Figure 10.9). Note that the shortest path requires
the robot to graze the obstacles, so we implicitly treat C

free

as including its
boundary.

10.4 Grid Methods

A search like A⇤ requires a discretization of the search space. The simplest
discretization of C-space is a grid. For example, if the configuration space is
n-dimensional and we desire k grid points along each dimension, the C-space is
represented by kn grid points.

The A⇤ algorithm can be used as a path planner for a C-space grid, with
the following minor modifications:

• The definition of a “neighbor” of a grid point must be chosen: is the robot
constrained to move in axis-aligned directions in configuration space, or
can it move in multiple dimensions simultaneously? For example, for a
two-dimensional C-space, neighbors could be 4-connected (on the cardi-
nal points of a compass: north, south, east, and west) or 8-connected
(diagonals allowed), as shown in Figure 10.10(a). If diagonal motions are
allowed, the cost to diagonal neighbors should be penalized appropriately.

330 Motion Planning

0 2π

2π

0

2θ

1θ

goal

start

4-connected

8-connected

Euclidean

Manhattan

(a) (b) (c)

Figure 10.10: (a) A 4-connected grid point and an 8-connected grid point for a
space n = 2. (b) Grid points spaced at unit intervals. The Euclidean distance
between the two points indicated is

p
5 while the Manhattan distance is 3. (c) A

grid representation of the C-space and a minimum-length Manhattan-distance
path for the problem of Figure 10.2.

For example, the cost to a N/S/E/W neighbor could be 1, while the cost
to a diagonal neighbor could be

p
2. If integers are desired, for e�ciency

of the implementation, the approximate costs 5 and 7 could be used.

• If only axis-aligned motions are used, the heuristic cost-to-go should be
based on the Manhattan distance, not the Euclidean distance. The Man-
hattan distance counts the number of “city blocks” that must be trav-
eled, considering that diagonals through a block are not possible (Fig-
ure 10.10(b)).

• A node nbr is only added to OPEN if the step from current to nbr is
collision-free. (The step may be considered collision-free if a grown version
of the robot at nbr does not intersect any obstacles.)

• Other optimizations are possible due to the known regular structure of
the grid.

An A⇤ grid-based path planner is resolution-complete: it will find a solution
if one exists at the level of discretization of the C-space. The path will be a
shortest path subject to the allowed motions.

Figure 10.10(c) illustrates grid-based path planning for the 2R robot example
of Figure 10.2. The C-space is represented as a grid with k = 32, i.e., a resolution
of 360�/32 = 11.25� for each joint. This yields a total of 322 = 1024 grid points.

The grid-based planner, as described, is a single-query planner: it solves
each path planning query from scratch. On the other hand, if the same q

goal

10.4. Grid Methods 331

01 1

1

1

2

2

22

2

2 2

2

3

3

3

33

3

3

3

34

9

4

4

44

4

4

5

5

5

5

6

6

6

66

7

7

7

7

7

7

8

8

8

8

8

8

14

9

9

9

9

10

10

10

10

10

11

11

11

12

1212

12

13

13

13

Figure 10.11: A wavefront planner on a 2D grid. The goal configuration is
given a score of 0. Then all collision-free 4-neighbors are given a score of 1. The
process continues, breadth-first, with each free neighbor (that does not have a
score already) assigned the score of its parent plus 1. Once every grid cell in
the connected component of the goal configuration is assigned a score, planning
from any location in the connected component is trivial: at every step, the
robot simply moves “downhill” to a neighbor with a lower score. Grid points in
collision receive a high score.

will be used in the same environment for multiple path planning queries, it may
be worth preprocessing the entire grid to enable fast path planning. This is the
wavefront planner, illustrated in Figure 10.11.

Although grid-based path planning is easy to implement, it is only appro-
priate for low-dimensional C-spaces. This is because the number of grid points,
and hence the computational complexity of the path planner, increases expo-
nentially with the number of dimensions n. For instance, a resolution k = 100 in
a C-space with n = 3 dimensions leads to 1 million grid nodes, while n = 5 leads
to 10 billion grid nodes and n = 7 leads to 100 trillion nodes. An alternative
is to reduce the resolution k along each dimension, but this leads to a coarse
representation of C-space that may miss free paths.

10.4.1 Multi-Resolution Grid Representation

One way to reduce the computational complexity of a grid-based planner is to
use a multi-resolution grid representation of C

free

. Conceptually, a grid point is
considered an obstacle if any part of the rectilinear cell centered on the grid point
touches a C-obstacle. To refine the representation of the obstacle, an obstacle
cell can be subdivided into smaller cells. Each dimension of the original cell is
split in half, resulting in 2n sub-cells for an n-dimensional space. Any of the
cells that are still in contact with a C-obstacle are then subdivided further, up
to a specified maximum resolution.

The advantage of this representation is that only portions of C-space near
obstacles are refined to high resolution, while portions away from obstacles
are represented by a coarse resolution. This allows the planner to find paths
using short steps through cluttered spaces while taking large steps through wide
open space. The idea is illustrated in Figure 10.12, which uses only 10 cells to
represent an obstacle at the same resolution as a fixed grid that uses 64 cells.

332 Motion Planning

original cell

subdivision 1

subdivision 2

subdivision 3

original cell subdivision 1 subdivision 2 subdivision 3

Figure 10.12: At the original C-space cell resolution, a small obstacle (indicated
by a dark square) causes the whole cell to be labeled an obstacle. Subdividing
the cell once shows that at least 3/4 of the cell is actually free. Three levels of
subdivision results in a representation using ten total cells: four at subdivision
level 3, three at subdivision level 2, and three at subdivision level 1. The cells
shaded gray are the obstacle cells in the final representation. The subdivision of
the original cell is also shown as a tree, specifically a quadtree, where the leaves
of the tree are the final cells in the representation.

For n = 2, this multiresolution representation is called a quadtree, as each
obstacle cell subdivides into 2n = 4 cells. For n = 3, each obstacle cell subdivides
into 2n = 8 cells, and the representation is called an octree.

The multi-resolution representation of C
free

can be built in advance of the
search or incrementally as the search is being performed. In the latter case, if
the step from current to nbr is found to be in collision, the step size can be
halved until the step is free or the minimum step size is reached.

10.4.2 Grid Methods with Motion Constraints

The previous grid-based planners operate under the assumption that the robot
can go from a cell to any neighbor cell in a regular C-space grid. This may
not be possible for some robots. For example, a car cannot reach, in one step,
a “neighbor” cell that is to the side of it. Also, motions for a fast-moving
robot arm should be planned in the state space, not just C-space, to take the
arm dynamics into account. In the state space, the robot arm cannot move in
certain directions (Figure 10.13).

Grid-based planners must be adapted to account for the motion constraints
of the particular robot. In particular, the constraints may result in a directed
grid graph. One approach is to discretize the robot controls while still making

10.4. Grid Methods 333

q

.q

Figure 10.13: Sample trajectories emanating from three initial states in the
phase space of a dynamic system with q 2 R. If the initial state has q̇ > 0,
the trajectory cannot move to the left (negative motion in q) instantaneously.
Similarly, if the initial state has q̇ < 0, the trajectory cannot move to the right
instantaneously.

v v

unicycle diff-drive robot car Reeds-Shepp car Dubins car

v

Figure 10.14: Discretizations of the control sets for unicycle, di↵-drive, and
car-like robots.

use of a grid on the C-space or state space, as appropriate. Details for a wheeled
mobile robot and a dynamic robot arm are described next.

10.4.2.1 Grid-Based Path Planning for a Wheeled Mobile Robot

As described in Chapter 13.3, the controls for simplified models of unicycle,
di↵-drive, and car-like robots are (v,!), the forward-backward linear velocity
and the angular velocity. The control sets for these mobile robots are shown in
Figure 10.14. Also shown are proposed discretizations of the controls, as dots.
Other discretizations could be chosen.

Using the control discretization, we can use a variant of Dijkstra’s algorithm
to find approximately shortest paths (Algorithm 2).

The search expands from q
start

by integrating forward each of the controls
for a time �t, creating new nodes for the paths that are collision-free. Each
node keeps track of the control used to reach the node as well as the cost of the
path to the node. The cost of the path to a new node is the sum of the cost of
the previous node current plus the cost of the action.

334 Motion Planning

Algorithm 2 Grid-based Dijkstra planner for a wheeled mobile robot.

1: OPEN {q
start

}
2: past_cost[q

start

] 0
3: counter 1
4: while OPEN is not empty and counter < MAXCOUNT do
5: current first node in OPEN, remove from OPEN
6: if current is in the goal set then
7: return SUCCESS and the path to current
8: end if
9: if current is not in a previously occupied C-space grid cell then

10: mark grid cell occupied
11: counter counter + 1
12: for each control in the discrete control set do
13: integrate control forward a short time �t from current to q

new

14: if the path to q
new

is collision-free then
15: compute cost of the path to q

new

16: place q
new

in OPEN, sorted by cost
17: parent[q

new

] current
18: end if
19: end for
20: end if
21: end while
22: return FAILURE

Integration of the controls does not move the mobile robot to exact grid
points. Instead, the C-space grid comes into play in lines 9 and 10. When a
node is expanded, the grid cell it sits in is marked “occupied.” In future, any
node in this occupied cell will be pruned from the search. This prevents the
search from expanding nodes that are close by nodes reached with a lower cost.

No more than MAXCOUNT nodes, where MAXCOUNT is a value chosen by the
user, are considered during the search.

The time�t should be chosen small enough that each motion step is “small.”
The size of the grid cells should be chosen as large as possible while ensuring
that integration of any control for time �t will move the mobile robot outside
of its current grid cell.

The planner terminates when current lies inside the goal region, when there
are no more nodes left to expand (perhaps due to obstacles), or when MAXCOUNT
nodes have been considered. Any path found is optimal for the choice of cost
function and other parameters to the problem. The planner actually runs faster
in somewhat cluttered spaces, as the obstacles help guide the exploration.

Some examples of motion plans for a car are shown in Figure 10.15.

10.4. Grid Methods 335

start goal

start

goal

Figure 10.15: (Left) A minimum-cost path for a car-like robot where each ac-
tion has identical cost, favoring a short path. (Right) A minimum-cost path
where reversals are penalized. Penalizing reversals requires a modification to
Algorithm 2.

10.4.2.2 Grid-Based Motion Planning for a Robot Arm

One method for planning the motion for a robot arm is to decouple the problem
into a path planning problem followed by a time-scaling of the path:

(i) Apply a grid-based or other path planner to find an obstacle-free path in
C-space.

(ii) Time scale the path to find the fastest trajectory along the path that
respects the robot’s dynamics, as described in Chapter 9.4. Or use any
less aggressive time scaling.

Since the motion planning problem is broken into two steps (path planning plus
time scaling), the resultant motion will not be time-optimal in general.

Another approach is to plan directly in the state space. Given a state (q, q̇)
of the robot arm, let A(q, q̇) represent the set of feasible accelerations based on
the limited joint torques. To discretize the controls, the set A(q, q̇) is intersected
with a grid of points of the form

nX

i=1

c
i

a
i

ê
i

,

where c
i

is an integer, a
i

> 0 is the acceleration step size in the q̈
i

direction,
and ê

i

is a unit vector in the ith direction (Figure 10.16).
As the robot moves, the acceleration setA(q, q̇) changes, but the grid remains

fixed. Because of this, and assuming a fixed integration time �t at each “step”
in a motion plan, the reachable states of the robot (after any integral number of
steps) are confined to a grid in state space. To see this, consider a single joint
angle of the robot, q

1

, and assume for simplicity zero initial velocity q̇
1

(0) = 0.
The velocity at timestep k takes the form

q̇
1

(k) = q̇
1

(k � 1) + c
1

(k)a
1

�t,

336 Motion Planning

a1
a2

q2
..

q1
..

A(q,q)
.

Figure 10.16: The instantaneously available acceleration set A(q, q̇) for a two-
joint robot, intersected with a grid spaced at a

1

in q̈
1

and a
2

in q̈
2

, gives the
discretized control actions shown in bold.

where c
1

(k) is chosen from a finite set of integers. By induction, the velocity at
any timestep must be of the form a

1

k
v

�t, where k
v

is an integer. The position
at timestep k takes the form

q
1

(k) = q
1

(k � 1) + q̇
1

(k � 1)�t+
1

2
c
1

(k)a
1

(�t)2.

Plugging in the form of the velocity, we find that the position at any timestep
must be of the form a

1

k
p

(�t)2/2 + q
1

(0), where k
p

is an integer.
To find a trajectory from a start node to a goal set, a breadth-first search

can be employed to create a search tree on the state space nodes. When a node
(q, q̇) in the state space is explored from, the set A(q, q̇) is evaluated to find the
discrete set of control actions. New nodes are created by integrating the control
actions for time �t. A node is discarded if the path to it is in collision or if it
has been reached previously (i.e., by a trajectory taking the same or less time).

Because the joint angles and angular velocities are bounded, the state space
grid is finite, and therefore it can be searched in finite time. The planner
is resolution complete and returns a time-optimal trajectory, subject to the
resolution specified in the control grid and timestep �t.

The control grid step sizes a
i

must be chosen small enough that A(q, q̇), for
any feasible state (q, q̇), contains a representative set of points of the control
grid. Choosing a finer grid for the controls, or a smaller timestep �t, creates a
finer grid in the state space and a higher likelihood of finding a solution amidst
obstacles. It also allows choosing a smaller goal set while keeping points of the
state space grid inside the set.

Finer discretization comes at a computational cost, however. If the resolu-
tion of the control discretization is increased by a factor of r in each dimension
(i.e., each a

i

is reduced to a
i

/r), and the timestep size is divided by a factor of
⌧ , the computation time spent growing the search tree for a given robot motion

10.5. Sampling Methods 337

duration increases by a factor of rn⌧ , where n is the number of joints. For ex-
ample, increasing the control grid resolution by a factor of r = 2 and decreasing
the timestep by a factor of ⌧ = 4 for a three-joint robot results in a search that
is likely to take 23⇤4 = 4096 times longer to complete. The high computational
complexity of the planner makes it impractical beyond a few degrees of freedom.

The description above ignores one important issue: the feasible control set
A(q, q̇) changes during a timestep, so the control chosen at the beginning of
the timestep may no longer be feasible by the end of the timestep. For that
reason, a conservative approximation Ã(q, q̇) ⇢ A(q, q̇) should be used instead.
This set should remain feasible over the duration of a timestep regardless of
which control action is chosen. How to determine a conservative approximation
Ã(q, q̇) is beyond the scope of this chapter, but it has to do with bounds on how
rapidly the arm’s mass matrix M(q) changes with q and how fast the robot is
moving. At low speeds q̇ and short durations �t, the conservative set Ã(q, q̇) is
very close to A(q, q̇).

10.5 Sampling Methods

Each of the grid-based methods discussed above delivers optimal solutions sub-
ject to the chosen discretization. A drawback of the approaches is their high
computational complexity, making them unsuitable for systems of more than a
few degrees of freedom.

A di↵erent class of planners, known as sampling methods, relies on a random
or deterministic function to choose a sample from the C-space or state space;
a function to evaluate whether a sample or motion is in X

free

; a function to
determine nearby previous free-space samples; and a simple local planner to try
to connect to, or move toward, the new sample. These functions are used to
build up a graph or tree representing feasible motions of the robot.

Sampling methods generally give up on the resolution-optimal solutions of
a grid search in exchange for the ability to find satisficing solutions quickly in
high-dimensional state spaces. The samples are chosen to form a roadmap or
search tree that quickly approximates the free space X

free

using fewer samples
than would typically be required by a fixed high-resolution grid, where the
number of grid points increases exponentially with the dimension of the search
space. Most sampling methods are probabilistically complete: the probability of
finding a solution, when one exists, approaches 100% as the number of samples
goes to infinity.

Two major classes of sampling methods are rapidly-exploring random trees
(RRTs) and probabilistic roadmaps (PRMs). RRTs use a tree representation for
single-query planning in either C-space or state space, while PRMs are primarily
C-space planners that create a roadmap graph for multiple-query planning.

338 Motion Planning

10.5.1 The RRT

The RRT algorithm searches for a collision-free motion from an initial state
x
start

to a goal set X
goal

. It applies to kinematic problems, where the state
x is simply the configuration q, as well as dynamic problems, where the state
includes the velocity. The basic RRT grows a single tree from x

start

as outlined
in Algorithm 3.

Algorithm 3 RRT algorithm.

1: initialize search tree T with x
start

2: while T is less than the maximum tree size do
3: x

samp

 sample from X
4: x

nearest

 nearest node in T to x
samp

5: employ a local planner to find a motion from x
nearest

to x
new

in
the direction of x

samp

6: if the motion is collision-free then
7: add x

new

to T with an edge from x
nearest

to x
new

8: if x
new

is in X
goal

then
9: return SUCCESS and the motion to x

new

10: end if
11: end if
12: end while
13: return FAILURE

In a typical implementation for a kinematic problem (where x is simply q),
the sampler in line 3 chooses x

samp

randomly from an almost-uniform distribu-
tion over X , with a slight bias toward states in X

goal

. The closest node x
nearest

in
T (line 4) is the one minimizing the Euclidean distance to x

samp

. The state x
new

(line 5) is chosen as the state a small distance d from x
nearest

on the straight line
to x

samp

. Because d is small, a very simple local planner, e.g., one that returns
a straight line motion, will often find a motion connecting x

nearest

to x
new

. If
the motion is collision-free, the new state x

new

is added to T .
The net e↵ect is that the nearly uniformly distributed samples “pull” the

tree toward them, causing the tree to rapidly explore X
free

. An example of the
e↵ect of this pulling action on exploration is shown in Figure 10.17.

The basic algorithm leaves many choices: how to sample from X (line 3),
how to define the “nearest” node in T (line 4), and how to plan the motion
to make progress toward x

samp

(line 5). Even a small change to the sampling
method, for example, can yield a dramatic change in the running time of the
planner. A wide variety of planners have been proposed in the literature based
on these choices and other variations. Some of these variations are described
below.

10.5. Sampling Methods 339

Figure 10.17: (Left) A tree generated by applying a uniformly-distributed ran-
dom motion from a randomly chosen tree node results in a tree that does not
explore very far. (Right) A tree generated by the RRT algorithm using sam-
ples drawn randomly from a uniform distribution. Both trees have 2000 nodes.
Figure from [60] used with permission.

10.5.1.1 Line 3: The Sampler

The most obvious sampler is one that samples randomly from a uniform distri-
bution over X . This is straightforward for Euclidean C-spaces Rn; for n-joint
robot C-spaces Tn = S1 ⇥ ... ⇥ S1 (n times), where we can choose a uniform
distribution over each joint angle; and for the C-space R2 ⇥ S1 for a mobile
robot in the plane, where we can choose a uniform distribution over R2 and
S1 individually. The notion of a uniform distribution on some other curved
C-spaces, for example SO(3), is less straightforward.

For dynamic systems, a uniform distribution over the state space can be de-
fined as the cross-product of a uniform distribution over C-space and a uniform
distribution over a bounded velocity set.

Although the name “rapidly-exploring random trees” gets its name from
the idea of a random sampling strategy, the samples need not be generated
randomly. For example, a deterministic sampling scheme that generates a pro-
gressively finer (multi-resolution) grid on X could be employed instead. To
reflect this more general view, the approach has been called rapidly-exploring
dense trees (RDTs), emphasizing the key point that the samples should even-
tually become dense in the state space (i.e., as the number of samples goes to
infinity, the samples become arbitrarily close to every point in X).

10.5.1.2 Line 4: Defining the Nearest Node

Finding the “nearest” node depends on a definition of distance on X . For an
unconstrained kinematic robot on C = Rn, a natural choice for the distance
between two points is simply the Euclidean distance. For other spaces, the
choice is less obvious.

As an example, for a car-like robot with a C-space R2 ⇥ S1, which configu-
ration is closest to the configuration x

samp

: one that is rotated twenty degrees
relative to x

samp

, one that is 2 meters straight behind it, or one that is 1 meter

340 Motion Planning

Figure 10.18: Which of the three dashed configurations of the car is “closest”
to the configuration in gray?

straight to the side of it (Figure 10.18)? Since the motion constraints prevent
spinning in place or moving directly sideways, the configuration that is 2 meters
straight behind is best positioned to make progress toward x

samp

. Thus defining
a notion of distance requires

• combining components of di↵erent units (e.g., degrees, meters, degrees/second,
meters/second) into a single distance measure; and

• taking into account the motion constraints of the robot.

The closest node x
nearest

should perhaps be defined as the one that can reach
x
samp

the fastest, but computing this is as hard as solving the motion planning
problem.

A simple choice of a distance measure from x to x
samp

is the weighted sum of
the distances along the di↵erent components of x

samp

� x. The weights choose
the relative importance of the di↵erent components. If more is known about
the time-limited reachable sets of a motion-constrained robot from a state x,
this information can be used in determining the nearest node. In any case,
the nearest node should be computed quickly. Finding a nearest neighbor is a
common problem in computational geometry, and various algorithms, such as
kd trees and hashing, can be used to solve it e�ciently.

10.5.1.3 Line 5: The Local Planner

The job of the local planner is to find a motion from x
nearest

to some point
x
new

which is closer to x
samp

. The planner should be simple and it should run
quickly. Three examples are:

Straight-line planner. The plan is a straight line to x
new

, which may be
chosen at x

samp

or at a fixed distance d from x
nearest

on the straight line
to x

samp

. This is for kinematic systems with no motion constraints.

Discretized controls. For systems with motion constraints, such as wheeled
mobile robots or dynamic systems, the controls can be discretized into a
discrete set {u

1

, u
2

, . . .}, as in the grid methods with motion constraints
(Section 10.4.2 and Figures 10.14 and 10.16). Each control is integrated

10.5. Sampling Methods 341

from x
nearest

for a fixed time �t using ẋ = f(x, u). The resulting state
that is closest to x

samp

is chosen as x
new

.

Wheeled robot planners. For a wheeled mobile robot, local plans can be
found using Reeds-Shepp curves or polynomial functions of time of the
di↵erentially flat output, as described in Chapter 13.3.3.

Other robot-specific local planners can be designed.

10.5.1.4 Other RRT Variants

The performance of the basic RRT algorithm depends heavily on the choice
of the sampling method, the distance measure, and the local planner. Beyond
these choices, two other variants of the basic RRT are outlined below.

Bidirectional RRT. The bidirectional RRT grows two trees: one “forward”
from x

start

and one “backward” from x
goal

. The algorithm alternates between
growing the forward tree and the backward tree, and every so often attempts
to connect the two trees by choosing x

samp

from the other tree. The advantage
of this approach is that a single goal state x

goal

can be reached exactly, rather
than just a goal set X

goal

. Another advantage is that in many environments,
the two trees are likely to find each other much faster than a single “forward”
tree will find a goal set.

The major problem is that the local planner might not be able to connect
the two trees exactly. For example, the discretized controls planner of Sec-
tion 10.5.1.3 is highly unlikely to create a motion exactly to a node in the other
tree. In this case, the two trees may be considered more-or-less connected when
points on each tree are su�ciently close. The “broken” discontinuous trajectory
can be returned and patched by a smoothing method (Section 10.8).

RRT⇤. The basic RRT algorithm returns SUCCESS once a motion to X
goal

is found. An alternative is to continue running the algorithm and to terminate
the search only when another termination condition is reached (e.g., maximum
running time or maximum tree size). Then the motion with the minimum cost
can be returned. In this way, the RRT solution may continue to improve as
time goes by. Because edges in the tree are never deleted or changed, however,
the RRT generally does not converge to an optimal solution.

RRT⇤ is a variation of the single-tree RRT that continually rewires the search
tree to ensure that it always encodes the shortest path from x

start

to each node
in the tree. The basic approach works for C-space path planning with no motion
constraints, allowing exact paths from any node to any other node.

To modify the RRT to the RRT⇤, line 7 of the RRT algorithm, which inserts
x
new

in T with an edge from x
nearest

to x
new

, is replaced by a test of all nodes
x 2 X

near

in T that are su�ciently near to x
new

. An edge to x
new

is created
from the x 2 X

near

that (1) has a collision-free motion by the local planner and
(2) minimizes the total cost of the path from x

start

to x
new

, not just the cost of

342 Motion Planning

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 10.19: (Left) The tree generated by an RRT after 20,000 nodes. The goal
region is the square at the top right corner, and the shortest path is indicated.
(Right) The tree generated by RRT⇤ after 20,000 nodes. Figure from [47] used
with permission.

the added edge. The total cost is the cost to reach the candidate x 2 X
near

plus
the cost of the new edge.

The next step is to consider each x 2 X
near

to see if it could be reached by
lower cost by a motion through x

new

. If so, the parent of x is changed to x
new

.
In this way, the tree is incrementally rewired to eliminate high-cost motions in
favor of the minimum-cost motions available so far.

The definition of X
near

depends on the number of samples in the tree, details
of the sampling method, the dimension of the search space, and other factors.

Unlike the RRT, the solution provided by RRT⇤ approaches the optimal
solution as the number of sample nodes increases. Like the RRT, RRT⇤ is
probabilistically complete. Figure 10.19 demonstrates the rewiring behavior of
RRT⇤ compared to RRT for a simple example in C = R2.

10.5.2 The PRM

The PRM uses sampling to build a roadmap representation of C
free

(Section 10.3)
before answering any specific queries. The roadmap is an undirected graph: the
robot can move in either direction along any edge exactly from one node to the
next. For this reason, PRMs primarily apply to kinematic problems for which
an exact local planner exists that can find a path (ignoring obstacles) from any
q
1

to any q
2

. The simplest example is a straight-line planner for a robot with
no kinematic constraints.

Once the roadmap is built, a particular start node q
start

can be added to
the graph by attempting to connect it to the roadmap, starting with the closest
node. The same is done for the goal node q

goal

. The graph is then searched for

10.5. Sampling Methods 343

Figure 10.20: An example PRM roadmap for a point robot in C = R2. The
k = 3 closest neighbors are considered for connection to a sample node q. The
degree of a node can be greater than three since it may be a close neighbor of
many nodes. Figure from [19] used with permission.

a path, typically using A⇤. Thus the query can be answered e�ciently once the
roadmap has been built.

PRMs allow the possibility of building a roadmap quickly and e�ciently
relative to constructing a roadmap using a high-resolution grid representation.
This is because the volume fraction of the C-space that is “visible” by the local
planner from a given configuration does not typically decrease exponentially
with increasing dimension of the C-space.

The algorithm to construct a roadmap R with N nodes is outlined in Algo-
rithm 4 and illustrated in Figure 10.20.

Algorithm 4 PRM roadmap construction algorithm (undirected graph).

1: for i = 1 . . . N do
2: q

i

 sample from C
free

3: add q
i

to R
4: end for
5: for i = 1 . . . N do
6: N (q

i

) k closest neighbors of q
i

7: for each q 2 N (q
i

) do
8: if there is a collision-free local path from q to q

i

and
there is not already an edge from q to q

i

then
9: add an edge from q to q

i

to the roadmap R
10: end if
11: end for
12: end for
13: return R

344 Motion Planning

A key choice in the PRM roadmap construction algorithm is how to sample
from C

free

. While the default might be sampling randomly from a uniform
distribution on C and eliminating configurations in collision, it has been shown
that sampling more densely near obstacles can improve the likelihood of finding
narrow passages, thus significantly reducing the number of samples needed to
properly represent the connectivity of C

free

. Another option is deterministic
multi-resolution sampling.

10.6 Virtual Potential Fields

Virtual potential field methods are inspired by potential energy fields in nature,
such as gravitational and magnetic fields. From physics we know that a potential
field P(q) defined over C induces a force F = �@P/@q that drives an object from
high to low potential. For example, if h is the height above the Earth’s surface in
a uniform gravitational potential field (g = 9.81 m/s2), then the potential energy
of a mass m is P(h) = mgh and the force acting on it is F = �@P/@h = �mg.
The force will cause the mass to fall to the Earth’s surface.

In robot motion control, the goal configuration q
goal

is assigned a low virtual
potential energy and obstacles are assigned a high virtual potential. Applying a
force to the robot proportional to the negative gradient of the virtual potential
naturally pushes the robot toward the goal and away from the obstacles.

A virtual potential field is very di↵erent from the planners we have seen so
far. Typically the gradient of the field can be calculated quickly, so the motion
can be calculated in real time (reactive control) instead of planned in advance.
With appropriate sensors, the method can even handle obstacles that move or
appear unexpectedly. The drawback of the basic method is that the robot can
get stuck in local minima of the potential field, away from the goal, even when
a feasible motion to the goal exists. In certain cases it is possible to design the
potential to guarantee that the only local minimum is at the goal, eliminating
this problem.

10.6.1 A Point in C-space

Let’s begin by assuming a point robot in its C-space. A goal configuration q
goal

is typically encoded by a quadratic potential energy “bowl” with zero energy at
the goal,

P
goal

(q) =
1

2
(q � q

goal

)TK(q � q
goal

),

where K is a symmetric positive-definite weighting matrix (for example, the
identity matrix). The force induced by this potential is

F
goal

(q) = �@Pgoal

@q
= K(q

goal

� q),

an attractive force proportional to the distance from the goal.

10.6. Virtual Potential Fields 345

The repulsive force induced by a C-obstacle B can be calculated from the
distance d(q,B) to the obstacle (Section 10.2.2):

PB(q) =
k

2d2(q,B) , (10.3)

where k > 0 is a scaling factor. The potential is only properly defined for points
outside the obstacle, d(q,B) > 0. The force induced by the obstacle potential is

FB(q) = �
@PB
@q

=
k

d3(q,B)
@d

@q
.

The total potential is obtained by summing the attractive goal potential and
the repulsive obstacle potentials,

P(q) = P
goal

(q) +
X

i

PB
i

(q),

yielding a total force

F (q) = F
goal

(q) +
X

i

FB
i

(q).

Note that the sum of the attractive and repulsive potentials may not give a
minimum (zero force) exactly at q

goal

. Also, it is common to put a bound
on the maximum potential and force, as the simple obstacle potential (10.3)
would otherwise yield unbounded potentials and forces near the boundaries of
obstacles.

Figure 10.21 shows a potential field for a point in R2 with three circular
obstacles. The contour plot of the potential field clearly shows the global min-
imum near the center of the space (near the goal marked with a +), a local
minimum near the two obstacles on the left, as well as saddles (critical points
that are a maximum in one direction and a minimum in the other direction)
near the obstacles. Saddles are generally not a problem, as a small perturbation
allows continued progress toward the goal. Local minima away from the goal
are a problem, however, as they attract nearby starting points.

To actually control the robot using the calculated F (q), we have several
options, two of which are:

• Apply the calculated force plus damping,

u = F (q) +Bq̇. (10.4)

If B is positive definite, then it dissipates energy for all q̇ 6= 0, reducing
oscillation and guaranteeing that the robot will come to rest. If B = 0, the
robot continues to move while maintaining constant total energy, which
is the sum of the initial kinetic energy 1

2

q̇T (0)M(q(0))q̇(0) plus the initial
virtual potential energy P(q(0)).

The motion of the robot under the control law (10.4) can be visualized as
a ball rolling in gravity on the potential surface of Figure 10.21, where the
dissipative force is rolling friction.

346 Motion Planning

Figure 10.21: (Top left) Three obstacles and a goal point, marked with a +,
in R2. (Top right) The potential function summing the bowl-shaped potential
pulling the robot to the goal with the repulsive potentials of the three obstacles.
The potential function saturates at a specified maximum value. (Bottom left)
A contour plot of the potential function, showing the global minimum, a local
minimum, and four saddles: between each obstacle and the boundary of the
workspace, and between the two small obstacles. (Bottom right) Forces induced
by the potential function.

• Treat the calculated force as a commanded velocity instead:

q̇ = F (q). (10.5)

This automatically eliminates oscillations.

Using the simple obstacle potential (10.3), even distant obstacles have a
nonzero e↵ect on the motion of the robot. To speed up evaluation of the repul-
sive terms, distant obstacles could be ignored. We can define a range of influence

10.6. Virtual Potential Fields 347

of the obstacles d
range

> 0 so that the potential is zero for all d(q,B) � d
range

:

UB(q) =

8
>><

>>:

k

2

⇣
d

range

�d(q,B)

d

range

d(q,B)

⌘
2

if d(q,B) < d
range

0 otherwise.

Another issue is that d(q,B) and its gradient are generally di�cult to calcu-
late. An approach to dealing with this is described in Section 10.6.3.

10.6.2 Navigation Functions

A significant problem with the potential field method is local minima. While
potential fields may be appropriate for relatively uncluttered spaces, or for rapid
response to unexpected obstacles, they are likely to get the robot stuck in local
minima for many practical applications.

One method that avoids this issue is the wavefront planner of Figure 10.11.
The wavefront algorithm creates a local-minimum-free potential function by
a breadth-first traversal of every cell reachable from the goal cell in a grid
representation of the free space. Therefore, if a solution exists to the motion
planning problem, then simply moving “downhill” at every step is guaranteed
to bring the robot to the goal.

Another approach to local-minimum-free gradient following is based on re-
placing the virtual potential function with a navigation function. A naviga-
tion function '(q) is a type of virtual potential function that

(i) is smooth (or at least twice di↵erentiable) on q;

(ii) has a bounded maximum value (e.g., 1) on the boundaries of all obstacles;

(iii) has a single minimum at q
goal

; and

(iv) has a full-rank Hessian @2'/@q2 at all critical points q where @'/@q = 0
(i.e., '(q) is a Morse function).

Condition 1 ensures that the Hessian @2'/@q2 exists. Condition 2 puts an upper
bound on the virtual potential energy of the robot. The key conditions are 3
and 4. Condition 3 ensures that of the critical points of '(q) (including minima,
maxima, and saddles), there is only one minimum, at q

goal

. This ensures that
q
goal

is at least locally attractive. However, there may be saddle points which are
minima along a subset of directions. Condition 4 ensures that the set of initial
states that are attracted to any saddle point has empty interior (zero measure),
and therefore almost every initial state converges to the unique minimum q

goal

.
While constructing navigation potential functions with only a single min-

imum is non-trivial, Rimon and Koditschek show how to construct them for
the particular case of an n-dimensional C

free

consisting of all points inside an
n-sphere of radius R and outside of smaller spherical obstacles B

i

of radius r
i

centered at q
i

, i.e., {q 2 Rn | kqk R and kq� q
i

k > r
i

for all i}. This is called

348 Motion Planning

Figure 10.22: (Left) A model “sphere world” with five circular obstacles. The
contour plot of a navigation function is shown. The goal is at (0, 0). Note
that the obstacles induce saddle points near the obstacles, but no local minima.
(Right) A “star world” obtained by deforming the obstacles and the potential
while retaining a navigation function. Figure from [109] used with permission.

a sphere world. While a real C-space is unlikely to be a sphere world, Rimon
and Koditschek show that the boundaries of the obstacles, and the associated
navigation function, can be deformed to a much broader class of star-shaped ob-
stacles. A star-shaped obstacle is one that has a center point from which the line
segment to any point on the obstacle boundary is contained completely within
the obstacle. A star world is a star-shaped C-space which has star-shaped ob-
stacles. Thus finding a navigation function for an arbitrary star world reduces
to finding a navigation function for a “model” sphere world that has centers
at the centers of the star-shaped obstacles, then stretching and deforming that
navigation function to one that fits the star world. Rimon and Koditschek give
a systematic procedure to accomplish this.

Figure 10.22 shows a deformation of a navigation function on a model sphere
world to a star world for the case C ⇢ R2.

10.6.3 Workspace Potential

A di�culty in calculating the repulsive force from an obstacle is calculating the
distance to the obstacle, d(q,B). One approach that avoids the exact calculation
is to represent the boundary of an obstacle as a set of point obstacles, and to
represent the robot by a small set of control points. Let the Cartesian location
of control point i on the robot be written f

i

(q) 2 R3 and boundary point j of the
obstacle be c

j

2 R3. Then the distance between the two points is kf
i

(q)� c
j

k,
and the potential at the control point i due to the obstacle point j is

P 0
ij

(q) =
k

2kf
i

(q)� c
j

k2 ,

10.7. Nonlinear Optimization 349

yielding the repulsive force at the control point

F 0
ij

(q) = �
@P 0

ij

@q
=

k

kf
i

(q)� c
j

k4

✓
@f

i

@q

◆
T

(f
i

(q)� c
j

) 2 R3.

To turn the linear force F 0
ij

(q) 2 R3 into a generalized force F
ij

(q) 2 Rn

acting on the robot arm or mobile robot, we first find the Jacobian J
i

(q) 2 R3⇥n

relating q̇ to the linear velocity of the control point ḟ
i

:

ḟ
i

=
@f

i

@q
q̇ = J

i

(q)q̇.

By the principle of virtual work, the generalized force F
ij

(q) 2 Rn due to the
repulsive linear force F 0

ij

(q) 2 R3 is simply

F
ij

(q) = JT

i

(q)F 0
ij

(q).

Now the total force F (q) acting on the robot is the sum of the easily calculated
attractive force F

goal

(q) and the repulsive forces F
ij

(q) for all i and j.

10.6.4 Wheeled Mobile Robots

The preceding analysis assumes that a control force u = F (q) +Bq̇ (for control
law (10.4)) or a velocity q̇ = F (q) (for control law (10.5)) can be applied in any
direction. If the robot is a wheeled mobile robot subject to rolling constraints
A(q)q̇ = 0, however, the calculated F (q) must be projected to controls F

proj

(q)
that move the robot tangent to the constraints. For a kinematic robot employing
the control law q̇ = F

proj

(q), a suitable projection is

F
proj

(q) =
⇣
I �AT (q)

�
A(q)AT (q)

��1

A(q)
⌘
F (q).

For a dynamic robot employing the control law u = F
proj

(q)+Bq̇, the projection
is discussed in Chapter 8.7.

10.6.5 Use of Potential Fields in Planners

A potential field can be used in conjunction with a path planner. For example,
a best-first search like A⇤ can use the potential as an estimate of the cost-to-go.
Incorporating search prevents the planner from getting permanently stuck in
local minima.

10.7 Nonlinear Optimization

The motion planning problem can be expressed as a general nonlinear optimiza-
tion with equality and inequality constraints, taking advantage of a number of
software packages to solve such problems. Nonlinear optimization problems can

350 Motion Planning

be solved by gradient-based methods, like sequential quadratic programming
(SQP), and non-gradient methods, like simulated annealing, Nelder-Mead op-
timization, and genetic programming. Like many nonlinear optimization prob-
lems, however, these methods are not generally guaranteed to find a feasible
solution when one exists, let alone an optimal one. For methods that use gradi-
ents of the objective function and constraints, however, we can expect a locally
optimal solution if we start the process with a guess that is “close” to a solution.

The general problem can be written

find u(t), q(t), T (10.6)

minimizing J(u(t), q(t), T) (10.7)

subject to ẋ(t) = f(x(t), u(t)) 8t 2 [0, T] (10.8)

u(t) 2 U 8t 2 [0, T] (10.9)

q(t) 2 C
free

8t 2 [0, T] (10.10)

x(0) = x
start

(10.11)

x(T) = x
goal

. (10.12)

To approximately solve this problem by nonlinear optimization, the con-
trol u(t), trajectory q(t), and equality and inequality constraints (10.8)–(10.12)
must be discretized. This is typically done by ensuring that the constraints are
satisfied at a fixed number of points distributed evenly over the interval [0, T],
and by choosing a finite-parameter representation of the position and/or control
histories. We have at least three choices of how to parametrize the position and
controls:

(i) Parametrize the trajectory q(t). In this case, we solve for the parametrized
trajectory directly. The control forces u(t) at any time are calculated using
the equations of motion. This approach does not apply to systems with
fewer controls than configuration variables, m < n.

(ii) Parametrize the control u(t). We solve for u(t) directly. Calculating the
state x(t) requires integrating the equations of motion.

(iii) Parametrize both q(t) and u(t). We have a larger number of variables, since
we are parametrizing both q(t) and u(t). Also, we have a larger number of
constraints, as q(t) and u must satisfy the dynamic equations ẋ = f(x, u)
explicitly, typically at a fixed number of points distributed evenly over the
interval [0, T]. We must be careful to choose the parametrizations of q(t)
and u(t) to be consistent with each other, so that the dynamic equations
can be satisfied at these points.

A trajectory or control history can be parametrized in any number of ways.
The parameters can be the coe�cients of a polynomial in time, the coe�cients
of a truncated Fourier series, spline coe�cients, wavelet coe�cients, piecewise
constant acceleration or force segments, etc. For example, the control u

i

(t)

10.8. Smoothing 351

could be represented by p+ 1 coe�cients a
j

of a polynomial in time:

u
i

(t) =
pX

j=0

a
j

tj .

In addition to the parameters for the state or control history, the total time
T may be another control parameter. The choice of parametrization has impli-
cations for the e�ciency of the calculation of q(t) and u(t) at a given time t.
The choice of parametrization also determines the sensitivity of the state and
control to the parameters, and whether each parameter a↵ects the profiles at all
times [0, T] or just on a finite-time support base. These are important factors
in the stability and e�ciency of the numerical optimization.

10.8 Smoothing

The axis-aligned motions of a grid planner and the randomized motions of sam-
pling planners may lead to jerky motion of the robot. One approach to dealing
with this issue is to let the planner handle the work of searching globally for a
solution, then post-process the resulting motion to make it smoother.

There are many ways to do this; two possibilities are outlined below.

Nonlinear optimization. While gradient-based nonlinear optimization may
fail to find a solution if initialized with a random initial trajectory, it can make
an e↵ective post-processing step, since the plan initializes the optimization with
a “reasonable” solution. The initial motion must be converted to a parametrized
representation of the controls, and the cost J(u(t), q(t), T) can be expressed as
a function of u(t) or q(t). For example,

J =
1

2

Z
T

0

u̇T (t)u̇(t)dt

penalizes the rate of control change. This has an analogy in human motor
control, where the smoothness of human arm motions has been attributed to
minimizing the rate of change of acceleration of the joints.

Subdivide and reconnect. A local planner can be used to attempt a con-
nection between two distant points on a path. If this new connection is collision-
free, it replaces the original path segment. Since the local planner is designed
to produce short, smooth paths, the new path is likely shorter and smoother
than the original. This test-and-replace procedure can be applied iteratively to
randomly chosen points on the path. Another possibility is to use a recursive
procedure that subdivides the path first into two pieces and attempts to replace
each piece with a shorter path; then, if either portion could not be replaced by
a shorter path, subdivide again; etc.

352 Motion Planning

10.9 Summary

• A fairly general statement of the motion planning problem is: Given an
initial state x(0) = x

start

and a desired final state x
goal

, find a time T and
a set of controls u : [0, T]! U such that the motion satisfies x(T) 2 X

goal

and q(x(t)) 2 C
free

for all t 2 [0, T].

• Motion planning problems can be classified in the following categories:
path planning vs. motion planning; fully actuated vs. constrained or un-
deractuated; online vs. o✏ine; optimal vs. satisficing; exact vs. approxi-
mate; with or without obstacles.

• Motion planners can be characterized by the following properties: multiple-
query vs. single-query; anytime planning or not; complete, resolution com-
plete, probabilistically complete, or none of the above; and computational
complexity.

• Obstacles partition the C-space into free C-space C
free

and obstacle space
C
obs

, C = C
free

S
C
obs

. Obstacles may split C
free

into multiple connected
components. There is no feasible path between configurations in di↵erent
connected components.

• A conservative check of whether a configuration q is in collision uses a sim-
plified “grown” representation of the robot and obstacles. If there is no
collision between the grown bodies, then the configuration is guaranteed
collision-free. Checking if a path is collision-free usually involves sampling
the path at finely spaced points, and ensuring that if the individual con-
figurations are collision-free, then the swept volume of the robot path is
collision-free.

• The C-space geometry is often represented by a graph consisting of nodes
and edges between the nodes, where edges represent feasible paths. The
graph can be undirected (edges flow both directions) or directed (edges
only flow one direction). Edges can be unweighted or weighted according
to their cost of traversal. A tree is a directed graph with no cycles in
which each node has at most one parent.

• A roadmap path planner uses a graph representation of C
free

, and path
planning problems can be solved using a simple path from q

start

onto the
roadmap, a path along the roadmap, and a simple path from the roadmap
to q

goal

.

• A⇤ is a popular search method that finds minimum-cost paths on a graph.
It operates by always exploring from the node that is (1) unexplored and
(2) expected to be on a path with minimum estimated total cost. The
estimated total cost is the sum of edge weights to reach the node from the
start node plus an estimate of the cost-to-go to the goal. The cost-to-go
estimate should be optimistic to ensure that the search returns an optimal
solution.

10.9. Summary 353

• A grid-based path planner discretizes the C-space into a graph consisting
of neighboring points on a regular grid. A multi-resolution grid can be used
to allow large steps in wide-open spaces and smaller steps near obstacle
boundaries.

• Discretizing the control set allows robots with motion constraints to take
advantage of grid-based methods. If integrating a control does not land
the robot exactly on a grid point, the new state may still be pruned if a
state in the same grid cell was already achieved with a lower cost.

• The basic RRT algorithm grows a single search tree from x
start

to find a
motion to X

goal

. It relies on a sampler to find a sample x
samp

in X ; an
algorithm to find the closest node x

nearest

in the search tree; and a local
planner to find a motion from x

nearest

to a point closer to x
samp

. The
sampling is chosen to cause the tree to explore X

free

quickly.

• The bidirectional RRT grows a search tree from both x
start

and x
goal

and
attempts to join them up. RRT⇤ returns solutions that tend toward the
optimal as planning time goes to infinity.

• The PRM builds a roadmap of C
free

for multiple-query planning. The
roadmap is built by sampling C

free

N times, then using a local planner to
attempt to connect each sample with several of its nearest neighbors. The
roadmap is searched for plans using A⇤.

• Virtual potential fields are inspired by potential energy fields such as grav-
itational and electromagnetic fields. The goal point creates an attractive
potential while obstacles create a repulsive potential. The total poten-
tial P(q) is the sum of these, and the virtual force applied to the robot
is F (q) = �@P/@q. The robot is controlled by applying this force plus
damping, or by simulating first-order dynamics and driving the robot with
F (q) as a velocity. Potential field methods are conceptually simple but
may get the robot stuck in local minima away from the goal.

• A navigation function is a potential function with no local minima. Nav-
igation functions result in near-global convergence to q

goal

. While navi-
gation functions are di�cult to design in general, they can be designed
systematically for certain environments.

• Motion planning problems can be converted to general nonlinear optimiza-
tion problems with equality and inequality constraints. While optimiza-
tion methods can be used to find smooth, near-optimal motions, they tend
to get stuck in local minima in cluttered C-spaces. Optimization methods
typically require a good initial guess at a solution.

• Motions returned by grid-based and sampling-based planners tend to be
jerky. Smoothing the plan using nonlinear optimization or subdivide-and-
reconnect can improve the quality of the motion.

354 Motion Planning

10.10 Notes and References

Excellent textbooks covering motion planning broadly include the original text
by Latombe [57] in 1991 and the more recent texts by Choset et al. [19] and
LaValle [59]. Other summaries of the state-of-the-art in motion planning can
be found in the Handbook of Robotics [49], and, particularly for robots subject
to nonholonomic and actuation constraints, in the Control Handbook [74], the
Encyclopedia of Systems and Control [73], and the textbook by Murray, Li, and
Sastry [90]. Search algorithms and other algorithms for artificial intelligence are
covered in detail by Russell and Norvig [111].

Landmark early work on motion planning for Shakey the Robot at SRI led
to the development of A⇤ search in 1968 by Hart, Nilsson, and Raphael [35].
This work built on the newly established approach to dynamic programming
for optimal decision-making, as described by Bellman and Dreyfus [8], and im-
proved on the performance of Dijkstra’s algorithm [25]. A suboptimal anytime
variant of A⇤ was proposed in [66]. Early work on multiresolution path plan-
ning is described in [45, 70, 31, 36] based on hierarchical decompositions of
C-space [112].

One early line of work focused on exact characterization of the free C-space
in the presence of obstacles. The visibility graph approach for polygons mov-
ing among polygons was developed by Lozano-Pérez and Wesley in 1979 [71].
In more general settings, researchers used sophisticated algorithms and math-
ematical methods to develop cellular decompositions and exact roadmaps of
the free C-space. Important examples of this work are a series of papers by
Schwartz and Sharir on the piano movers’ problem [113, 114, 115] and Canny’s
PhD thesis [16].

As a result of the mathematical sophistication and high computational com-
plexity needed to exactly represent the topology of C-spaces, a movement formed
in the 1990s to approximately represent C-space using samples, and that move-
ment carries on strong today. That line of work has followed two main branches,
probabilistic roadmaps (PRMs) [48] and rapidly exploring random trees (RRTs) [60,
62, 61]. Due to their ability to handle complex high-dimensional C-spaces rel-
atively e�ciently, research in sampling-based planners has exploded, and some
of the subsequent work is summarized in [19, 59]. The bidirectional RRT and
RRT⇤, highlighted in this chapter, are described in [59] and [47], respectively.

The grid-based approach to motion planning for a wheeled mobile robot was
introduced by Barraquand and Latombe [6], and the grid-based approach to
time-optimal motion planning for a robot arm with dynamic constraints was
introduced in [17, 27, 26].

The GJK algorithm for collision detection was derived in [34]. Open-source
collision-detection packages are implemented in the Open Motion Planning Li-
brary (OMPL) [133] and the Robot Operating System (ROS). An approach to
approximating polyhedra with spheres for fast collision detection is described
in [43].

The potential field approach to motion planning and real-time obstacle
avoidance was first introduced by Khatib and is summarized in [51]. A search-

10.10. Notes and References 355

based planner using a potential field to guide the search is described by Bar-
raquand et al. [5]. The construction of navigation functions, potential functions
with a unique local minimum, is described in a series of papers by Koditschek
and Rimon [55, 53, 54, 109, 110].

Nonlinear optimization-based motion planning has been formulated in a
number of publications, including the classic computer graphics paper by Witkin
and Kass [140] using optimization to generate the motions of an animated jump-
ing lamp; work on generating motion plans for dynamic nonprehensile manip-
ulation [76]; Newton algorithms for optimal motions of mechanisms [64]; and
more recent developments in short-burst sequential action control, which solves
both the motion planning and feedback control problems [2, 136]. Path smooth-
ing for mobile robot paths by subdivide and reconnect is described by Laumond
et al. [58].

356 Motion Planning

reference
point

Figure 10.23: Exercise 4.

10.11 Exercises

1. A path is homotopic to another if it can be continuously deformed into the
other without moving the endpoints. In other words, it can be stretched and
pulled like a rubber band, but it cannot be cut and pasted back together. For
the C-space of Figure 10.2, draw a path from the start to the goal that is not
homotopic to the one shown.

2. Label the connected components in Figure 10.2. For each connected com-
ponent, draw a picture of the robot for one configuration in the connected
component.

3. Assume that ✓
2

joint angles in the range [175�, 185�] result in self-collision
for the robot of Figure 10.2. Draw the new joint limit C-obstacle on top of the
existing C-obstacles and label the resulting connected components of C

free

. For
each connected component, draw a picture of the robot for one configuration in
the connected component.

4. Draw the C-obstacle corresponding to the obstacle and translating planar
robot in Figure 10.23.

5. Write a program that accepts as input the coordinates of a polygonal robot
(relative to a reference point on the robot) and the coordinates of a polygo-
nal obstacle and produces as output a drawing of the corresponding C-space
obstacle. In Mathematica, you may find the function ConvexHull useful. In
MATLAB, try convhull.

6. Calculating a square root is typically computationally expensive. For a
robot and an obstacle represented as collections of spheres (Section 10.2.2),
provide a method for calculating the distance between the robot and obstacle

10.11. Exercises 357

start

goal

Figure 10.24: Planning problem for Exercise 8.

that minimizes the use of square roots.

7. For Figure 10.8(c), give the order that the nodes in the tree are visited in
a complete breadth-first search and a complete depth-first search. Assume that
leftmost branches are always followed first.

8. Draw the visibility roadmap for the C-obstacles and q
start

and q
goal

in Fig-
ure 10.24. Indicate the shortest path.

9. Not all edges of the visibility roadmap described in Section 10.3 are needed.
Prove that an edge between two vertices of C-obstacles need not be included in
the roadmap if either end of the edge does not hit the obstacle tangentially. In
other words, if the edge ends by “colliding” with an obstacle, it will never be
used in a shortest path.

10. You will implement an A⇤ path planner for a point robot in a plane with
obstacles. The planar region is a 100⇥100 area. The program will generate a
graph consisting of N nodes and E edges, where N and E are chosen by the
user. After generating N randomly chosen nodes, the program should connect
randomly chosen nodes with edges until E unique edges have been generated.
The cost associated with each edge is the Euclidean distance between the nodes.
Finally, the program should display the graph, search the graph using A⇤ for the
shortest path between nodes 1 and N , and display the shortest path or indicate
FAILURE if no path exists. The heuristic cost-to-go is the Euclidean distance
to the goal.

11. Modify the A⇤ planner in Exercise 10 to use a heuristic cost-to-go equal
to ten times the distance to the goal node. Compare the running time to the
original A⇤ when they are run on the same graphs. (You may need to use large
graphs to notice any e↵ect.) Are the solutions found with the new heuristic

358 Motion Planning

optimal?

12. Modify the A⇤ algorithm from Exercise 10 to use Dijkstra’s algorithm
instead. Comment on the relative running time between A⇤ and Dijkstra’s
algorithm when each is run on the same graphs.

13. Write a program that accepts the vertices of polygonal obstacles from a
user, as well as the specification of a 2R robot arm, rooted at (x, y) = (0, 0), with
link lengths L

1

and L
2

. Each link is simply a line segment. Generate the C-space
obstacles for the robot by sampling the two joint angles at k-degree intervals
(e.g., k = 5) and checking for intersection between the line segments and the
polygon. Plot the obstacles in the workspace, and in the C-space grid use a black
square or dot for C-obstacles. (Hint: At the core of this program is a subroutine
to see if two line segments intersect. If the segments’ corresponding infinite lines
intersect, you can check if this intersection is within the line segments.)

14. Write an A⇤ grid path planner for the 2R robot with obstacles, and display
found paths on the C-space. (See Exercise 13 and Figure 10.10.)

15. Write a program to implement a virtual potential field for a 2R robot in an
environment with point obstacles. The two links of the robot are line segments,
and the user specifies the goal configuration of the robot, the start configuration
of the robot, and the location of the point obstacles in the workspace. Put two
control points on each link of the robot and transform the workspace potential
forces to configuration space potential forces. In one workspace figure, draw
an example environment consisting of a few point obstacles, and the robot at
its start and goal configurations. In a second C-space figure, plot the potential
function as a contour plot over (✓

1

, ✓
2

), and overlay a planned path from a start
configuration to a goal configuration. The robot uses the kinematic control law
q̇ = F (q).

See if you can create a planning problem that results in convergence to a
local minimum for some initial arm configurations, but succeeds in finding a
path to the goal for other initial arm configurations.

Chapter 11

Robot Control

A robot arm can exhibit a number of di↵erent behaviors, depending on the task
and its environment. It can act as a source of programmed motions for tasks
such as moving an object from one place to another, or tracing a trajectory for
a spray paint gun. It can act as a source of forces, as when applying a polishing
wheel to a workpiece. In tasks such as writing on a chalkboard, it must control
forces in some directions (the force pressing the chalk against the board) and
motions in others (motion in the plane of the board). When the purpose of the
robot is to act as a haptic display, rendering a virtual environment, we may
want it to act like a spring, damper, or mass, yielding in response to forces
applied to it.

In each of these cases, it is the job of the robot controller to convert the task
specification to forces and torques at the actuators. Control strategies to achieve
the behaviors described above are known as motion control, force control,
hybrid motion-force control, and impedance control. Which of these
behaviors is appropriate depends on both the task and the environment. For
example, a force control goal makes sense when the end-e↵ector is in contact with
something, but not when it is moving in free space. We also have a fundamental
constraint imposed by mechanics, irrespective of the environment: the robot
cannot independently control the motion and force in the same direction. If the
robot imposes a motion, then dynamics and the environment will determine the
force, and if the robot imposes a force, then dynamics and the environment will
determine the motion.

Once we have chosen a control goal consistent with the task and environ-
ment, we can use feedback control to achieve it. Feedback control uses position,
velocity, and force sensors to measure the actual behavior of the robot, com-
pare it to the desired behavior, and modulate the control signals sent to the
actuators. Feedback is used in nearly all robot systems.

In this chapter we focus on feedback control for motion control, force control,
hybrid motion-force control, and impedance control.

359

360 Robot Control

11.1 Control System Overview

A typical control block diagram is shown in Figure 11.1(a). Sensors are typically
potentiometers, encoders, or resolvers for joint position/angle sensing; tachome-
ters for joint velocity sensing; strain gauge joint force/torque sensors; and/or
multi-axis force-torque sensors at the “wrist” between the end of the arm and
the end-e↵ector. The controller samples the sensors and updates its control
signals to the actuators at a rate of hundreds to a few thousands of Hz. In most
robotic applications, higher control update rates are of limited benefit, given
time constants associated with the dynamics of the robot and environment. In
our analysis, we ignore the nonzero sampling time and treat controllers as if
they are implemented in continuous time.

While tachometers can be used for direct velocity sensing, a common ap-
proach is to use a digital filter to numerically di↵erence position signals at
successive time steps. A low-pass filter is often used in combination with the
di↵erencing filter to reduce high-frequency signal content due to the quantiza-
tion of the di↵erenced position signals.

As discussed in Chapter 8.9, there are a number of di↵erent technologies for
creating mechanical power, transforming the speeds and forces, and transmitting
to the robot joints. In this chapter, we lump each joint’s amplifier, actuator, and
transmission together and treat them as a transformer from low-power control
signals to forces and torques. This assumption, along with the assumption of
perfect sensors, allows us to simplify the block diagram of Figure 11.1(a) to the
one shown in Figure 11.1(b), where the controller produces forces and torques
directly. The rest of this chapter deals with the control algorithms that go inside
the “controller” box in Figure 11.1(b).

Real robot systems are subject to flexibility and vibrations in the joints
and links, backlash at gears and transmissions, actuator saturation limits, and
limited resolution of the sensors. These raise significant issues in design and
control, but they are beyond the scope of this chapter.

11.2 Motion Control

A motion controller can be defined in joint space or task space. In joint space,
the controller is fed a steady stream of joint positions ✓

d

(t) and velocities ✓̇
d

(t)
to track, and the goal is to drive the robot to track this trajectory. When
the trajectory is expressed in task space, the controller is fed a steady stream
of end-e↵ector configurations X

d

(t) and velocities V
d

(t). If the end-e↵ector
configuration is represented by a minimum set of coordinates, then X

d

(t) 2 Rm

and V
d

(t) = Ẋ
d

(t). If the end-e↵ector configuration is represented as an element
of SE(3), then X

d

(t) 2 SE(3) and V
d

(t) 2 R6, where V
d

= X�1

d

Ẋ
d

is the twist
expressed in the end-e↵ector frame and V

d

= Ẋ
d

X�1

d

is the twist expressed in
the space frame.

11.2. Motion Control 361

dynamics of
arm and

environment
controller amplifiers

actuators
and

transmissions

sensors

desired
behavior

low
power

controls

high
power

controls

forces
and

torques

motions
and

forces

local
feedback

dynamics of
arm and

environment
controller

desired
behavior

forces
and

torques

motions
and

forces

(a)

(b)

Figure 11.1: (a) A typical robot control system. An inner control loop is used to
help the amplifier and actuator achieve the desired force or torque. For example,
a DC motor amplifier in torque control mode may sense the current actually
flowing through the motor and implement a local controller to better match
the desired current, since the current is proportional to the torque produced
by the motor. (b) A simplified model with ideal sensors and a controller block
that directly produces forces and torques. This assumes ideal behavior of the
amplifier and actuator blocks in part (a). Not shown are disturbance forces
that can be injected before the dynamics block, or disturbance forces or motions
injected after the dynamics block.

11.2.1 Motion Control of a Multi-Joint Robot with Velocity
Input

As discussed in Chapter 8, we typically assume direct control of the forces or
torques at robot joints, and the robot’s dynamics transform those controls to
joint accelerations. In relatively rare cases, however, we can assume direct con-
trol of the joint velocities. An example is when the actuators are stepper motors.
In this case, the velocity of a joint is determined directly by the frequency of
the pulse train sent to the stepper.1 Another example is when the amplifier
for an electric motor is placed in velocity control mode—the amplifier attempts
to achieve the joint velocity requested by the user, rather than a joint force or

1
Assuming that the torque requirements are low enough that the stepper motor can keep

up with the pulse train.

362 Robot Control

torque.
Under the assumption of perfect velocity control, motion control of a multi-

joint robot would be trivial: at all times, simply command the velocity

✓̇
com

(t) = ✓̇
d

(t),

where ✓̇
d

(t) comes from the desired trajectory. This is called a feedforward or
open-loop controller, since no feedback (sensor data) is needed to implement
it.

In practice, however, position errors will accumulate over time. An alter-
native strategy is to continually measure the actual position of each joint and
implement a simple feedback controller,

✓̇
com

(t) = K
p

(✓
d

(t)� ✓(t)),

where K
p

is a diagonal matrix of positive gains. This controller is called a
“proportional controller” because it creates a corrective velocity proportional
to the current position error ✓

e

(t) = ✓
d

(t) � ✓(t). This prevents the error from
growing large over time, which could happen with a purely open-loop controller.
A drawback, however, is that the robot only moves when there is error.

We can use feedforward control, which commands motion even when there
is no error, in combination with feedback control to limit the accumulation of
error:

✓̇
com

(t) = ✓̇
d

(t) +K
p

(✓
d

(t)� ✓(t)). (11.1)

This feedforward-feedback controller is the preferred velocity control law.
We can write an analogous control law in task space. Let X(t) 2 SE(3)

be the configuration of the end-e↵ector as a function of time, and V(t) be the
end-e↵ector twist expressed in the end-e↵ector frame, i.e., V = X�1Ẋ. The
task space version of the control law (11.1) is

V
com

(t) = V
d

(t) +K
p

X
e

(t), (11.2)

where X
e

(t) is not simply X
d

(t)�X(t), since it does not make sense to subtract
elements of SE(3). Instead, as we saw in Chapter 6.2, X

e

should refer to the
twist which, if followed for unit time, takes X to X

d

. The matrix representation
of this twist, expressed in the end-e↵ector frame, is [X

e

] = log(X�1X
d

).2

If X represents the end-e↵ector configuration using a minimum set of coor-
dinates, then the control law (11.2) can be used with V = Ẋ and X

e

= X
d

�X.
The commanded joint velocities ✓̇

com

corresponding to V
com

in Equation (11.2)
can be calculated using the inverse velocity kinematics from Chapter 6.3,

✓̇
com

= J†(✓)V
com

,

where J†(✓) is the pseudoinverse of the appropriate Jacobian.

2
Writing X as Xsb (the end-e↵ector frame {b} in a space frame {s}), and Xd as Xsd, we

see that X�1
sb Xsd = XbsXsd = Xbd, the configuration Xd expressed in the end-e↵ector frame.

Therefore log(X�1Xd) is the matrix representation of the twist that takes X to Xd in unit

time, expressed in the end-e↵ector frame.

11.2. Motion Control 363

θ
r

g

Figure 11.2: A single-joint robot rotating in a gravity field.

11.2.2 Motion Control of a Single Joint with Torque or Force
Input

Stepper-motor-controlled robots are generally limited to applications with low
or predictable force/torque requirements. Also, robot control engineers do not
rely on the velocity-control modes of o↵-the-shelf amplifiers for electric motors,
because these velocity-control algorithms do not make use of the dynamic model
of the robot. Instead, robot control engineers use amplifiers in torque-control
mode: the input to the amplifier is the desired torque (or force). This allows
the robot control engineer to use a dynamic model of the robot in the design of
the control law. The ideas are well illustrated by a robot with a single joint, so
we begin there, then generalize to a multi-joint robot.

Consider a single motor attached to a single link, as shown in Figure 11.2.
Let ⌧ be the motor’s torque and ✓ be the angle of the link. The dynamics can
be written as

⌧ = M ✓̈ +mgr cos ✓, (11.3)

where M is the scalar inertia of the link about the axis of rotation, m is the
mass of the link, r is the distance from the axis to the center of mass of the link,
and g � 0 is gravitational acceleration.

According to the model (11.3), there is no dissipation: if the link is made to
move and ⌧ is then set to zero, the link would move forever. This is unrealistic,
of course; there is friction at the various bearings, gears, and transmissions.
Friction modeling is an active research area, but a simple model of rotational
friction is viscous friction,

⌧
fric

= b✓̇, (11.4)

where b > 0. Adding the friction torque, our final model is

⌧ = M ✓̈ +mgr cos ✓ + b✓̇, (11.5)

which we may write more compactly as

⌧ = M ✓̈ + h(✓, ✓̇), (11.6)

where h contains all terms that depend only on the state, not the acceleration.

364 Robot Control

arm
dynamics

d
dt

Kd

dt Ki

KpY Y
ed

e

ee o+

_
+

+

+

Figure 11.3: Block diagram of a PID controller.

For concreteness in the following simulations, we set M = 0.5 kgm2, m =
1 kg, r = 0.1 m, and b = 0.1 Nms/rad. In some examples, the link moves in
a horizontal plane, so g = 0. In other examples, the link moves in a vertical
plane, so g = 9.81 m/s2.

11.2.2.1 Feedback Control: PID Control

The most common feedback control algorithm is linear PID (proportional-integral-
derivative) control. Defining the error between the desired angle ✓

d

and actual
angle ✓ as

✓
e

= ✓
d

� ✓, (11.7)

the PID controller is simply

⌧ = K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

, (11.8)

where the control gains K
p

, K
i

, and K
d

are nonnegative. The proportional gain
K

p

acts as a virtual spring that tries to reduce the position error ✓
e

= ✓
d

� ✓,
and the derivative gain K

d

acts as a virtual damper that tries to reduce the
velocity error ✓̇

e

= ✓̇
d

� ✓̇. The integral gain, as we will see later, can be used
to eliminate steady-state errors when the joint is at rest. See the block diagram
in Figure 11.3.

For now let’s consider the case where K
i

= 0. This is known as PD control.
(We can similarly define PI, P, I, and D control by setting other gains to zero.
PD and PI control are the most common variants of PID control.) Let’s also
assume the robot moves in a horizontal plane, so g = 0. Plugging the control
law (11.8) into the dynamics (11.5), we get

M ✓̈ + b✓̇ = K
p

(✓
d

� ✓) +K
d

(✓̇
d

� ✓̇). (11.9)

11.2. Motion Control 365

If the goal state is rest at a constant ✓
d

, then ✓̇
d

= ✓̈
d

= 0. This is called
setpoint control. In setpoint control, ✓

e

= ✓
d

� ✓, ✓̇
e

= �✓̇, and ✓̈
e

= �✓̈,
Equation (11.9) can be rewritten as the linear mass-spring-damper error dy-
namics

M ✓̈
e

+ (b+K
d

)✓̇
e

+K
p

✓
e

= 0. (11.10)

Stability Error dynamics, such as Equation (11.10), are an important concept
in the study of control systems. A desirable property is that the error dynamics
be stable, i.e., initial errors tend to zero with time. A linear homogeneous
ordinary di↵erential equation of the form

a
n

✓(n)
e

+ a
n�1

✓(n�1)

e

+ . . .+ a
2

✓̈
e

+ a
1

✓̇
e

+ a
0

✓
e

= 0

is stable if and only if all of the complex roots s
1

, . . . , s
n

of its characteristic
equation

a
n

sn + a
n�1

sn�1 + . . .+ a
2

s2 + a
1

s+ a
0

= 0

have real components less than zero, i.e., Re(s
i

) < 0 for all i = 1 . . . n. A
necessary condition for stability, regardless of the order n of the dynamics, is
that a

i

> 0 for all i. This condition is also su�cient for second-order dynamics
such as Equation (11.10). For third-order dynamics, stability is assured if a

i

> 0
for all i and a

2

a
1

> a
3

a
0

.

PD Control and Second-Order Error Dynamics To study the second-
order error dynamics (11.10) more formally, we assume stability and rewrite in
the standard second-order form

✓̈
e

+
b+K

d

M
✓̇
e

+
K

p

M
✓
e

= 0 ! ✓̈
e

+ 2⇣!
n

✓̇
e

+ !2

n

✓
e

= 0, (11.11)

where the damping ratio ⇣ and the natural frequency !
n

are

⇣ =
b+K

d

2
p
K

p

M
, !

n

=

r
K

p

M
.

The characteristic equation of Equation (11.11) is

s2 + 2⇣!
n

s+ !2

n

= 0, (11.12)

with complex roots
s
1,2

= �⇣!
n

± !
n

p
⇣2 � 1.

There are three types of solutions to the di↵erential equation (11.11), de-
pending on whether the roots s

1,2

are real and unequal (⇣ > 1), real and equal
(⇣ = 1), or complex conjugates (⇣ < 1):

• Overdamped: ⇣ > 1. The roots s
1,2

are real and distinct, and the
solution is

✓
e

(t) = c
1

es1t + c
2

es2t,

366 Robot Control

where c
1

and c
2

depend on the initial conditions. The response is the sum
of two decaying exponentials, with time constants ⌧

1,2

= �1/s
1,2

, where
the time constant is the time it takes the exponential to decay to 37% of
its original value. The “slower” time constant in the solution is given by
the less negative root, s

1

= �⇣!
n

+ !
n

p
⇣2 � 1.

• Critically damped: ⇣ = 1. The roots s
1,2

= �⇣!
n

are equal and real,
and the solution is

✓
e

(t) = (c
1

+ c
2

t)e�⇣!n

t,

i.e., a decaying exponential multiplied by a linear function of time. The
time constant of the decaying exponential is ⌧ = 1/(⇣!

n

).

• Underdamped: ⇣ < 1. The roots s
1,2

are complex conjugates at s
1,2

=

�⇣!
n

±j!
d

, where !
d

= !
n

p
1� ⇣2 is the damped natural frequency.

The solution is

✓
e

(t) = (c
1

cos(!
d

t) + c
2

sin(!
d

t)) e�⇣!n

t,

i.e., a decaying exponential (time constant ⌧ = 1/(⇣!
n

)) multiplied by a
sinusoid.

To see how to apply these solutions, imagine that the link is originally at
rest at ✓ = 0. At time t = 0, the desired position is suddenly changed from
✓
d

= 0 to ✓
d

= 1. This is called a step input and the resulting motion of the
system ✓(t) is called the step response. Our interest is in the error response
✓
e

(t). We can solve for c
1,2

in the specific solution by solving ✓
e

(0) = 1 (the
error immediately becomes 1) and ✓̇

e

(0) = 0 (both ✓̇
d

(0) and ✓̇(0) are zero).
The error response can be described by a transient response and a steady-

state response (Figure 11.4). The steady-state response is characterized by
the steady-state error e

ss

, which is the asymptotic error ✓
e

(t) as t!1. For
the link in zero gravity with a stable PD controller, e

ss

= 0. The transient
response is characterized by the overshoot and (2%) settling time. The 2%
settling time is the first time T such that |✓

e

(t) � e
ss

| 0.02(1 � e
ss

) for all
t � T , and is approximately equal to 4⌧ , where ⌧ is the slowest time constant
in the solution. Overshoot occurs if the error response initially overshoots the
final steady-state error, and in this case overshoot is defined as

overshoot =

����
✓
e,min

� e
ss

1� e
ss

����⇥ 100%

where ✓
e,min

is the least positive value achieved by the error. The overshoot can
be calculated to be

overshoot = e�⇡⇣/
p

1�⇣2 ⇥ 100%, 0 ⇣ < 1.

A good transient response is characterized by a low settling time and little or
no overshoot.

11.2. Motion Control 367

overshoot
2% settling time

ess

θe

1

0
t

Figure 11.4: The error response to a step input for an underdamped second-
order system, showing steady-state error e

ss

, overshoot, and 2% settling time.

Figure 11.5 shows the relationship of the location of the roots of Equa-
tion (11.12) to the transient response. For a fixed K

d

and a small K
p

, we have
⇣ > 1, the system is overdamped, and the response is sluggish due to the “slow”
root. As K

p

is increased, the damping ratio decreases. The system is critically
damped (⇣ = 1) at K

p

= (b+K
d

)2/(4M), and the two roots are coincident on
the negative real axis. This situation corresponds to a relatively fast response
and no overshoot. As K

p

continues to increase, ⇣ drops below 1, the roots move
o↵ the negative real axis, and we begin to see overshoot and oscillation in the
response. The settling time is una↵ected as K

p

is increased beyond critical
damping, as ⇣!

n

is unchanged. In general, critical damping is desirable.

Practical Bounds on Feedback Gains According to our simple model,
we could increase K

p

and K
d

without bound to make the real components
of the roots more and more negative, achieving arbitrarily fast response. In
practice, however, large gains lead to actuator saturation, rapid torque changes
(chattering), vibrations of the structure due to unmodeled flexibility in the joints
and links, and possibly even instability due to the finite servo rate frequency.
Thus there are practical limits on the set of useful gains.

PID Control and Third-Order Error Dynamics Now consider the case
of setpoint control where the link moves in a vertical plane, i.e., g > 0. With
the PD control law above, the system can now be written

M ✓̈
e

+ (b+K
d

)✓̇
e

+K
p

✓
e

= mgr cos ✓. (11.13)

368 Robot Control

3

1 Re(s)

Im(s)

faster
response

unstable

increasing
oscillation

1 2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

θe

time (s)

1

2

3

Figure 11.5: (Left) The complex roots of the characteristic equation of the PD-
controlled joint for a fixed K

d

= 10 Nms/rad as K
p

increases from zero. This is
known as a “root locus” plot. (Right) The response of the system to an initial
error ✓

e

= 1, ✓̇
e

= 0 is shown for overdamped (⇣ = 1.5, roots at “1”), critically
damped (⇣ = 1, roots at “2”), and underdamped (⇣ = 0.5, roots at “3”) cases.

This implies that the system comes to rest at a configuration ✓ satisfyingK
p

✓
e

=
mgr cos ✓, i.e., the final error ✓

e

is not zero when ✓
d

6= ±⇡

2

. This is because the
robot must provide a nonzero torque to hold the link at rest at ✓ 6= ±⇡

2

, but the
PD control law only creates a nonzero torque at rest if ✓

e

6= 0. We can make
this steady-state error small by increasing the gain K

p

, but as discussed above,
there are practical limits.

To eliminate the steady-state error, we return to the PID controller by setting
K

i

> 0. This allows a nonzero steady-state torque even with zero position
error; only the integrated error must be nonzero. Figure 11.6 demonstrates the
addition of the integral term to the controller.

To see how this works, write the setpoint error dynamics

M ✓̈
e

+ (b+K
d

)✓̇
e

+K
p

✓
e

+K
i

Z
✓
e

(t)dt = ⌧
dist

, (11.14)

where ⌧
dist

is a disturbance torque substituted for the gravity term mgr cos ✓.
Taking derivatives of both sides, we get the third-order error dynamics

M✓(3)
e

+ (b+K
d

)✓̈
e

+K
p

✓̇
e

+K
i

✓
e

= ⌧̇
dist

. (11.15)

If ⌧
dist

is constant, then the right-hand side of Equation (11.15) is zero. If the
PID controller is stable, then (11.15) shows that ✓

e

converges to zero. (While
the disturbance torque due to gravity is not constant as the link rotates, it
approaches a constant as ✓̇ approaches zero, and therefore similar reasoning
holds close to the equilibrium.)

Integral control is useful to eliminate steady-state error in setpoint control,
but it may adversely a↵ect the transient response. This is because integral

11.2. Motion Control 369

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PID control

PD control P term

D term

I term

P term

D term

time (s) controls

initial configuration

desired configuration =
PID final configuration

PD final configuration

g

θe

Figure 11.6: (Left) The tracking errors for a PD controller with K
d

=
2 Nms/rad,K

p

= 2.205 Nm/rad for critical damping, and a PID controller
with the same PD gains and K

i

= 1 Nm/(rad s). The arm starts at ✓(0) =
�⇡/2, ✓̇(0) = 0, with a goal state ✓

d

= 0, ✓̇
d

= 0. (Middle) The individual
contributions of the terms in the PD and PID control laws. (Right) The initial
and final configurations.

control essentially responds to delayed information—it takes time for the system
to respond to error as it integrates. It is well known in control theory that
delayed feedback can cause instability. To see this, consider the characteristic
equation of Equation (11.15) when ⌧

dist

is constant:

Ms3 + (b+K
d

)s2 +K
p

s+K
i

= 0. (11.16)

For all roots to have negative real part, we require b +K
d

> 0 and K
p

> 0 as
before, but there is also an upper bound on the new gain K

i

(Figure 11.7):

0 K
i

<
(b+K

d

)K
p

M
.

Thus a reasonable design strategy is to choose K
p

and K
d

for a good transient
response, then choose K

i

small so as not to adversely a↵ect stability. In the
example of Figure 11.6, the relatively large K

i

worsens the transient response,
giving significant overshoot. In practice, K

i

= 0 for many robot controllers.
Pseudocode for the PID control algorithm is given in Figure 11.8.
While our analysis has focused on setpoint control, the PID controller applies

perfectly well to trajectory following, where ✓̇
d

(t) 6= 0. Integral control will not
eliminate tracking error along arbitrary trajectories, however.

11.2.2.2 Feedforward Control

Another strategy for trajectory following is to use a model of the robot’s dy-
namics to proactively generate torques, instead of waiting for errors. Let the
controller’s model of the dynamics be

⌧ = M̃(✓)✓̈ + h̃(✓, ✓̇), (11.17)

370 Robot Control

Re(s)

Im(s)

Figure 11.7: The three roots of Equation (11.16) asK
i

increases from zero. First
a PD controller is chosen with K

p

and K
d

yielding critical damping, giving rise
to two collocated roots on the negative real axis. Adding an infinitesimal gain
K

i

> 0 creates a third root at the origin. As we increase K
i

, one of the two
collocated roots moves to the left on the negative real axis, while the other two
roots move toward each other, meet, break away from the real axis, begin curving
to the right, and finally move into the right-half plane whenK

i

= (b+K
d

)K
p

/M .
The system is unstable for larger values of K

i

.

where the model is perfect if M̃(✓) = M(✓) and h̃(✓, ✓̇) = h(✓, ✓̇). Note that
the inertia model M̃(✓) is written as a function of the configuration ✓. While
the inertia of our simple one-joint robot is not a function of configuration, writ-
ing this way allows us to re-use Equation (11.17) for multi-joint systems in
Section 11.2.3.

Given ✓
d

, ✓̇
d

, and ✓̈
d

from the trajectory generator, the commanded torque
is calculated as

⌧ = M̃(✓
d

)✓̈
d

+ h̃(✓
d

, ✓̇
d

). (11.18)

If the model of the robot dynamics is exact, and there are no initial state errors,
then the robot exactly follows the desired trajectory. This is called feedforward
control, as no feedback is used.

A pseudocode implementation of feedforward control is given in Figure 11.9.
Figure 11.10 shows two examples of trajectory following for the link in grav-

ity. Here, the controller’s dynamic model is correct except that it has r̃ = 0.08 m,
when actually r = 0.1 m. In Task 1, the error stays small, as unmodeled gravity
e↵ects provide a spring-like force to ✓ = �⇡/2, accelerating the robot at the be-
ginning and decelerating it at the end. In Task 2, unmodeled gravity e↵ects act
against the desired motion, resulting in a larger tracking error. Because there

11.2. Motion Control 371

time = 0 // dt = servo cycle time

eint = 0 // error integral

qprev = senseAngle // initial joint angle q

loop

[qd,qdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle

qdot = (q - qprev)/dt // simple velocity calculation

qprev = q

e = qd - q

edot = qdotd - qdot

eint = eint + e*dt

tau = Kp*e + Kd*edot + Ki*eint

commandTorque(tau)

time = time + dt

end loop

Figure 11.8: Pseudocode for PID control.

time = 0 // dt = servo cycle time

loop

[qd,qdotd,qdotdotd] = trajectory(time) // trajectory generator

tau = Mtilde(qd)*qdotdotd + htilde(qd,qdotd) // calculate dynamics

commandTorque(tau)

time = time + dt

end loop

Figure 11.9: Pseudocode for feedforward control.

are always modeling errors, feedforward control is always used in conjunction
with feedback, as discussed next.

11.2.2.3 Feedforward Plus Feedback Linearization

All practical controllers use feedback, as no model of robot and environment
dynamics will be perfect. Nonetheless, a good model can be used to improve
performance and simplify analysis.

Let’s combine PID control with a model of the robot dynamics {M̃, h̃} to

372 Robot Control

Task 1

g

Task 2

desired

actual

actual

desired

0 1 2 3 4
 time (s)

-3π/4

π/4

-π/4

3π/4

θ

θ

Figure 11.10: Results of feedforward control with an incorrect model: r̃ =
0.08 m, but r = 0.1 m. The desired trajectory in Task 1 is ✓

d

(t) = �⇡/2 �
(⇡/4) cos(t) for 0 t ⇡. The desired trajectory for Task 2 is ✓

d

(t) = ⇡/2 �
(⇡/4) cos(t), 0 t ⇡.

achieve the error dynamics

✓̈
e

+K
d

✓̇
e

+K
p

✓
e

+K
i

Z
✓
e

(t)dt = 0 (11.19)

along arbitrary trajectories, not just to a setpoint. The error dynamics (11.19)
and proper choice of PID gains ensure exponential decay of trajectory error.

Since ✓̈
e

= ✓̈
d

� ✓̈, to achieve the error dynamics (11.19), we choose the
robot’s commanded acceleration to be

✓̈
com

= ✓̈
d

� ✓̈
e

then plug in Equation (11.19) to get

= ✓̈
d

+K
d

✓̇
e

+K
p

✓
e

+K
i

Z
✓
e

(t)dt. (11.20)

Plugging ✓̈
com

into a model of the robot dynamics {M̃, h̃}, we get the feed-
forward plus feedback linearizing controller, also called the computed
torque controller:

⌧ = M̃(✓)

✓
✓̈
d

+K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

◆
+ h̃(✓, ✓̇). (11.21)

11.2. Motion Control 373

τθcom
..

θfb
..

θd
..

θe PID
controller

h(θ, θ)
.

M(θ) θcom
.. arm

dynamicsY YYθd , θd
. θ, θ

.
+

+

+

+

+

_

~

~

Figure 11.11: Computed torque control. The feedforward acceleration ✓̈
d

is
added to the acceleration ✓̈

fb

computed by the PID feedback controller to create
the commanded acceleration ✓̈

com

.

g

τ dt2�
ff

ff+fb

fb

0 1 2 3 4
 time (s)

ff

fb

0 1 2 3 4
 time (s)

θ

π/4

3π/4 desired
ff+fb

Figure 11.12: Performance of feedforward only (↵), feedback only (fb), and
computed torque control (↵+fb). PID gains are taken from Figure 11.6, and
the feedforward modeling error is taken from Figure 11.10. The desired motion
is Task 2 from Figure 11.10. The middle plot shows the tracking performance
of the three controllers. Also plotted is

R
⌧2(t)dt, a standard measure of control

e↵ort, for each of the three controllers. These plots show typical behavior: the
computed torque controller yields better tracking than either feedforward or
feedback alone, with less control e↵ort than feedback alone.

This controller includes a feedforward component, due to the use of the planned
acceleration ✓̈

d

, and is called feedback linearizing because feedback of ✓ and ✓̇
is used to generate linear error dynamics. The h̃(✓, ✓̇) term cancels dynamics
that depend nonlinearly on the state, and the inertia model M̃(✓) converts
desired joint accelerations into joint torques, realizing the simple linear error
dynamics (11.19).

A block diagram of the computed torque controller is shown in Figure 11.11.
The gains K

p

,K
i

, and K
d

are chosen to place the roots of the characteristic
equation as desired to achieve good transient response. Under the assumption
of a perfect dynamic model, we would choose K

i

= 0.
Figure 11.12 shows typical behavior of feedback linearizing control relative

to feedforward and feedback only. Pseudocode is given in Figure 11.13.

374 Robot Control

time = 0 // dt = cycle time

eint = 0 // error integral

qprev = senseAngle // initial joint angle q

loop

[qd,qdotd,qdotdotd] = trajectory(time) // from trajectory generator

q = senseAngle // sense actual joint angle

qdot = (q - qprev)/dt // simple velocity calculation

qprev = q

e = qd - q

edot = qdotd - qdot

eint = eint + e*dt

tau = Mtilde(q)*(qdotdotd + Kp*e + Kd*edot + Ki*eint) + htilde(q,qdot)

commandTorque(tau)

time = time + dt

end loop

Figure 11.13: Pseudocode for the computed torque controller.

11.2.3 Motion Control of a Multi-joint Robot with Torque or
Force Input

The methods applied above for a single-joint robot carry over directly to n-joint
robots. The di↵erence is that the dynamics (11.6) now take the more general
vector-valued form

⌧ = M(✓)✓̈ + h(✓, ✓̇),

where the n⇥n positive-definite mass matrix M is now a function of the configu-
ration ✓. We will sometimes find it convenient to explicitly write the components
of the term h(✓, ✓̇),

⌧ = M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓) + b(✓̇), (11.22)

where C(✓, ✓̇)✓̇ are Coriolis and centripetal terms, g(✓) are potential (e.g., grav-
ity) terms, and b(✓̇) are friction terms. In general, the dynamics (11.22) are
coupled—the acceleration of a joint is a function of the positions, velocities,
and torques at other joints.

We distinguish between two types of control of multi-joint robots: decen-
tralized control, where each joint is controlled separately with no sharing of
information between joints, and centralized control, where full state informa-
tion for each of the n joints is available to calculate the controls for each joint.

11.2. Motion Control 375

11.2.3.1 Decentralized Multi-Joint Control

The simplest method for controlling a multi-joint robot is to apply an inde-
pendent controller at each joint, such as the single-joint controllers discussed
in Section 11.2.2. Decentralized control is appropriate when the dynamics are
decoupled, or at least approximately decoupled. The dynamics are decoupled
when the acceleration of each joint depends only on the torque, position, and
velocity of that joint. This requires that the mass matrix be diagonal, as in
Cartesian or gantry robots, where the first three axes are prismatic and orthog-
onal along the x-y-z axes. This kind of robot is equivalent to three single-joint
systems.

Approximate decoupling is also achieved in highly geared robots in the ab-
sence of gravity. The mass matrix M(✓) is nearly diagonal, as it is dominated
by the apparent inertias of the motors themselves (see Chapter 8.9.2). Signif-
icant friction at the individual joints also contributes to the decoupling of the
dynamics.

11.2.3.2 Centralized Multi-Joint Control

When gravity forces and torques are significant and coupled, or when the mass
matrix M(✓) is not well approximated by a diagonal matrix, decentralized con-
trol may not yield acceptable performance. In this case, the computed torque
control law (11.21) of Figure 11.11 can be generalized. The configurations ✓ and
✓
d

and the error ✓
e

= ✓
d

� ✓ are now n-vectors, and the positive scalar gains
become positive-definite matrices K

p

,K
i

,K
d

:

⌧ = M̃(✓)

✓
✓̈
d

+K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

◆
+ h̃(✓, ✓̇). (11.23)

Typically we choose the gain matrices as k
p

I, k
i

I, k
d

I, where I is the n ⇥ n
identity matrix and k

p

, k
i

, and k
d

are nonnegative scalars. Commonly K
i

is
chosen to be zero. In the case of an exact dynamics model M̃ and h̃, the dy-
namics of each joint reduces to the linear dynamics (11.19). The block diagram
and pseudocode for this control algorithm are found in Figures 11.11 and 11.13,
respectively.

Implementing the control law (11.23) requires calculating potentially com-
plex dynamics. We may not have a good model of these dynamics, or the
equations may be too computationally expensive to calculate at servo rate. In
this case, if the desired velocities and accelerations are small, an approximation
to (11.23) can be obtained using only PID control and gravity compensation:

⌧ = K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

+ g̃(✓). (11.24)

376 Robot Control

With zero friction, perfect gravity compensation, and PD setpoint control (K
i

=
0 and ✓̇

d

= ✓̈
d

= 0), the controlled dynamics can be written

M(✓)✓̈ + C(✓, ✓̇)✓̇ = K
p

✓
e

�K
d

✓̇, (11.25)

where the Coriolis and centripetal terms are written C(✓, ✓̇)✓̇. We can now
define a virtual “error energy,” which is the sum of an “error potential energy”
stored in the virtual spring K

p

and an “error kinetic energy”:

V (✓
e

, ✓̇
e

) =
1

2
✓T
e

K
p

✓
e

+
1

2
✓̇T
e

M(✓)✓̇
e

. (11.26)

Since ✓̇
d

= 0, this reduces to

V (✓
e

, ✓̇) =
1

2
✓T
e

K
p

✓
e

+
1

2
✓̇TM(✓)✓̇. (11.27)

Taking the time derivative and plugging in (11.25), we get

V̇ = �✓̇TK
p

✓
e

+ ✓̇TM(✓)✓̈ +
1

2
✓̇T Ṁ(✓)✓̇

= �✓̇TK
p

✓
e

+ ✓̇T
⇣
K

p

✓
e

�K
d

✓̇ � C(✓, ✓̇)✓̇
⌘
+

1

2
✓̇T Ṁ(✓)✓̇. (11.28)

Rearranging, and using the fact that Ṁ � 2C is skew-symmetric (Proposi-
tion 8.1.2), we get

V̇ = �✓̇TK
p

✓
e

+ ✓̇T
⇣
K

p

✓
e

�K
d

✓̇
⌘
+
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
1

2
✓̇T

⇣
Ṁ(✓)� 2C(✓, ✓̇)

⌘
✓̇

= �✓̇TK
d

✓̇ 0. (11.29)

This shows that the error energy is decreasing when ✓̇ 6= 0. If ✓̇ = 0 and
✓ 6= ✓

d

, the virtual spring ensures that ✓̈ 6= 0, so ✓̇
e

will again become nonzero
and more energy will be dissipated. Thus by the Krasovskii-LaSalle invariance
principle (Exercise 12), the total error energy decreases monotonically and the
robot converges to rest at ✓

d

(✓
e

= 0) from any initial state.

11.2.4 Task Space Motion Control

In Section 11.2.3, we focused on motion control in joint space. This is convenient
because joint limits are easily expressed in this space, and the robot should be
able to execute any joint-space path respecting these limits. Trajectories are
naturally described by the joint variables, and there are no issues of singularities
or redundancy.

On the other hand, since the robot interacts with the external environment
and objects in it, it may be more convenient to express the motion as a trajectory
of the end-e↵ector in task space. Let the end-e↵ector trajectory be specified by

11.2. Motion Control 377

(X(t),V(t)), where X 2 SE(3) or X 2 Rn, for example, with V 2 Rn the
velocity. Provided the corresponding trajectory in joint space is feasible, we
now have two options for control: (1) convert to a joint-space trajectory and
proceed with control as in Section 11.2.3 or (2) express the robot dynamics and
control law in the task space.

The first option is to convert the trajectory to joint space. The forward
kinematics are X = f(✓) and V = J(✓)✓̇, where J(✓) is the appropriate Jacobian
based on the chosen velocity representation V. Then the joint space trajectory
is obtained from the task space trajectory using inverse kinematics (Chapter 6):

(inverse kinematics) ✓(t) = f�1(X(t)) (11.30)

✓̇(t) = J†(✓(t))V(t) (11.31)

✓̈(t) = J†(✓(t))
⇣
V̇(t)� J̇(✓(t))✓̇(t)

⌘
. (11.32)

A drawback of this approach is that we must calculate the inverse kinematics,
which may require significant computing power. The second option is to express
the robot’s dynamics in task-space coordinates, as discussed in Chapter 8.6.
Recall the task-space dynamics

F = ⇤(✓)V̇ + ⌘(✓,V).

The joint forces and torques ⌧ are related to the forces F expressed in the
end-e↵ector frame by ⌧ = JT (✓)F .

We can now write a control law in task coordinates inspired by the computed
torque control law in joint coordinates (11.23),

⌧ = JT (✓)

✓
⇤̃(✓)

✓
V̇
d

+K
p

X
e

+K
i

Z
X

e

(t)dt+K
d

V
e

◆
+ ⌘̃(✓,V)

◆
,

(11.33)
where V̇

d

is the desired acceleration and {⇤̃, ⌘̃} represents the controller’s dy-
namics model.

The task-space control law (11.33) makes use of the configuration error X
e

and velocity error V
e

. When X is expressed in a minimal set of coordinates
(X 2 Rm) and V = Ẋ, a natural choice is X

e

= X
d

�X,V
e

= Ẋ
d

� Ẋ. When
X = (R, p) 2 SE(3), however, there are a number of possible choices, including
the following:

• V = V
b

and J(✓) = J
b

(✓): twists are represented in the end-e↵ector frame
{b}. A natural choice would use X

e

such that [X
e

] = log(X�1X
d

) and
V
e

= [Ad
X

�1

X

d

]V
d

� V . The twist X
e

2 R6 is the velocity, expressed in
the end-e↵ector frame, which, if followed for unit time, would move the
current configuration X to the desired configuration X

d

. The transform
[Ad

X

�1

X

d

] expresses the desired twist V
d

, which is expressed in the frame
X

d

, as a twist in the end-e↵ector frame at X, in which the actual velocity
V is represented, so the two can be di↵erenced.

378 Robot Control

• V and J(✓) chosen so that V = (!, v), where ! is the angular velocity
of the end-e↵ector expressed in the {s} frame and v = ṗ. The matrix
representation of the angular velocity !

b

that takes R to R
d

in unit time,
expressed in the end-e↵ector frame {b}, is [!

b

] = log(RTR
d

), so a natural
choice for error coordinates would be

X
e

=

R!

b

p
d

� p

�
and V

e

= V
d

� V ,

where R!
b

is the angular velocity that takes R to R
d

in unit time, ex-
pressed in {s}.

These choices lead to di↵erent behaviors of the robot. In particular, the second
choice decouples the rotational and linear corrective terms.

11.3 Force Control

When the goal is not to create motions at the end-e↵ector, but to apply forces
and torques to the environment, the task requires force control. Pure force
control is only possible if the environment provides resistance forces in every
direction (e.g., when the end-e↵ector is embedded in concrete or attached to
a spring providing resistance in every motion direction). Pure force control is
a bit of an abstraction, as robots are usually able to move freely in at least
some direction. It is a useful abstraction, however. It also leads to hybrid
motion-force control in Section 11.4.

In ideal force control, the force applied by the end-e↵ector is una↵ected by
disturbance motions applied to the end-e↵ector. This is dual to the case of ideal
motion control, where the motion is una↵ected by disturbance forces. Force
control is dual to motion control in the sense that forces are dual to velocities,
with their product being power, an intrinsic, coordinate-free concept.

Let F
tip

be the wrench that the manipulator applies to the environment.
The manipulator dynamics can be written

M(✓)✓̈ + c(✓, ✓̇) + g(✓) + b(✓̇) + JT (✓)F
tip

= ⌧, (11.34)

where the Jacobian J(✓) satisfies V = J(✓)✓̇. Since the robot typically moves
slowly (or not at all) during a force control task, we ignore the acceleration and
velocity terms to get

g(✓) + JT (✓)F
tip

= ⌧. (11.35)

In the absence of any direct measurements of the force-torque at the robot
end-e↵ector, joint angle feedback alone can be used to implement the force
control law

⌧ = g̃(✓) + JT (✓)F
d

, (11.36)

where g̃(✓) is the model of gravitational torques and F
d

is the desired wrench.
This control law requires a good model for gravity compensation as well as
precise control of the torques produced at the robot joints. In the case of a DC

11.3. Force Control 379

six-axis
force-torque
sensor

Figure 11.14: A six-axis force-torque sensor, highlighted in yellow, mounted
between the Barrett WAM robot arm and its end-e↵ector.

electric motor without gearing, torque control can be achieved by current control
of the motor. In the case of a highly geared actuator, however, large friction
torque in the gearing can degrade the quality of torque control achieved using
only current control. In this case, the output of the gearing can be instrumented
with strain gauges to directly measure the joint torque, which is fed back to a
local controller that modulates the motor current to achieve the desired output
torque.

Another solution is to equip the robot arm with a six-axis force-torque sen-
sor between the arm and the end-e↵ector to directly measure the end-e↵ector
wrench F

tip

(Figure 11.14). Force-torque measurements are often noisy, so the
time derivative of these measurements may not be meaningful. In addition, the
desired wrench F

d

is typically constant or only slowly changing. These char-
acteristics suggest a PI force controller with a feedforward term and gravity
compensation,

⌧ = g̃(✓) + JT (✓)

✓
F

d

+K
fp

F
e

+K
fi

Z
F

e

(t)dt

◆
, (11.37)

where F
e

= F
d

� F
tip

and K
fp

and K
fi

are positive-definite proportional and
integral gain matrices, respectively. In the case of perfect gravity modeling,
plugging the force controller (11.37) into the dynamics (11.35), we get the error
dynamics

K
fp

F
e

+K
fi

Z
F

e

(t)dt = 0. (11.38)

In the case of a constant force disturbance on the right-hand side of (11.38),
arising from an incorrect model of g̃(✓), for example, we take the derivative to
get

K
fp

Ḟ
e

+K
fi

F
e

= 0, (11.39)

380 Robot Control

showing that F
e

converges to zero for positive-definite K
fp

and K
fi

.
The control law (11.37) is simple and appealing, but potentially dangerous if

incorrectly applied. If there is nothing for the robot to push against, the robot
will accelerate in a failing attempt to create end-e↵ector forces. Since a typical
force control task requires little motion, we can limit this acceleration by adding
velocity damping. This gives the modified control law

⌧ = g̃(✓) + JT (✓)

✓
F

d

+K
fp

F
e

+K
fi

Z
F

e

(t)dt�K
damp

V
◆
, (11.40)

where K
damp

is positive definite.

11.4 Hybrid Motion-Force Control

Most tasks requiring the application of controlled forces also require the applica-
tion of controlled motions. Control to achieve this is called hybrid motion-force
control. If the the task space is n-dimensional, then we are free to specify n
of the 2n forces and motions at any time t; the other n are determined by the
environment. Apart from this constraint, we also should not specify forces and
motions in the “same direction,” as they are not independent.

As an example, consider a two-dimensional environment modeled by a damper,
F = B

env

V, where

B
env

=

2 1
1 1

�
.

Defining the components of V and F as (V
1

,V
2

) and (F
1

,F
2

), we have F
1

=
2V

1

+ V
2

,F
2

= V
1

+ V
2

. We have n = 2 freedoms to choose among the 2n = 4
velocities and forces at any time. For example, we can specify both F

1

and V
1

independently, because B
env

is not diagonal. Then V
2

and F
2

are determined
by B

env

. We cannot independently control both F
1

and 2V
1

+ V
2

, however, as
these are in the “same direction” according to the damper.

11.4.1 Natural and Artificial Constraints

A particularly interesting case is when the environment is infinitely sti↵ (rigid
constraints) in k directions and unconstrained in n� k directions. In this case,
we cannot choose which of the 2n motions and forces to specify—the contact
with the environment chooses the k directions in which the robot can freely
apply forces and the n � k directions of free motion. As an example, consider
the task space to have the n = 6 dimensions of SE(3). Then a robot opening a
cabinet door has 6� k = 1 motion freedom, rotation about the cabinet hinges,
and therefore k = 5 force freedoms—the robot can apply any wrench that has
zero moment about the axis of the hinges without moving the door.

As another example, a robot writing on a chalkboard may freely control the
force into the board (k = 1), but it cannot penetrate the board; and it may

11.4. Hybrid Motion-Force Control 381

freely move with 6�k = 5 degrees of freedom (two specifying the motion of the
tip of the chalk in the plane of the board, and three describing the orientation
of the chalk), but it cannot independently control forces in these directions.

The chalk example comes with two caveats. The first is due to friction—
the chalk-wielding robot can actually control forces tangent to the plane of the
board, provided the requested motion in the plane of the board is zero and the
requested tangential forces do not exceed the static friction limit determined by
the friction coe�cient and the normal force into the board (see friction model-
ing in Chapter 12). Within this regime, the robot has three motion freedoms
and three force freedoms. Second, the robot could decide to pull away from the
board. In this regime, the robot has six motion freedoms and no force freedoms.
Thus the configuration of the robot is not the only factor determining the di-
rections of motion and force freedoms. Nonetheless, in this section we consider
the simplified case where the motion and force freedoms are determined solely
by the robot’s configuration, and all constraints are equality constraints. For
example, the inequality velocity constraint of the board (the chalk cannot pen-
etrate the board) is treated as an equality constraint (the robot also does not
pull the chalk away from the board).

As a final example, consider a robot erasing a frictionless chalkboard using
an eraser modeled as a rigid block (Figure 11.15). Let the configuration X(t) 2
SE(3) be the configuration of the block’s frame {b} relative to a space frame
{s}. The body-frame twist and wrench are written V

b

= (!
x

,!
y

,!
z

, v
x

, v
y

, v
z

)T

and F
b

= (m
x

,m
y

,m
z

, f
x

, f
y

, f
z

)T , respectively. Maintaining contact with the
board puts k = 3 constraints on the twist:

!
x

= 0

!
y

= 0

v
z

= 0.

In the language of Chapter 2, these velocity constraints are holonomic—the
di↵erential constraints can be integrated to give configuration constraints.

These constraints are called natural constraints, specified by the en-
vironment. There are 6 � k = 3 natural constraints on the wrench, too:
m

z

= f
x

= f
y

= 0. In light of the natural constraints, we can freely specify
any twist of the eraser satisfying the k = 3 velocity constraints and any wrench
satisfying the 6� k = 3 wrench constraints (provided f

z

< 0, to maintain con-
tact with the board). These motion and force specifications are called artificial
constraints. Below is an example set of artificial constraints corresponding to

382 Robot Control

{s}sx
^

sy
^

sz
^

{b}
bx
^

by
^

bz
^

Figure 11.15: The fixed space frame {s} attached to the chalkboard and the
body frame {b} attached to the center of the eraser.

the natural constraints:

natural constraints artificial constraints

!
x

= 0 m
x

= 0

!
y

= 0 m
y

= 0

m
z

= 0 !
z

= 0

f
x

= 0 v
x

= k
1

f
y

= 0 v
y

= 0

v
z

= 0 f
z

= k
2

< 0

The artificial constraints cause the eraser to move with v
x

= k
1

while applying
a constant force k

2

against the board.

11.4.2 A Hybrid Controller

We now return to the problem of designing a hybrid motion-force controller. If
the environment is rigid, then we express the k natural constraints on velocity
in task space as the Pfa�an constraints

A(X)V = 0, (11.41)

where A(X) 2 Rk⇥m and m = 6 for X 2 SE(3). (Alternatively these con-
straints could be written in terms of constraints on the joint velocities, A(✓)✓̇ =
0.) This formulation includes holonomic and nonholonomic constraints.

If the task-space dynamics of the robot, in the absence of constraints, are

F = ⇤(✓)V̇ + ⌘(✓,V),

11.4. Hybrid Motion-Force Control 383

then the constrained dynamics, following Chapter 8.7, are

F = ⇤(✓)V̇ + ⌘(✓,V) +AT (X)�| {z }
F

tip

, (11.42)

where � 2 Rk are Lagrange multipliers and F
tip

is the set of forces (or wrench)
that the robot applies against the constraints. The requested force F

d

must lie
in the column space of AT (X).

Since Equation (11.41) must be satisfied at all times, we can replace (11.41)
by the time derivative

A(X)V̇ + Ȧ(X)V = 0. (11.43)

To ensure that Equation (11.43) is satisfied when the system state already sat-
isfies A(X)V = 0, any requested acceleration V̇

d

should satisfy A(X)V̇
d

= 0.
Now, solving Equation (11.42) for V̇, plugging the result into (11.43), and

solving for �, we get

� = (A⇤�1AT)�1(AV̇ +A⇤�1(⌘ � F)), (11.44)

where we have plugged in �AV̇ = ȦV by Equation (11.43). With Equa-
tion (11.44), we can calculate the force F

tip

= AT (q)� the robot applies against
the constraints.

Plugging Equation (11.44) into Equation (11.42) and manipulating, the n
equations of the constrained dynamics (11.42) can be expressed as the n � k
independent motion equations

P (X)F = P (X)(⇤(✓)V̇ + ⌘(✓,V)) (11.45)

where
P = I �AT (A⇤�1AT)�1A⇤�1 (11.46)

and I is the identity matrix. The n⇥n matrix P (X) has rank n�k and projects
an arbitrary manipulator force F onto the subspace of forces that move the end-
e↵ector tangent to the constraints. The rank k matrix I � P (X) projects an
arbitrary force F to the subspace of forces against the constraints. Thus P
partitions the n-dimensional force space into forces that address the motion
control task and forces that address the force control task.

Our hybrid motion-force controller is simply the sum of a task-space motion
controller, derived from the computed torque control law (11.33), and a task-
space force controller (11.37), each projected to generate forces in its appropriate

384 Robot Control

subspace:

⌧ = JT (✓)

✓
P (X)

✓
⇤̃(✓)

V̇
d

+K
p

X
e

+K
i

Z
X

e

(t)dt+K
d

V
e

�◆

| {z }
motion control

+ (I � P (X))

✓
F

d

+K
fp

F
e

+K
fi

Z
F

e

(t)dt

◆

| {z }
force control

+ ⌘̃(✓,V)| {z }
nonlinear compensation

◆
. (11.47)

Because the dynamics of the two controllers are decoupled by the orthogonal
projections P and I � P , the controller inherits the error dynamics and stabil-
ity analyses of the individual force and motion controllers on their respective
subspaces.

A di�culty in implementing the hybrid control law (11.47) in rigid envi-
ronments is knowing precisely the constraints A(X)V = 0 active at any time.
This is necessary to specify the desired motion and force and to calculate the
projections, but any model of the environment will have some uncertainty. One
approach to dealing with this issue is to use a real-time estimation algorithm to
identify the constraint directions based on force feedback. Another is to sacri-
fice some performance by choosing low feedback gains, which makes the motion
controller “soft” and the force controller more tolerant of force error. We can
also build passive compliance into the structure of the robot itself to achieve
a similar e↵ect. In any case, some passive compliance is unavoidable, due to
flexibility in the joints and links.

11.5 Impedance Control

Ideal hybrid motion-force control in rigid environments demands extremes in
robot impedance, which characterizes the change in endpoint motion as a func-
tion of disturbance forces. Ideal motion control corresponds to high impedance
(little change in motion due to force disturbances) while ideal force control cor-
responds to low impedance (little change in force due to motion disturbances).
In practice, there are limits to a robot’s achievable impedance range.

In this section, we consider the problem of impedance control, where the
robot end-e↵ector renders particular mass, spring, and damper properties.3 For
example, a robot used as a haptic surgical simulator could be tasked with mim-
icking the mass, sti↵ness, and damping properties of a virtual surgical instru-
ment in contact with virtual tissue.

A one-degree-of-freedom robot rendering an impedance can be written

mẍ+ bẋ+ kx = f, (11.48)

3
A popular subcategory of impedance control is sti↵ness control or compliance control,

where the robot renders a virtual spring only.

11.5. Impedance Control 385

b

k

x

Figure 11.16: A robot creating a one-degree-of-freedom mass-spring-damper
virtual environment. The human hand applies a force f to the haptic interface.

where x is the position, m is the mass, b is the damping, k is the sti↵ness,
and f is the force applied by the user (Figure 11.16). Loosely, we say that the
robot renders high impedance if one or more of the {m, b, k} parameters, usually
including b or k, is large. Similarly, we say that the impedance is low if all of
these parameters are small.

More formally, taking the Laplace transform of Equation (11.48), we get

(ms2 + bs+ k)X(s) = F (s), (11.49)

and the impedance is defined by the transfer function from position pertur-
bations to forces, Z(s) = F (s)/X(s). Thus impedance is frequency depen-
dent, with low-frequency response dominated by the spring and high-frequency
response dominated by the mass. Admittance is the inverse of impedance,
Y (s) = Z�1(s) = X(s)/F (s).

A good motion controller is characterized by high impedance (low admit-
tance), since�X = Y�F . If the admittance Y is small, then force perturbations
�F produce only small position perturbations �X. Similarly, a good force con-
troller is characterized by low impedance (high admittance), since �F = Z�X,
and small Z implies that motion perturbations produce only small force pertur-
bations.

The goal of impedance control is to implement the task-space behavior

M V̇ +BV +KX = F
ext

, (11.50)

where X 2 Rn and V = Ẋ are the task-space position and velocity4; M,B, and
K are the positive-definite virtual mass, damping, and sti↵ness to be created
by the robot; and F

ext

is a force applied to the robot, perhaps by a user. The
values of M,B, and K may change depending on the location in the virtual
environment, to represent distinct objects for instance, but we will focus on
the case of constant values. We could also replace V̇, V, and X with small
displacements �V̇, �V, and �X from reference values in a controlled motion
of the robot, but we dispense with the extra notation here.

There are two common ways to achieve the behavior (11.50):

4
In this section we consider a simple coordinate description of the configuration of the

virtual mass, such as X 2 R3
. The sti↵ness matrix K for a rigid body whose position is

represented as X 2 SE(3) is addressed in [42, 68].

386 Robot Control

• The robot senses the motion X(t) and commands joint torques and forces
to create �F

ext

, the force to display to the user. Such a robot is called
impedance controlled, as it implements a transfer function Z(s) from
motions to forces. Theoretically, an impedance-controlled robot should
only be coupled to an admittance-type environment.

• The robot senses F
ext

using a wrist force-torque sensor and controls mo-
tions in response. Such a robot is called admittance controlled, as it
implements a transfer function Y (s) from forces to motions. Theoretically,
an admittance-controlled robot should only be coupled to an impedance-
type environment.

11.5.1 Impedance Control Algorithm

In an impedance control algorithm, encoders, tachometers, and possibly ac-
celerometers are used to estimate the joint and endpoint positions, veloci-
ties, and possibly accelerations. Often impedance-controlled robots are not
equipped with a wrist force-torque sensor, and instead rely on their ability to
precisely control joint torques to display the appropriate end-e↵ector force�F

ext

(from (11.50)) to the user. A good control law might be

⌧ = JT (✓)

0

B@ ⇤̃(✓)V̇ + ⌘̃(✓,V)| {z }
arm dynamics compensation

� (M V̇ +BV +KX)| {z }
F

ext

1

CA . (11.51)

Addition of an end-e↵ector force-torque sensor allows the use of feedback terms
to more closely achieve the desired interaction force �F

ext

.
In the control law (11.51), it is assumed that V̇, V, and X are measured

directly. Measurement of the acceleration V̇ is likely to be noisy, however, and
there is the problem of attempting to compensate for the robot’s mass after
the acceleration has been sensed. Therefore, it is not uncommon to eliminate
the mass compensation term ⇤̃(✓)V̇ and to set M = 0. The mass of the arm
will be apparent to the user, but impedance-controlled manipulators are often
designed to be lightweight. It is also not uncommon to assume small velocities
and replace the nonlinear dynamics compensation ⌘̃(✓,V) with a simpler gravity
compensation model.

Problems can arise when (11.51) is used to simulate sti↵ environments. Small
changes in position, as measured by encoders for example, lead to large changes
in motor torques. This e↵ective high gain, coupled with delays, sensor quan-
tization, and sensor errors, can lead to oscillatory behavior or instability. On
the other hand, the e↵ective gains are low when emulating low impedance envi-
ronments. A lightweight backdrivable manipulator can excel at emulating low
impedance environments.

11.6. Other Topics 387

11.5.2 Admittance Control Algorithm

In an admittance control algorithm, the force F
ext

applied by the user is sensed
by the wrist load cell, and the robot responds with an end-e↵ector acceleration
satisfying Equation (11.50). A simple approach is to calculate the desired end-
e↵ector acceleration V̇

d

according to

M V̇
d

+BV +KX = F
ext

,

where (X,V) is the current state. Solving, we get

V̇
d

= M�1(F
ext

�BV �KX). (11.52)

Given V̇
d

, V, and ✓, the dynamics in the task space (8.88) can be used to
determine the commanded wrench F . To make the response smoother in the
face of noisy force measurements, the force readings can be low-pass filtered.

Simulating a low impedance environment is challenging for an admittance-
controlled robot, as small forces produce large accelerations. The e↵ective large
gains can produce instability. On the other hand, admittance control by a highly
geared robot can excel at emulating sti↵ environments.

11.6 Other Topics

Robust Control While all stable feedback controllers confer some amount of
robustness to uncertainty, the field of robust control deals with designing con-
trollers that explicitly guarantee the performance of a robot subject to bounded
parametric uncertainties, such as in its inertial properties.

Adaptive Control Adaptive control of robots involves estimating the
robot’s inertial or other parameters during execution and updating the control
law in real time to incorporate those estimates.

Iterative Learning Control Iterative learning control (ILC) generally
focuses on repetitive tasks. If a robot performs the same pick-and-place oper-
ation over and over, the trajectory errors from the previous execution can be
used to modify the feedforward control for the next execution. In this way, the
robot improves its performance over time, driving execution error toward zero.
ILC di↵ers from adaptive control in that the “learned” information is generally
nonparametric and useful only for a single trajectory. On the other hand, ILC
can account for e↵ects that have not been parametrized in a model.

Passive Compliance and Flexible Manipulators All robots unavoidably
have some passive compliance. Models of this compliance can be as simple as
assuming torsional springs at each revolute joint (e.g., to account for finite sti↵-
ness in the flexsplines of harmonic drive gearing) or as complicated as treating
links as flexible beams. Two significant e↵ects of flexibility are (1) a mismatch

388 Robot Control

between the motor angle reading, the true joint angle, and the endpoint of the
attached link, and (2) increased order of the dynamics of the robot. These issues
raise challenging problems in control, particularly when vibration modes are at
low frequencies.

Some robots are specifically designed for passive compliance, particularly
those meant for contact interactions with humans or the environment. Such
robots may sacrifice motion control performance in favor of safety. One passively
compliant actuator is the series elastic actuator, which consists of an electric
motor, a gearbox, and a torsional or linear spring connecting the gearbox output
to the link. This spring provides passive compliance between the sti↵, highly
geared motor and the robot link.

Variable Impedance Actuators The impedance of a joint is typically con-
trolled using a feedback control law, as described in Section 11.5. There are lim-
its to the bandwidth of this control, however; a joint that is actively controlled
to behave as a spring will only achieve spring-like behavior to low-frequency
perturbations.

A new class of actuators, called variable impedance actuators or vari-
able sti↵ness actuators, aims to give actuators the desired passive mechanical
impedance without the bandwidth limitations of an active control law. As an
example, a variable sti↵ness actuator may consist of two motors, with one mo-
tor independently controlling the mechanical sti↵ness of the joint (e.g., based
on the setpoint of an internal nonlinear spring) while the other motor produces
a torque.

11.7 Summary

• A PID joint-space feedback controller takes the form

⌧ = K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

,

where ✓
e

= ✓
d

� ✓ and ✓
d

is the vector of desired joint angles. The pro-
portional term acts like a virtual spring, to pull the robot joints to the
desired positions; the derivative term acts like a virtual damper, acting to
reduce velocity di↵erences between the actual and desired velocities; and
the integral term can be used to eliminate steady-state error in setpoint
control.

• The linear error dynamics

a
n

✓(n)
e

+ a
n�1

✓(n�1)

e

+ . . .+ a
2

✓̈
e

+ a
1

✓̇
e

+ a
0

✓
e

= 0

are stable, i.e., initial errors converge exponentially to zero, if and only if
all of the complex roots s

1

, . . . , s
n

of the characteristic equation

a
n

sn + a
n�1

sn�1 + . . .+ a
2

s2 + a
1

s+ a
0

= 0

have real components less than zero, i.e., Re(s
i

) < 0 for all i = 1 . . . n.

11.7. Summary 389

• Stable second-order linear error dynamics can be written in the standard
form

✓̈
e

+ 2⇣!
n

✓̇
e

+ !2

n

✓
e

= 0,

where ⇣ is the damping ratio and !
n

is the natural frequency. The roots
of the characteristic equation are

s
1,2

= �⇣!
n

± !
n

p
⇣2 � 1.

The system is overdamped if ⇣ > 1, critically damped if ⇣ = 1, and
underdamped if ⇣ < 1. The step response of a stable second-order system
is often characterized by its overshoot, 2% settling time, and steady-state
error.

• The joint-space computed torque controller is

⌧ = M̃(✓)

✓
✓̈
d

+K
p

✓
e

+K
i

Z
✓
e

(t)dt+K
d

✓̇
e

◆
+ h̃(✓, ✓̇).

This controller cancels nonlinear terms, uses feedforward control to antic-
ipate the desired acceleration, and uses linear feedback control for stabi-
lization.

• For robots without joint friction and a perfect model of gravity forces,
joint-space PD setpoint control plus gravity compensation

⌧ = K
p

✓
e

+K
d

✓̇ + g̃(✓)

yields global convergence to ✓
e

= 0 by the Krasovskii-LaSalle invariance
principle.

• The task-space computed torque motion controller is

⌧ = JT (✓)

✓
⇤̃(✓)

✓
V̇
d

+K
p

X
e

+K
i

Z
X

e

(t)dt+K
d

V
e

◆
+ ⌘̃(✓,V)

◆
.

There are several possible choices for calculating X
e

and V
e

.

• Task-space force control can be achieved by the controller

⌧ = g̃(✓) + JT (✓)

✓
F

d

+K
fp

F
e

+K
fi

Z
F

e

(t)dt�K
damp

V
◆
,

consisting of gravity compensation, feedforward force control, PI force
feedback, and damping to prevent fast motion.

• In an m-dimensional task space (where typically m = 6), rigid constraints
specify m� k free motion directions and k constraint directions in which
forces can be applied. These constraints can be represented as A(X)V = 0.
A force F can be partitioned as F = P (X)F +(I�P (X))F , where P (X)

390 Robot Control

projects to forces that move the end-e↵ector tangent to the constraints
and I � P (X) projects to forces against the constraints. The projection
matrix P (X) is written in terms of the task-space mass matrix ⇤(✓) and
constraints A(X) as

P = I �AT (A⇤�1AT)�1A⇤�1.

• A hybrid motion-force controller using the projection P (X) can be written

⌧ = JT (✓)

✓
P (X)

✓
⇤̃(✓)

V̇
d

+K
p

X
e

+K
i

Z
X

e

(t)dt+K
d

V
e

�◆

| {z }
motion control

+ (I � P (X))

✓
F

d

+K
fp

F
e

+K
fi

Z
F

e

(t)dt

◆

| {z }
force control

+ ⌘̃(✓,V)| {z }
nonlinear compensation

◆
.

• An impedance controller measures end-e↵ector motions and creates end-
point forces to mimic a mass-spring-damper system. An admittance con-
troller measures end-e↵ector forces and creates endpoint motions to achieve
the same purpose.

11.8 Software

taulist = ComputedTorque(thetalist,dthetalist,eint,g,
Mlist,Glist,Slist,thetalistd,dthetalistd,ddthetalistd,Kp,Ki,Kd)
This function computes the joint controls ⌧ for the computed torque control
law (11.21) at a particular time instant. The inputs are the n-vectors of joint
variables, joint velocities, and joint error integrals; the gravity vector g; a list
of transforms M

i�1,i

describing the link center of mass locations; a list of link
spatial inertia matrices G

i

; a list of joint screw axes S
i

expressed in the base
frame; the n-vectors ✓

d

, ✓̇
d

, and ✓̈
d

describing the desired motion; and the scalar
PID gains k

p

, k
i

, and k
d

, where the gain matrices are just K
p

= k
p

I, K
i

= k
i

I,
and K

d

= k
d

I.

[taumat,thetamat] = SimulateControl(thetalist,dthetalist,g,
Ftipmat,Mlist,Glist,Slist,thetamatd,dthetamatd,ddthetamatd,
gtilde,Mtildelist,Gtildelist,Kp,Ki,Kd,dt,intRes)
This function simulates the performance of the computed torque control law (11.21)
over a given desired trajectory. Inputs include the initial state of the robot, ✓(0)
and ✓̇(0); the gravity vector g; an N ⇥ 6 matrix of wrenches applied by the end-
e↵ector, where each of the N rows is an instant in time in the trajectory; a list
of transforms M

i�1,i

describing the link center of mass locations; a list of link

11.9. Notes and References 391

spatial inertia matrices G
i

; a list of joint screw axes S
i

expressed in the base
frame; the N⇥nmatrices of desired joint positions, velocities, and accelerations,
where each of the N rows corresponds to an instant in time; a (possibly incor-
rect) model of the gravity vector; a (possibly incorrect) model of the transforms
M

i�1,i

; a (possibly incorrect) model of the link inertia matrices; the scalar PID
gains k

p

, k
i

, and k
d

, where the gain matrices are just K
p

= k
p

I, K
i

= k
i

I, and
K

d

= k
d

I; the timestep between each of the N rows in the matrices defining
the desired trajectory; and the number of integration steps to take during each
timestep.

11.9 Notes and References

The computed torque controller originates from research in the 1970’s [98, 79,
7, 103], and issues with its practical implementation (e.g., its computational
complexity and modeling errors) have driven much of the subsequent research
in nonlinear control, robust control, iterative learning control, and adaptive
control. PD control plus gravity compensation was suggested and analyzed
in [134], and subsequent analysis and modification of the basic controller is
reviewed in [50].

The task space approach to motion control, also called operational space
control, was originally outlined in [72, 52]. A geometric approach to tracking
control for mechanical systems is presented in [15], where the configuration space
for the system can be a generic manifold, including SO(3) and SE(3).

The notion of natural and artificial constraints in hybrid motion-force control
was first described by Mason [80], and an early hybrid motion-force controller
based on these concepts is reported in [102]. As pointed out by Du↵y [28], we
must take care in specifying the subspaces in which motions and forces can be
controlled. The approach to hybrid motion-force control in this chapter mirrors
the geometric approach of Liu and Li [67]. Impedance control was first described
in a series of papers by Hogan [38, 39, 40].

Robot control builds on the well-established field of linear control (e.g.,
[33, 3]) and the growing field of nonlinear control. General references on robot
control include the edited volume [23] and the textbooks by Spong et al. [129],
Siciliano et al. [124], Craig [22], Murray et al. [90], the Handbook of Robotics
chapters on Motion Control [20] and Force Control [137], the Robot Motion
Control chapter in the Encyclopedia of Systems and Control [128], and, for
underactuated and nonholonomic robots, the chapters in the Control Hand-
book [74] and the Encyclopedia of Systems and Control [73].

392 Robot Control

11.10 Exercises

1. Classify the following robot tasks as motion control, force control, hybrid
motion-force control, impedance control, or some combination. Justify your
answer.

(i) Tightening a screw with a screwdriver.

(ii) Pushing a box on the floor.

(iii) Pouring a glass of water.

(iv) Shaking hands with a human.

(v) Throwing a baseball to hit a target.

(vi) Shoveling snow.

(vii) Digging a hole.

(viii) Giving a back massage.

(ix) Vacuuming the floor.

(x) Carrying a tray of glasses.

2. The 2% settling time of an underdamped second-order system is approxi-
mately t = 4/(⇣!

n

), based on e�⇣!n

t = 0.02. What is the 5% settling time?

3. Solve for any constants and give the specific equation for an underdamped
second-order system with !

n

= 4, ⇣ = 0.2, ✓
e

(0) = 1, and ✓̇
e

(0) = 0 (a step
response). Calculate the damped natural frequency, approximate overshoot,
and 2% settling time. Plot the solution on a computer and measure the exact
overshoot and settling time.

4. Solve for any constants and give the specific equation for an underdamped
second-order system with !

n

= 10, ⇣ = 0.1, ✓
e

(0) = 0, and ✓̇
e

(0) = 1. Calculate
the damped natural frequency. Plot the solution on a computer.

5. Consider a pendulum in gravity g = 10 m/s2. The pendulum consists of a
2 kg mass at the end of a 1 m massless rod. The pendulum joint has a viscous
friction coe�cient of b = 0.1 Nms/rad.

(i) Write the equation of motion of the pendulum in terms of ✓, where ✓ = 0
corresponds to the “hanging down” configuration.

11.10. Exercises 393

(ii) Linearize the equation of motion about the stable “hanging down” equi-
librium. To do this, replace any trigonometric terms in ✓ with the linear
term in the Taylor expansion. Give the e↵ective mass and spring con-
stants m and k in the linearized dynamics m✓̈+ b✓̇+k✓ = 0. At the stable
equilibrium, what is the damping ratio? Is the system underdamped, crit-
ically damped, or overdamped? If it is underdamped, what is the damped
natural frequency? What is the time constant of convergence to the equi-
librium and the 2% settling time?

(iii) Now write the linearized equations of motion for ✓ = 0 at the balanced
upright configuration. What is the e↵ective spring constant k?

(iv) You add a motor at the joint of the pendulum to stabilize the upright
position, and you choose a P controller ⌧ = K

p

✓. For what values of K
p

is the upright position stable?

6. You will develop a controller for a one-degree-of-freedom mass-spring-damper
system of the form mẍ+bẋ+kx = f , where f is the control force and m = 4 kg,
b = 2 Ns/m, and k = 0.1 N/m.

(i) What is the damping ratio of the uncontrolled system? Is the uncon-
trolled system overdamped, underdamped, or critically damped? If it is
underdamped, what is the damped natural frequency? What is the time
constant of convergence to the origin?

(ii) Choose a P controller f = K
p

x
e

, where x
e

= x
d

� x is the position error
and x

d

= 0. What value of K
p

yields critical damping?

(iii) Choose a D controller f = K
d

ẋ
e

, where ẋ
d

= 0. What value of K
d

yields
critical damping?

(iv) Choose a PD controller that yields critical damping and a 2% settling time
of 0.01 s.

(v) For the PD controller above, if x
d

= 1 and ẋ
d

= ẍ
d

= 0, what is the
steady-state error x

e

(t) as t goes to infinity? What is the steady-state
control force?

(vi) Now plug a PID controller in for f . Assume x
d

6= 0 and ẋ
d

= ẍ
d

= 0.
Write the error dynamics in terms of ẍ

e

, ẋ
e

, x
e

, and
R
x
e

(t)dt on the
left-hand side and a constant forcing term on the right-hand side. (Hint:
You can write kx as �k(x

d

� x) + kx
d

.) Take the time derivative of this
equation and give the conditions on K

p

, K
i

, and K
d

for stability. Show
that zero steady-state error is possible with a PID controller.

7. Simulation of a one-degree-of-freedom robot and robot controller.

394 Robot Control

(i) Write a simulator for a one-joint robot consisting of a motor rotating a
link in gravity using the model parameters given in Section 11.2.2. The
simulator should consist of (1) a dynamics function that takes as input the
current state of the robot and the torque applied by the motor and gives as
output the acceleration of the robot; and (2) a numerical integrator that
uses the dynamics function to calculate the new state of the system over a
series of timesteps �t. A first-order Euler integration method su�ces for
this problem (e.g., ✓(k + 1) = ✓(k) + ✓̇(k)�t, ✓̇(k + 1) = ✓̇(k) + ✓̈(k)�t).
Test the simulator in two ways: (a) starting the robot at rest at ✓ = �⇡/2
and applying a constant torque of 0.5 Nm and (b) starting the robot at
rest at ✓ = �⇡/4 and applying a constant torque of 0 Nm. For both
examples, plot the position as a function of time for su�cient duration to
see the basic behavior. Make sure the behavior makes sense. A reasonable
choice of �t is 1 ms.

(ii) Add two more functions to your simulator: (1) a trajectory generator
function that takes the current time and returns the desired state and
acceleration of the robot, and (2) a control function that takes the cur-
rent state of the robot and information from the trajectory generator and
returns a control torque. The simplest trajectory generator would return
✓ = ✓

d1

and ✓̇ = ✓̈ = 0 for all time t < T , and ✓ = ✓
d2

6= ✓
d1

and ✓̇ = ✓̈ = 0
for all time t � T . This trajectory is a step function in position. Use PD
feedback control for the control function and set K

p

= 10 Nm/rad. For a
well-tuned choice of K

d

, give K
d

(including units) and plot the position as
a function of time over 2 seconds for an initial state at rest at ✓ = �⇡/2
and a step trajectory with ✓

d1

= �⇡/2 and ✓
d2

= 0. The step occurs at
T = 1 s.

(iii) Demonstrate two di↵erent choices of K
d

that yield (1) overshoot and (2)
sluggish response with no overshoot. Give the gains and the position plots.

(iv) Add a nonzero K
i

to your original well-tuned PD controller to eliminate
steady-state error. Give the PID gains and plot the results of the step
test.

8. Modify the simulation of the one-joint robot in Exercise 7 to model a flexible
transmission from the motor to the link with a sti↵ness of 500 Nm/rad. Tune a
PID controller to give a good step response from ✓ = �⇡/2 to ✓ = 0. Give the
gains and plot the response.

9. Simulation of a two-degree-of-freedom robot and robot controller (Fig-
ure 11.17).

(i) Dynamics. Derive the dynamics of a 2R robot in gravity (Figure 11.17).
The mass of link i is m

i

, the center of mass is a distance r
i

from the joint,
the scalar inertia of link i about the joint is I

i

, and the length of link i is
L
i

. There is no friction at the joints.

11.10. Exercises 395

(ii) Direct drive. Assume each joint is directly driven by a DC motor with
no gearing. Each motor comes with specifications of the mass mstator

i

and inertia Istator

i

of the stator and the mass mrotor

i

and inertia Irotor

i

of
the rotor (the spinning portion). For the motor at joint i, the stator is
attached to link i � 1 and the rotor is attached to link i. The links are
thin uniform-density rods of mass m

i

and length L
i

.

In terms of the quantities given above, for each link i 2 {1, 2} give equa-
tions for the total inertia I

i

about the joint, mass m
i

, and distance r
i

from
the joint to the center of mass. Think about how to assign the mass and
inertia of the motors to the di↵erent links.

(iii) Geared robot. Assume motor i has gearing with gear ratio G
i

, and that the
gearing itself is massless. As in the part above, for each link i 2 {1, 2}, give
equations for the total inertia I

i

about the joint, mass m
i

, and distance
r
i

from the joint to the center of mass.

(iv) Simulation and control. As in Exercise 7, write a simulator with (at
least) four functions: a dynamics function, a numerical integrator, a tra-
jectory generator, and a controller. Assume zero friction at the joints,
g = 9.81 m/s2 in the direction indicated, L

i

= 1 m, r
i

= 0.5 m, m
1

= 3 kg,
m

2

= 2 kg, I
1

= 2 kgm2, and I
2

= 1 kgm2. Write a PID controller, find
gains that give a good response, and plot the joint angles as a function of
time for a trajectory with a reference at rest at (✓

1

, ✓
2

) = (�⇡/2, 0) for
t < 1 s and (✓

1

, ✓
2

) = (0,�⇡/2) for t � 1 s. The initial state of the robot
is at rest with (✓

1

, ✓
2

) = (�⇡/2, 0).

(v) Torque limits. Real motors have limits on torque. While these limits are
generally velocity dependent, here we assume that each motor’s torque
limit is independent of velocity, ⌧

i

 |⌧max

i

|. Assume ⌧max

1

= 100 Nm
and ⌧max

2

= 20 Nm. If the control law requests greater torque, the ac-
tual torque is saturated to these values. Rerun the previous PID control
simulation and plot the torques as well as the position as a function of
time.

(vi) Friction. Add a viscous friction coe�cient of b
i

= 1 Nms/rad to each joint
and rerun the previous PID control simulation.

10. For the two-joint robot of Exercise 9, write a more sophisticated trajectory
generator function. The trajectory generator should take as input

• the desired initial position, velocity, and acceleration of each joint;

• the desired final position, velocity, and acceleration; and

• the total time of motion T .

A call of the form

396 Robot Control

r1 r2
1

2

gx

y

21

Figure 11.17: A two-link robot arm. The length of link i is L
i

and its inertia
about the joint is I

i

. Gravity is g = 9.81 m/s2.

[qd,qdotd,qdotdotd] = trajectory(time)

returns the desired position, velocity, and acceleration of each joint at time
time. The trajectory generator should provide a trajectory that is a smooth
function of time.

As an example, each joint could follow a fifth-order polynomial trajectory of
the form

✓
d

(t) = a
0

+ a
1

t+ a
2

t2 + a
3

t3 + a
4

t4 + a
5

t5. (11.53)

Given the desired positions, velocities, and accelerations of the joints at times
t = 0 and t = T , you can uniquely solve for the six coe�cients a

0

. . . a
5

by
evaluating Equation (11.53) and its first and second derivatives at t = 0 and
t = T .

Tune a PID controller to track a fifth-order polynomial trajectory moving
from rest at (✓

1

, ✓
2

) = (�⇡/2, 0) to rest at (✓
1

, ✓
2

) = (0,�⇡/2) in T = 2 s. Give
the values of your gains and plot the reference position of both joints and the
actual position of both joints. You are free to ignore torque limits and friction.

11. For the two-joint robot of Exercise 9 and fifth-order polynomial trajectory
of Exercise 10, simulate a computed torque controller to stabilize the trajectory.
The robot has no joint friction or torque limits. The model of the link masses
should be 20% greater than their actual values to create error in the feedforward
model. Give the PID gains and plot the reference and actual joint angles for
both the computed torque controller as well as PID control only.

12. The Krasovskii-LaSalle invariance principle states the following: Given a
system ẋ = f(x), x 2 Rn such that f(0) = 0, and any energy-like function V (x)
such that

• V (x) > 0 for all x 6= 0;

11.10. Exercises 397

• V (x)!1 as x!1;

• V (0) = V̇ (0) = 0; and

• V̇ (x) 0 along all trajectories of the system,

let S be the largest set of Rn such that V̇ (x) = 0 and trajectories beginning
in S remain in S for all time. Then if S contains only the origin, the origin is
globally asymptotically stable—all trajectories converge to the origin.

Show how the Krasovskii-LaSalle principle is violated for centralized multi-
joint PD setpoint control with gravity compensation, using the energy function
V (x) from Equation (11.26), if K

p

= 0 or K
d

= 0. For a practical robot system,
is it possible to use the Krasovskii-LaSalle invariance principle to demonstrate
global asymptotic stability even if K

d

= 0? Explain your answer.

13. The two-joint robot of Exercise 9 can be controlled in task space using the
endpoint task coordinates X = (x, y), as shown in Figure 11.17. The task space
velocity is V = Ẋ. Give the Jacobian J(✓) and the task-space dynamics model
{b⇤(✓), b⌘(✓,V)} in the computed torque control law (11.33).

14. Choose appropriate space and end-e↵ector reference frames {s} and {b}
and express natural and artificial constraints, six each, that achieve the following
tasks: (a) opening a cabinet door; (b) turning a screw that advances linearly a
distance p for every revolution; and (c) drawing a circle on a chalkboard with a
piece of chalk.

15. Assume the end-e↵ector of the two-joint robot in Figure 11.17 is constrained
to move on the line x � y = 1. The robot’s link lengths are L

1

= L
2

= 1. (a)
Write the constraint as A(X)V = 0, where X = (x, y) and V = Ẋ. (b) Write
the constraint as A(✓)✓̇ = 0.

16. Derive the constrained motion equations (11.45) and (11.46). Show all the
steps.

17. We have been assuming that each actuator delivers the torque requested by
the control law. In fact, there is typically an inner control loop running at each
actuator, typically at a higher servo rate than the outer loop, to try to track
the torque requested. Figure 11.18 shows two possibilities for a DC electric
motor, where the torque ⌧ delivered by the motor is proportional to the current
I through the motor, ⌧ = k

t

I. The torque from the DC motor is amplified by
the gearhead with gear ratio G.

In one control scheme, the motor current is measured by a current sensor and
compared to the desired current I

com

; the error is passed through a PI controller
which sets the duty cycle of a low-power pulse-width-modulation (PWM) digital
signal; and the PWM signal is sent to an H-bridge that generates the actual
motor current. In the second scheme, a strain gauge torque sensor is inserted

398 Robot Control

τcom Icom
PI

controller
H-bridgeτcomIcom/

PWM

current

sensor

Ierror
+

_

DC

motor

gear

G

link

Imeasured

τcom
PI

controller
H-bridge

PWM

+

_

DC

motor

gear

G

link

torque

sensor

strain

gauge

τmeasured

τerror

Figure 11.18: Two methods for controlling the torque at a joint driven by a
geared DC motor. (Top) The current to the motor is measured by measuring
the voltage across a small resistance in the current path. A PI controller works
to make the actual current better match the requested current I

com

. (Bottom)
The actual torque delivered to the link is measured by a strain gauge.

between the output of the motor gearing and the link, and the measured torque
is compared directly to the requested torque ⌧

com

. Since a strain gauge measures
deflection, the element it is mounted on must have a finite torsional sti↵ness.
Series elastic actuators are designed to have particularly flexible torsional ele-
ments, so much so that encoders are used to measure the larger deflection. The
torque is estimated from the encoder reading and the torsional spring constant.

(i) For the current sensing scheme, what multiplicative factor should go in
the block labeled I

com

/⌧
com

? Even if the PI current controller does its job
perfectly (I

error

= 0) and the torque constant k
t

is perfectly known, what
e↵ect may contribute to error in the generated torque?

(ii) For the strain gauge measurement method, explain the drawbacks, if any,
of having a flexible element between the gearhead and the link.

18. Modify the SimulateControl function to allow initial state errors.

Chapter 12

Grasping and Manipulation

Most of the book so far has been concerned with kinematics, dynamics, motion
planning, and control of the robot itself. Only in Chapter 11, on the topics
of force control and impedance control, did the robot finally begin interacting
with an environment other than free space. This is when a robot really becomes
valuable—when it can perform useful work on objects in the environment.

In this chapter our focus moves outward, from the robot itself to the interac-
tion between the robot and its environment. The desired behavior of the robot
hand or end-e↵ector, whether motion control, force control, hybrid motion-force
control, or impedance control, is assumed to be achieved perfectly using the
methods discussed so far. Our focus is on the contact interface between the
robot and objects, as well as contacts among objects and between objects and
constraints in the environment. In short, our focus is on manipulation rather
than the manipulator. Examples of manipulation include grasping, pushing,
rolling, throwing, catching, tapping, etc. To limit our scope, we will assume
that the manipulator, objects, and obstacles in the environment are rigid.

To simulate, plan, and control robotic manipulation tasks, we need an under-
standing of (at least) three elements: contact kinematics; forces applied through
contacts; and the dynamics of rigid bodies. Contact kinematics studies how rigid
bodies can move relative to each other without penetration, and classifies these
feasible motions according to whether the contacts are rolling, sliding, or sepa-
rating. Contact force models address the normal and frictional forces that can
be transmitted through rolling and sliding contacts. Finally, the actual motions
of the bodies are those that simultaneously satisfy the kinematic constraints,
contact force model, and rigid-body dynamics. The environment is assumed to
consist of one or more rigid movable parts, and perhaps stationary constraints
such as floors, walls, and fixtures. The manipulator consists of one or more
controlled bodies (e.g., “fingers”) which could be under motion, force, hybrid
motion-force, or impedance control.

The following definitions from linear algebra will be useful in this chapter:

Definition 12.1. Given a set of j vectors A = a
1

, . . . a
j

2 Rn, we define the

399

400 Grasping and Manipulation

(a) (b) (c) (d)

Figure 12.1: (a) Three vectors in R2, drawn as arrows from the origin. (b) The
linear span of the vectors is the entire plane. (c) The positive linear span is the
cone shaded gray. (d) The convex span is the polygon and its interior.

linear span, or the set of linear combinations, of the vectors to be

span(A) =

(
jX

i=1

k
i

a
i

| k
i

2 R
)
;

the nonnegative linear combinations, sometimes called the positive span,
to be

pos(A) =

(
jX

i=1

k
i

a
i

| k
i

� 0

)
;

and the convex span to be

conv(A) =

(
jX

i=1

k
i

a
i

| k
i

� 0 and
X

i

k
i

= 1

)
.

Clearly conv(A) ✓ pos(A) ✓ span(A) (see Figure 12.1). The following facts
from linear algebra will also be useful.

1. The space Rn can be linearly spanned by n vectors, but no fewer.

2. The space Rn can be positively spanned by n+ 1 vectors, but no fewer.

The first fact is implicit in our use of n coordinates to represent n-dimensional
Euclidean space. Fact 2 follows from the fact that for any choice of n vectors
A = {a

1

, . . . , a
n

}, there exists a vector c 2 Rn such that aT
i

c 0 for all i. In
other words, no nonnegative combination of vectors in A can create a vector
in the direction c. On the other hand, if we choose a

1

, . . . , a
n

to be orthogonal
coordinate bases of Rn, then choose a

n+1

= �
P

n

i=1

a
i

, we see that this set of
n+ 1 vectors positively spans Rn.

12.1 Contact Kinematics

Contact kinematics is the study of how two or more rigid bodies can move
relative to each other while respecting the impenetrability constraint. It also

12.1. Contact Kinematics 401

classifies motion in contact as either rolling or sliding. Let’s start by looking at
a single contact between two rigid bodies.

12.1.1 First-Order Analysis of a Single Contact

Consider two rigid bodies whose configuration is given by the local coordinate
column vectors q

1

and q
2

, respectively. Writing the composite configuration
as q = [qT

1

, qT
2

]T , we define a distance function d(q) between the parts that is
positive when they are separated, zero when they are touching, and negative
when they are in penetration. When d(q) > 0, there are no constraints on the
motions of the parts; each is free to move with six degrees of freedom. When
the parts are in contact (d(q) = 0), we look at the time derivatives ḋ, d̈, etc., to
determine if the parts stay in contact or break apart as they follow a particular
trajectory q(t). This can be determined by the following table of possibilities:

d ḋ d̈ . . .
> 0 no contact
< 0 infeasible (penetration)
= 0 > 0 in contact, but breaking free
= 0 < 0 infeasible (penetration)
= 0 = 0 > 0 in contact, but breaking free
= 0 = 0 < 0 infeasible (penetration)
etc.

The contact is maintained only if all time derivatives are zero.
Now let’s assume that the two bodies are initially in contact (d = 0) at a

single point. The first two time derivatives of d are written

ḋ =
@d

@q
q̇ (12.1)

d̈ = q̇T
@2d

@q2
q̇ +

@d

@q
q̈. (12.2)

The terms @d/@q and @2d/@q2 carry information about the local contact geom-
etry. The gradient vector @d/@q corresponds to the separation direction in q
space associated with the contact normal (Figure 12.2). The matrix @2d/@q2

encodes information about the relative curvature of the parts at the contact
point.

In this chapter we assume that only contact normal information @d/@q is
available at contacts. Other information about the local contact geometry, in-
cluding the contact curvature @2d/@q2 and higher derivatives, is unknown. With
this assumption, we truncate our analysis at Equation (12.1) and assume bod-
ies remain in contact if ḋ = 0. Since we deal only with the first-order contact
derivative @d/@q, we refer to our analysis as a first-order analysis. By a first-
order analysis, the contacts in Figure 12.2 are treated identically, since they
have the same contact normal.

402 Grasping and Manipulation

contact
normal

contact
tangent plane

A

B

n̂

Figure 12.2: (Left) The parts A and B in single-point contact define a contact
tangent plane and a contact normal vector n̂ perpendicular to the tangent plane.
By default, the positive direction of the normal is chosen into body A. Since
contact curvature is not addressed in this chapter, the contact places the same
restrictions on the motions of the rigid bodies in the middle and right panels.

As indicated in the table above, a second-order analysis incorporating con-
tact curvature @2d/@q2 may indicate that the contact is actually breaking or
penetrating even when d = ḋ = 0. We will see examples of this, but a detailed
analysis of second-order contact conditions is beyond the scope of this chapter.

12.1.2 Contact Types: Rolling, Sliding, and Breaking Free

Given two bodies in single-point contact, they undergo a roll-slide motion
if the contact is maintained. The constraint that contact is maintained is a
holonomic constraint. A necessary condition for maintaining contact is ḋ = 0.

Let’s write the velocity constraint ḋ = 0 in a form that does not require
an explicit distance function, based on the contact normal (Figure 12.2). Let
n̂ 2 R3 be a unit vector aligned with the contact normal, expressed in a world
frame. Let p

A

2 R3 be a representation of the point in contact on part A in the
world frame, and p

B

2 R3 be the point in contact on part B. The condition
ḋ = 0 is written

n̂T (ṗ
A

� ṗ
B

) = 0. (12.3)

Since the contact normal is defined as into body A, the impenetrability con-
straint ḋ � 0 is written

n̂T (ṗ
A

� ṗ
B

) � 0. (12.4)

Let us rewrite the constraint (12.4) in terms of the twists V
A

= (!
A

, v
A

) and
V
B

= (!
B

, v
B

) of parts A and B in a space frame, respectively.1 Note that

ṗ
A

= v
A

+ !
A

⇥ p
A

= v
A

+ [!
A

]p
A

ṗ
B

= v
B

+ !
B

⇥ p
B

= v
B

+ [!
B

]p
B

.

1
All twists and wrenches are expressed in a space frame in this chapter.

12.1. Contact Kinematics 403

We can also write the wrench F = (m, f) corresponding to a unit force applied
along the contact normal:

F = (p
A

⇥ n̂, n̂) = ([p
A

]n̂, n̂).

While it is not necessary to appeal to forces in a purely kinematic analysis of
rigid bodies, we will find it convenient to adopt this notation now in anticipation
of contact forces in Section 12.2.

With these expressions, the inequality constraint (12.4) can be written

(impenetrability constraint) FT (V
A

� V
B

) � 0. (12.5)

(See Exercise 1). If

(active constraint) FT (V
A

� V
B

) = 0, (12.6)

then, to first order, the constraint is active and the parts remain in contact.
In the case that B is a stationary fixture, the impenetrability constraint

(12.5) simplifies to
FTV

A

� 0. (12.7)

If the condition (12.7) is satisfied, F and V
A

are said to be repelling. If
FTV

A

= 0, F and V
A

are said to be reciprocal and the constraint is active.
Twists V

A

and V
B

satisfying (12.6) are called first-order roll-slide mo-
tions—the contact may be either sliding or rolling. Roll-slide contacts may
be further separated into rolling contacts and sliding contacts. The contact
is rolling if the parts have no motion relative to each other at the contact:

(rolling constraint) ṗ
A

= v
A

+ [!
A

]p
A

= v
B

+ [!
B

]p
B

= ṗ
B

. (12.8)

Note that “rolling” contacts include those where the two parts remain stationary
relative to each other, i.e., no relative rotation. Thus “sticking” is another term
for these contacts.

If the twists satisfy Equation (12.6) but not the rolling equations of (12.8),
then they are sliding.

We assign a rolling contact the contact label R, a sliding contact the label
S, and a contact that is breaking free (the impenetrability constraint (12.5) is
satisfied but not the active constraint (12.6)) the label B.

The distinction between rolling and sliding contacts becomes especially im-
portant when we consider friction forces in Section 12.2.

Example 12.1. Consider the contact shown in Figure 12.3. Parts A and B are
in contact at p

A

= p
B

= (1, 2, 0)T with contact normal direction n̂ = (0, 1, 0)T .
The impenetrability constraint (12.5) is

FT (V
A

� V
B

) � 0

[([p
A

]n̂)T n̂T]

!
A

� !
B

v
A

� v
B

�
� 0

[0, 0, 1, 0, 1, 0] [!
Ax

� !
Bx

,!
Ay

� !
By

,!
Az

� !
Bz

,

v
Ax

� v
Bx

, v
Ay

� v
By

, v
Az

� v
Bz

]T � 0

!
Az

� !
Bz

+ v
Ay

� v
By

� 0,

404 Grasping and Manipulation

ẑ

n = (0,1,0)^

p = (1,2,0)A

B A

vAy

ωAzroll-slide motions

penetratingvAx

vAy

ωAz

S

R

B
breaking free

rolling

sliding
penetrating

+ = 0ωAz vAy

B
breaking free

ŷ

x̂

Figure 12.3: Example 12.1. (Left) The body B makes contact with A at p
A

=
p
B

= (1, 2, 0)T with normal n̂ = (0, 1, 0)T . (Middle) The velocities V
A

and their
corresponding contact labels for B stationary and A confined to a plane. The
contact normal force F is (m

x

,m
y

,m
z

, f
x

, f
y

, f
z

)T = (0, 0, 1, 0, 1, 0)T . (Right)
Looking down the �v

Ax

axis.

and therefore roll-slide twists satisfy

!
Az

� !
Bz

+ v
Ay

� v
By

= 0. (12.9)

Equation (12.9) defines an 11-dimensional hyperplane in the 12-dimensional
space of twists (V

A

,V
B

).
The rolling constraints (12.8) are

v
Ax

+ !
Az

p
Ay

� !
Ay

p
Az

= v
Bx

+ !
Bz

p
By

� !
By

p
Bz

v
Ay

+ !
Az

p
Ax

� !
Ax

p
Az

= v
By

+ !
Bz

p
Bx

� !
Bx

p
Bz

v
Az

+ !
Ax

p
Ay

� !
Ay

p
Ax

= v
Bz

+ !
Bx

p
By

� !
By

p
Bx

,

and plugging in for p
A

and p
B

, we get

v
Ax

+ 2!
Az

= v
Bx

+ 2!
Bz

(12.10)

v
Ay

+ !
Az

= v
By

+ !
Bz

(12.11)

v
Az

+ 2!
Ax

� !
Ay

= v
Bz

+ 2!
Bx

� !
By

. (12.12)

The constraint equations (12.10)–(12.12) define a 9-dimensional hyperplane sub-
set of the 11-dimensional hyperplane of roll-slide twists.

To visualize the constraints in a low-dimensional space, let’s assume that
B is stationary (V

B

= 0) and A is confined to the z = 0 plane, i.e., V
A

=
(!

Ax

,!
Ay

,!
Az

, v
Ax

, v
Ay

, v
Az

)T = (0, 0,!
Az

, v
Ax

, v
Ay

, 0)T . The wrench F is
written (m

z

, f
x

, f
y

)T = (1, 0, 1)T . The roll-slide constraint (12.9) reduces to

v
Ay

+ !
Az

= 0,

while the rolling constraints simplify to

v
Ax

+ 2!
Az

= 0

v
Ay

+ !
Az

= 0

12.1. Contact Kinematics 405

The single roll-slide constraint yields a plane in the (!
Az

, v
Ax

, v
Ay

) space, and
the two rolling constraints yield a line in that plane. Because V

B

= 0, the
constraint surfaces pass through the origin V

A

= 0. If V
B

6= 0, this is no longer
the case in general.

Figure 12.3 graphically shows that nonpenetrating twists V
A

must have a
nonnegative dot product with the constraint wrench F when V

B

= 0.

12.1.3 Multiple Contacts

Now suppose that A is subject to several contacts, from B and perhaps other
parts. Each impenetrability constraint (12.5) constrains V

A

to a half-space of
its six-dimensional twist space bounded by a five-dimensional hyperplane of the
form FTV

A

= FTV
B

. Unioning the set of constraints from all the contacts, we
get a polyhedral convex set (polytope2 for short) V of feasible twists in the
V
A

space, written
V = {V

A

| FT

i

(V
A

� V
i

) � 0 8i},

where F
i

corresponds to the ith contact normal and V
i

is the twist of the other
part in contact at contact i. A contact constraint i is redundant if the half-space
constraint contributed by F

i

does not change the feasible twist polytope V . In
general, the feasible twist polytope for a part can consist of a six-dimensional
interior (where no contact constraint is active), five-dimensional faces where one
constraint is active, four-dimensional faces where two constraints are active, and
so on, down to one-dimensional edges and zero-dimensional points. A twist V

A

on an n-dimensional facet of the polytope indicates that 6 � n independent
(non-redundant) contact constraints are active.

If all of the bodies providing constraints are stationary, such as fixtures, then
each constraint hyperplane defined by (12.5) passes through the origin of the V

A

space. We call such a constraint homogeneous. The feasible twist set becomes
a cone rooted at the origin, called a (homogeneous) polyhedral convex cone.
Let F

i

be the constraint wrench of stationary contact i. Then the feasible twist
cone V is

V = {V
A

| FT

i

V
A

� 0 8i}.

If the F
i

positively span the six-dimensional wrench space, or, equivalently, the
convex hull of the F

i

contains the origin in the interior, then the feasible twist
polytope reduces to a point at the origin, the stationary contacts completely
constrain the motion of the part, and we have form closure, discussed in more
detail in Section 12.1.7.

As mentioned in Section 12.1.2, each point contact i can be given a label
corresponding to the type of contact: B if the contact is breaking, R if the
contact is rolling, and S if the contact is sliding, i.e., (12.6) is satisfied but
(12.8) is not. The contact mode for the entire system can be written as the

2
We use the term “polytope” to refer generally to a convex set bounded by hyperplanes in

an arbitrary vector space. The set need not be finite; it could be a cone with infinite volume.

It could also be a point at the origin, or the null set if the constraints are incompatible with

the rigid-body assumption.

406 Grasping and Manipulation

concatenation of the contact labels at the contacts. Since we have three distinct
contact labels, a system of bodies with k contacts can have a maximum of 3k

contact labels. Some of these contact modes may not be feasible, however, as
their corresponding kinematic constraints may not be compatible.

Example 12.2. Figure 12.4 shows triangular fingers contacting a hexagonal
part A. To more easily visualize the contact constraints, the hexagon is re-
stricted to translational motion in a plane only, so that its twist can be written
V
A

= (0, 0, 0, v
Ax

, v
Ay

, 0). In Figure 12.4(a), the single stationary finger creates
a contact wrench F

1

that can be drawn in the V
A

space. All feasible twists
have a nonnegative component in the direction of F

1

. Roll-slide twists satisfy-
ing FT

1

V
A

= 0 lie on the constraint line. Since no rotations are allowed, the
only twist yielding a rolling contact is V

A

= 0. In Figure 12.4(b), the union of
the constraints due to two stationary fingers creates a cone of feasible twists.
Figure 12.4(c) shows three fingers in contact, one of which is moving with twist
V
3

. Because the moving finger has nonzero velocity, its constraint half-space is
displaced from the origin by V

3

. The result is a closed polygon of feasible twists.

Example 12.3. Figure 12.5 shows the contact normals of three stationary
contacts with a planar part A, not shown. The part moves in a plane, so v

Az

=
!
Ax

= !
Ay

= 0. In this example we do not distinguish between rolling and
sliding motions, so the locations of the contacts along the normals are irrelevant.
The three contact wrenches, written (m

z

, f
x

, f
y

), are F
1

= (0, 1,�2),F
2

=
(�1, 0, 1), and F

3

= (1, 0, 1), yielding the motion constraints

v
Ay

� 2!
Az

� 0

�v
Ax

+ !
Az

� 0

v
Ax

+ !
Az

� 0.

These constraints describe a polyhedral convex cone of feasible twists rooted at
the origin, as illustrated in Figure 12.5.

12.1.4 Collections of Parts

The discussion above can be generalized to find the feasible twists of multiple
parts in contact. If parts i and j make contact at a point p, where n̂ points into
part i and F = ([p]n̂, n̂), then their spatial twists V

i

and V
j

must satisfy the
constraint

FT (V
i

� V
j

) � 0 (12.13)

to avoid penetration. This is a homogeneous half-space constraint in the com-
posite (V

i

,V
j

) twist space. In an assembly of multiple parts, each pairwise
contact contributes another constraint in the composite twist space, and the
result is a polyhedral convex cone of kinematically feasible twists rooted at the
origin of the composite twist space. The contact mode for the entire assembly
is the concatenation of the contact labels at each contact in the assembly.

If there are parts whose motion is controlled, e.g., robot fingers, the con-
straints on the motion of the remaining parts are no longer homogeneous. As a

12.1. Contact Kinematics 407

vAx

vAy

1

vAx

vAy

vAx

vAy

(a) (b) (c)

B

S

R BB
RR

SB

BS

SBB

BSB

BBS

RRB

BSS

SBS

BBB

V3

V3

Figure 12.4: Motion-controlled fingers contacting a hexagon that is constrained
to translate in a plane only (Example 12.2). (a) A single stationary finger pro-
vides a single half-space constraint on the hexagon’s twist V

A

. The feasible mo-
tion half-space is shaded gray. The two-dimensional set of twists corresponding
to breaking contact B, the one-dimensional set corresponding to sliding contact
S, and the zero-dimensional set corresponding to rolling (fixed) contact R are
shown. (b) The union of constraints from two stationary fingers creates a cone
of feasible twists. This cone corresponds to four possible contact modes: RR,
SB, BS, and BB. The contact label for the leftmost finger is given first. (c) Three
fingers, one of which is moving with a linear velocity V

3

, create a closed poly-
gon of feasible twists. There are seven possible contact modes corresponding to
the feasible twists: a two-dimensional set where all contacts are breaking, three
one-dimensional sets where one contact constraint is active, and three zero-
dimensional sets where two contact constraints are active. Note that rolling
contact at the moving finger is not feasible, since translation of the hexagon to
“follow” the moving finger, as indicated by the � at the lower right of the figure,
would violate one of the impenetrability constraints. If the third finger were
stationary, the only feasible motion of the hexagon would be zero velocity, with
contact mode RRR.

result, the convex polyhedral set of feasible twists of the uncontrolled parts, in
their composite twist space, is no longer a cone rooted at the origin.

12.1.5 Other Types of Contacts

We have been considering point contacts of the type shown in Figure 12.6(a),
where at least one of the bodies in contact uniquely defines the contact normal.
Figures 12.6(b)-(e) show other types of contact. The kinematic constraints pro-
vided by the convex-concave vertex, line, and plane contacts of Figures 12.6(b)-

408 Grasping and Manipulation

ŷ

x̂contact 1

contact 2

contact 3 vAy

ωAz

vAx
contact 2

contact 3

contact 1

Figure 12.5: Example 12.3. (Left) The lines of force corresponding to three
stationary contacts on a planar body. If we are only concerned with feasible
motions, and do not distinguish between rolling and sliding, contacts anywhere
along the lines, with the contact normals shown, are equivalent. (Right) The
three constraint half-spaces define a polyhedral convex cone of feasible twists.
In the figure, the cone is truncated at the plane v

Ay

= 2. The outer faces of the
cone are shaded white and the inner faces are gray. Twists in the interior of the
cone correspond to all contacts breaking, while twists on the faces of the cone
correspond to one active constraint, and twists on one of the three edges of the
cone correspond to two active constraints.

(a) (b) (c) (d) (e)

Figure 12.6: (a) Vertex-face contact. (b) A convex vertex contacting a concave
vertex can be treated as multiple point contacts, one at each face adjacent to
the concave vertex. These faces define the contact normals. (c) A line contact
can be treated as two point contacts at either end of the line. (d) A plane
contact can be treated as point contacts at the corners of the convex hull of the
contact area. (e) Convex vertex-vertex contact. This case is degenerate and not
considered.

(d) are, to first order, identical to those provided by finite collections of single-
point contacts. Constraints provided by other points of contact are redundant.
The degenerate case in Figure 12.6(e) is ignored, as there is no unique definition
of a contact normal.

The impenetrability constraint (12.5) derives from the fact that arbitrarily
large contact forces can be applied in the normal direction to prevent penetra-
tion. In Section 12.2, we will see that tangential forces may also be applied
due to friction, and these forces may prevent slipping between two objects in

12.1. Contact Kinematics 409

contact planar spatial
type constraints freedoms constraints freedoms
FPC 1 2 1 5

PCWF 2 1 3 3
SC 2 1 4 2

Table 12.1: The number of constraints and freedoms allowed by a kinematic
model of a frictionless point contact (FPC), a point contact with friction
(PCWF), and a soft contact (SC).

contact. Normal and tangential contact forces are subject to constraints: the
normal force must be pushing into a part, not pulling, and the maximum friction
force is proportional to the normal force.

If we wish to apply a kinematic analysis that can approximate the e↵ects of
friction without explicitly modeling forces, we can define three purely kinematic
models of point contacts: a frictionless point contact, a point contact with
friction, and a soft contact, also called a soft-finger contact. A frictionless
point contact enforces only the roll-slide constraint (12.5). A point contact with
friction also enforces the rolling constraints (12.8), implicitly modeling friction
su�cient to prevent slip at the contact. A soft contact enforces the rolling
constraints (12.8) as well as one more constraint: the two bodies in contact
may not spin relative to each other about the contact normal axis. This models
deformation and the resulting friction moment resisting spin due to the nonzero
contact area between the two bodies. For planar problems, a point contact with
friction and a soft contact are identical. See Table 12.1.

Similar to joints, which also specify the number of constraints and freedoms,
these kinematic models of contact allow the application of Grübler’s formula
to determine the number of degrees of freedom of a set of bodies in contact.
Because these models do not encode the unilateral nature of contact (contacts
can “push” but not “pull”), however, we do not use them in the remainder of
the chapter.

12.1.6 Planar Graphical Methods

Planar problems allow the possibility of using graphical methods to visualize the
feasible motions for a single body, since the space of twists is three-dimensional.
An example planar twist cone is shown in Figure 12.5. Such a figure would be
very di�cult to draw for a system with more than three degrees of freedom.

A convenient way to represent a planar twist V = (!
z

, v
x

, v
y

) is as a center
of rotation (CoR) at (�v

y

/!
z

, v
x

/!
z

) plus the angular velocity !
z

. The CoR
is the point in the (projective) plane that remains stationary under the motion,
i.e., the point where the screw axis intersects the plane.3 In the case that the

3
Note that the case !z = 0 must be treated with care, as it corresponds to a CoR at

infinity.

410 Grasping and Manipulation

+ CoR

Figure 12.7: Given the velocity of two points on the part, the lines normal to
the velocities intersect at the CoR. The CoR shown is labeled + corresponding
to the (counterclockwise) positive angular velocity of the part.

z

V
x^

y^

y^

x^

Figure 12.8: Mapping a planar twist V to a CoR. The ray containing a vector
V intersects either the plane of + CoRs at !

z

= 1, the plane of � CoRs at
!
z

= �1, or the circle of translation directions.

speed of motion is immaterial, we may simply label the CoR with a +, �, or
0 sign representing the direction of rotation (Figure 12.7). The mapping from
planar twists to CoRs is illustrated in Figure 12.8, which shows that the space
of CoRs consists of a plane of + CoRs (counterclockwise), a plane of � CoRs
(clockwise), and a circle of translation directions.

Given two distinct twists V
1

and V
2

, the set of linear combinations of these
velocities k

1

V
1

+ k
2

V
2

, where k
1

, k
2

2 R, maps to the line of CoRs containing
CoR(V

1

) and CoR(V
2

). Since k
1

and k
2

can have either sign, if either !
1z

or
!
2z

is nonzero, the CoRs on this line can have either sign. If !
1z

= !
2z

= 0,
then this set corresponds to the set of all translation directions.

A more interesting case is when k
1

, k
2

� 0. Given two twists V
1

and V
2

, the

12.1. Contact Kinematics 411

z

y^

x^

Figure 12.9: The intersection of a twist cone with the unit twist sphere, and the
representation of the cone as a set of CoRs.

_
_

+

+
+

+

+

_
_+

+
+

+

+

+

+

(a) (b) (c) (d)

Figure 12.10: (a) Positive linear combination of two CoRs labeled +. (b) Posi-
tive linear combination of a + CoR and a � CoR. (c) Positive linear combination
of three + CoRs. (d) Positive linear combination of two + CoRs and a � CoR.

nonnegative linear combination of these two velocities is written

V = pos({V
1

,V
2

}) = {k
1

V
1

+ k
2

V
2

| k
1

, k
2

� 0},

a planar twist cone rooted at the origin, with V
1

and V
2

defining the edges of
the cone. If !

1z

and !
2z

have the same sign, then the CoRs of their nonnegative
linear combinations CoR(pos({V

1

,V
2

})) all have that sign, and lie on the line
segment between the two CoRs. If CoR(V

1

) and CoR(V
2

) are labeled + and
�, respectively, then CoR(pos({V

1

,V
2

})) consists of the line containing the two
CoRs, minus the segment between the CoRs. This set consists of a ray of
CoRs labeled + attached to CoR(V

1

), a ray of CoRs labeled � attached to
CoR(V

2

), and a point at infinity labeled 0, corresponding to translation. This
collection should be considered as a single line segment (though one passing
through infinity), just like the first case. Figures 12.9 and 12.10 show examples
of CoR regions corresponding to positive linear combinations of planar twists.

The CoR representation of planar twists is particularly useful for represent-
ing the feasible motions of one movable body in contact with stationary bodies.
Since the constraints are stationary, as noted in Section 12.1.3, the feasible
twists form a polyhedral convex cone rooted at the origin. Such a cone can be
represented uniquely by a set of CoRs with +, �, and 0 labels. A general twist
polytope, as generated by moving constraints, cannot be uniquely represented

412 Grasping and Manipulation

+, Sr

+, B ±, R –, B

–, Sl

+, Sl –, Sr

+,B

-,Sl

-,Sr

Figure 12.11: The stationary triangle makes contact with a movable part. CoRs
to the left of the contact normal are labeled +, to the right are labeled �, and
on the normal labeled ±. Also given are the contact types for the CoRs. For
points on the contact normal, the sign assigned to Sl and Sr CoRs switches at
the contact point. Three CORs and labels are illustrated.

by a set of CoRs with +, �, and 0 labels.
Given a contact between a stationary body and a movable body, we can plot

the CoRs that do not violate the impenetrability constraint. Label all points
on the contact normal ±, points to the left of the inward normal +, and points
to the right �. All points labeled + can serve as CoRs with positive angular
velocity for the movable body, and all points labeled � can serve as CoRs with
negative angular velocity, without violating the first-order contact constraint.
We can further assign contact labels to each CoR corresponding to the first-
order conditions for breaking contact B, sliding contact S, and rolling contact
R. For planar sliding, we subdivide the label S into two subclasses: Sr, where
the moving body slips right relative to the fixed constraint, and Sl, where the
moving body slips to the left. Figure 12.11 illustrates the labeling.

If there is more than one contact, we simply union the constraints and con-
tact labels from the individual contacts. The unioning of the constraints implies
that the feasible CoR region is convex, as is the homogeneous polyhedral twist
cone.

Example 12.4. Figure 12.12(a) shows a planar part standing on a table while
being contacted by a stationary robot finger. The finger defines an inequality
constraint on the part’s motion and the table defines two more. The cone of
twists that do not violate the impenetrability constraints is represented by the
CoRs that are consistently labeled for each contact (Figure 12.12(b)). Each
feasible CoR is labeled with a contact mode that concatenates the labels for the
individual contacts (Figure 12.12(c)).

Now look more closely at the CoR labeled (+, SrBSr) in Figure 12.12(c).
Is this motion really possible? It should be apparent that it is, in fact, not

12.1. Contact Kinematics 413

_ _
bbsr srbsr

bslb

slslb
at infinity

w1

w3

w2

x

y

vy

vx

ωz

w1

w2

w3

(a) (b)

BBSr BBB

SlSlB

SrBSr

BSlB

F1 F2

F3 F1
F2

F3

(a)

+

_ _

+
bbb

bbbbbsr srbsr

srbb
fbb

slbb

slslb
at infinity

bslb

bbsl bbf bbsr

slslb
at infinity

bslsl

(b) (c)

BBSr BBB

BBB

SlSlB

SrBSr

BSlB

BSlSl
BBSl BBR BBSr

SrBB
RBB
SlBB

SlSlB

x^

y^

Figure 12.12: Example 12.4. (a) A part resting on a table, with two contact
constraints provided by the table and a single contact constraint provided by
the stationary finger. (b) The feasible twists representated as CoRs, shown in
gray. Note that the lines that extend o↵ to the left and to the bottom “wrap
around” at infinity and come back in from the right and the top, respectively, so
this CoR region should be interpreted as a single connected convex region. (c)
The contact modes assigned to each feasible motion. The zero velocity contact
mode is RRR.

possible: the part would immediately penetrate the stationary finger. Our
incorrect conclusion is due to the fact that our first-order analysis ignores the
local contact curvature. A second-order analysis would show that this motion
is impossible. On the other hand, if the radius of curvature of the part at the
contact were su�ciently small, then the motion would be possible.

Thus a first-order analysis of a contact indicating roll-slide motion might be
classified as penetrating or breaking by a second-order analysis. Similarly, if
our second-order analysis indicates a roll-slide motion, a third or higher-order
analysis may indicate penetration or breaking free. In any case, if an nth-order
analysis indicates that the contact is breaking or penetrating, then no analysis
of order greater than n will change the conclusion.

12.1.7 Form Closure

Form closure of an object is achieved if a set of stationary constraints prevents
all motion of the object. If these constraints are robot fingers, we call this a
form-closure grasp. An example is shown in Figure 12.13.

414 Grasping and Manipulation

+

_ _

Figure 12.13: (Left) The part from Figure 12.12, with three stationary point
contacts and the part’s feasible twist cone represented as a convex CoR region.
(Middle) A fourth contact reduces the size of the feasible twist cone. (Right)
By changing the angle of the fourth contact normal, no twist is feasible; the
part is in form closure.

12.1.7.1 Number of Contacts Needed for First-Order Form Closure

Each stationary contact i provides a half-space twist constraint of the form

FT

i

V � 0.

Form closure holds if the only twist V satisfying the constraints is the zero twist.
For j contacts, this condition is equivalent to

pos({F
1

, . . . ,F
j

}) = R6

for parts in three dimensions. Therefore, by Fact 2 from the beginning of the
chapter, at least 6 + 1 = 7 contacts are needed for first-order form closure of
spatial parts. For planar parts, the condition is

pos({F
1

, . . . ,F
j

}) = R3,

and 3+1 = 4 contacts are needed for first-order form closure. These results are
summarized in the following theorem.

Theorem 12.1. For a planar part, at least four point contacts are needed for
first-order form closure. For a spatial part, at least seven point contacts are
needed.

Now consider the problem of grasping a circular disk in the plane. It should
be clear that kinematically preventing motion of the disk is impossible regardless
of the number of contacts; it will always be able to spin about its center. Such
objects are called exceptional—the positive span of the contact normal forces
at all points on the object is not equal to Rn, where n = 3 in the planar case
and n = 6 in the spatial case. Examples of such objects in three dimensions
include surfaces of revolution, such as spheres and ellipsoids.

Figure 12.14 shows example planar grasps. The graphical methods of Sec-
tion 12.1.6 indicate that the four contacts in Figure 12.14(a) immobilize the

12.1. Contact Kinematics 415

± ±
±

± ±

 (a) (b) (c) (d) (e) (f)

Figure 12.14: (a) Four fingers yielding planar form closure. The first-order
analysis treats (b) and (c) identically, saying the triangle can rotate about its
center in each case. A second-order analysis shows this is not possible for (b).
The grasps in (d), (e), and (f) are identical by a first-order analysis, which says
that rotation about any center on the vertical line is possible. This is true for
(d), while only some of these centers are possible for (e). No motion is possible
in (f).

object. Our first-order analysis indicates that the parts in Figures 12.14(b) and
12.14(c) can each rotate about their centers in the three-finger grasps, but in
fact this is not possible for the part in Figure 12.14(b)—a second-order analysis
would tell us that this part is actually immobilized. Finally, the first-order anal-
ysis tells us that the two-fingered grasps in Figures 12.14(d)-(f) are identical,
but in fact the part in Figure 12.14(f) is immobilized by only two fingers due to
curvature e↵ects.

To summarize, our first-order analysis always correctly labels breaking and
penetrating motions, but second- and higher-order e↵ects may change first-
order roll-slide motions to breaking or penetrating. If an object is in form
closure by the first-order analysis, it is in form closure for any analysis; if only
roll-slide motions are feasible by the first-order analysis, the object could be in
form closure by a higher-order analysis; and otherwise the object is not in form
closure by any analysis.

12.1.7.2 A Linear Programming Test for First-Order Form Closure

Let F = [F
1

| F
2

| . . . | F
j

] 2 Rn⇥j be a matrix whose columns are formed by
the j contact wrenches. For spatial parts, n = 6, and for planar parts, n = 3
with F

i

= (m
iz

, f
ix

, f
iy

)T . The contacts yield form closure if there exists a
vector of weights k 2 Rj , k � 0 such that Fk + F

ext

= 0 for all F
ext

2 Rn.
Clearly the part is not in form closure if the rank of F is not full (rank(F) <

n). If F is full rank, the form-closure condition is equivalent to the existence of
strictly positive coe�cients k > 0 such that Fk = 0. We can formulate this test

416 Grasping and Manipulation

x̂F1

F4

F3

F2

ŷ

Figure 12.15: Two fingers grasping the interior of an object.

as the following linear program:

find k (12.14)

minimizing 1T k

such that Fk = 0

k
i

� 1, i = 1, . . . , j,

where 1 is a j-vector of ones. If F is full rank and there exists a solution k to
(12.14), the part is in first-order form closure. Otherwise it is not. Note that
the objective function 1T k is not necessary to answer the binary question, but it
is included to make sure the problem is well posed, depending on the LP solver.

Example 12.5. The planar object in Figure 12.15 has a hole in the center.
Two fingers each touch two di↵erent edges of the hole, creating four contact
normals. The matrix F = [F

1

| F
2

| F
3

| F
4

] is

F =

2

4
0 0 �1 2
�1 0 1 0
0 �1 0 1

3

5 .

The matrix F is clearly rank 3. The linear program of (12.14) returns a solution
with k

1

= k
3

= 2, k
2

= k
4

= 1, so the grasp is form closure. If the circular
finger were moved to the bottom right corner of the hole, the new F matrix

F =

2

4
0 0 0 �2
�1 0 1 0
0 �1 0 �1

3

5

is still full rank, but there is no solution to the linear program. This grasp is
not form closure.

12.1.7.3 Measuring the Quality of a Form-Closure Grasp

Consider the two form-closure grasps shown in Figure 12.16. Which is a better
grasp?

12.1. Contact Kinematics 417

Figure 12.16: Both grasps are form closure, but which is better?

Answering this question requires a metric measuring the quality of a grasp.
A grasp metric takes the set of contacts {F

i

} and returns a single value
Qual({F

i

}), where Qual({F
i

}) < 0 indicates that the grasp is not form clo-
sure, and larger positive values indicate better grasps.

There are many reasonable choices of grasp metric. As an example, suppose
that to avoid damaging the object, we require the magnitude of the force at
contact i be less than or equal to f

i,max

> 0, which may be set to 1. Then the
total set of contact wrenches that can be applied by the j contacts is given by

CF =

(
jX

i=1

f
i

F
i

| f
i

2 [0, f
i,max

]

)
. (12.15)

See Figure 12.17 for an example in two dimensions. This is the convex set of
wrenches that the contacts can apply to resist disturbance wrenches applied to
the part. If the grasp is form closure, the set includes the origin of the wrench
space in its interior.

Now the problem is to turn this polytope into a single number representing
the quality of the grasp. Ideally this process would use some idea of the distur-
bance wrenches the part can be expected to experience. A simpler choice is to
set Qual({F

i

}) to be the radius of the largest ball of wrenches, centered at the
origin of the wrench space, that fits inside the convex polytope. In evaluating
this radius, two caveats should be considered: (1) moments and forces have
di↵erent units, so there is no obvious way to equate force and moment magni-
tudes, and (2) the moments due to contact forces depend on the choice of the
location of the origin of the space frame. To address (1), it is common to choose
a characteristic length r of the grasped part and convert contact moments m
to forces m/r. To address (2), the origin can be chosen somewhere near the
geometric center of the part, or at its center of mass.

Given the choice of the space frame and the characteristic length r, we
simply calculate the signed distance from the origin of the wrench space to
each hyperplane on the boundary of CF . The minimum of these distances is
Qual({F

i

}) (Figure 12.17).
Returning to our original example in Figure 12.16, we can see that if each

finger is allowed to apply the same force, then the grasp on the left may be

418 Grasping and Manipulation

d

d(a)

(b)

F1

F3

F2

F3

F2

F1

Figure 12.17: (a) A set of three contact wrenches in a two-dimensional wrench
space, and the radius d of the largest ball of wrenches centered at the origin that
fits inside the wrench polygon. (b) A di↵erent set of three wrenches yielding a
larger inscribed ball.

considered the better grasp, as the contacts can resist greater moments about
the center of the object.

12.1.7.4 Choosing Contacts for Form Closure

Many methods have been suggested for choosing form-closure contacts for fix-
turing or grasping. One approach is to sample candidate grasp points on the
surface of the object (four for planar parts or seven for spatial parts) until a
set is found yielding form closure. From there, the candidate grasp points may
be incrementally repositioned according to gradient ascent using the grasp met-
ric, i.e., @Qual(p)/@p, where p is a vector of all the coordinates of the contact
locations.4

12.2 Contact Forces and Friction

12.2.1 Friction

A commonly used model of friction in robotic manipulation is Coulomb fric-
tion. This experimental law states that the tangential friction force magnitude
f
t

is related to the normal force magnitude f
n

by f
t

 µf
n

, where µ is called the
friction coe�cient. If the contact is sliding, or currently rolling but with in-
cipient slip (i.e., at the next instant the contacts are sliding), then f

t

= µf
n

, and

4
The gradient vector @Qual(p)/@p must be projected to the tangent planes at the points

of contact to keep the contact locations on the surface of the object.

12.2. Contact Forces and Friction 419

μfz
 fz

α

(a) (b) (c)

1
μ

ẑ

x̂ ŷ

Figure 12.18: (a) A friction cone illustrating all possible forces that can be
transmitted through the contact. (b) A side view of the same friction cone
showing the friction coe�cient µ and the friction angle ↵ = tan�1 µ. (c) An
inscribed polyhedral convex cone approximation to the circular friction cone.

the direction of the friction force is opposite of the sliding direction, i.e., friction
dissipates energy. The friction force is independent of the speed of sliding.

Often two friction coe�cients are defined, a static friction coe�cient µ
s

and
a kinetic (or sliding) friction coe�cient µ

k

, where µ
s

� µ
k

. This implies that
a larger friction force is available to resist initial motion, but once motion has
begun, the resisting force is smaller. Many other friction models have been
developed with di↵erent functional dependencies on factors such as the speed
of sliding and the duration of static contact before sliding. All of these are
aggregate models of complex microscopic behavior. For simplicity, we use the
simplest Coulomb friction model with a single friction coe�cient µ. This model
is reasonable for hard, dry materials. The friction coe�cient depends on the
two materials in contact, and typically ranges from 0.1 to 1.

For a contact normal in the +ẑ direction, the set of forces that can be
transmitted through the contact satisfies

q
f2

x

+ f2

y

 µf
z

, f
z

� 0. (12.16)

Figure 12.18(a) shows that this set of forces forms a friction cone. The set
of forces that the finger can apply to the plane lies inside the cone shown.
Figure 12.18(b) shows the same cone from a side view, illustrating the friction
angle ↵ = tan�1 µ, which is the half-angle of the cone. If the contact is not
sliding, the force may be anywhere inside the cone. If the finger slides to the
right, the force it applies lies on the right edge of the friction cone, with a
magnitude determined by the normal force. Correspondingly, the plane applies
the opposing force to the finger, and the tangential (frictional) portion of this
force opposes the sliding direction.

To allow linear formulations of contact mechanics problems, it is often con-
venient to represent the convex circular cone by a polyhedral convex cone. Fig-

420 Grasping and Manipulation

ure 12.18(c) shows an inscribed four-sided pyramidal approximation of the fric-
tion cone, defined by the positive span of the (f

x

, f
y

, f
z

) cone edges (µ, 0, 1),
(�µ, 0, 1), (0, µ, 1), and (0,�µ, 1). We can obtain a tighter approximation to
the circular cone by using more edges. An inscribed cone underestimates the
friction forces available, while a circumscribed cone overestimates the friction
forces. The choice of which to use depends on the application. For example, if
we want to ensure that a robot hand can grasp an object, it is a good idea to
underestimate the friction forces available.

For planar problems, no approximation is necessary—a friction cone is ex-
actly represented by the positive span of the two edges of the cone, similar to
the side view illustrated in Figure 12.18(b).

Once we choose a coordinate frame, any contact force can be expressed as
a wrench F = ([p]f, f), where p is the contact location. This turns the friction
cone into a wrench cone. A planar example is shown in Figure 12.19. The
two edges of the planar friction cone give two rays in the wrench space, and the
wrenches that can be transmitted to the part through the contact is the positive
span of basis vectors along these edges. If F

1

and F
2

are basis vectors for these
wrench cone edges, we write the wrench cone as WC = pos({F

1

,F
2

}).
If multiple contacts act on a part, then the total set of wrenches that can

be transmitted to the part through the contacts is the positive span of all the
individual wrench cones WC

i

,

WC = pos({WC
i

}) =
(
X

i

k
i

F
i

| F
i

2WC
i

, k
i

� 0

)
.

This composite wrench cone is a convex cone rooted at the origin. An example
composite wrench cone is shown in Figure 12.19(d) for a planar object with the
two friction cones shown in Figure 12.19(c). For planar problems, the composite
wrench cone in the three-dimensional wrench space is polyhedral. For spatial
problems, wrench cones in the six-dimensional wrench space are not polyhedral,
unless the individual friction cones are approximated by polyhedral cones, as in
Figure 12.18(c).

If a contact or set of contacts acting on a part is ideally force-controlled, the
wrench F

cont

specified by the controller must lie within the composite wrench
cone corresponding to those contacts. If there are other non-force-controlled
contacts acting on the part, then the cone of possible wrenches on the part
is equivalent to the wrench cone from the non-force-controlled contacts, but
translated to be rooted at F

cont

.

12.2.2 Planar Graphical Methods

12.2.2.1 Representing Wrenches

Any planar wrench F = (m
z

, f
x

, f
y

) with a nonzero linear component can be
represented as an arrow drawn in the plane, where the base of the arrow is at

12.2. Contact Forces and Friction 421

α

(a)

ff

(b)

F1

F2

(c)

f2 f4f3f1

mz

fx
fy

composite
wrench cone

(d)

F3

F1F2

F4

mz

fyfx

x̂
ŷ

x̂

ŷ

Figure 12.19: (a) A planar friction cone with friction coe�cient µ and corre-
sponding friction angle ↵ = tan�1 µ. (b) The corresponding wrench cone. (c)
Two friction cones. (d) The corresponding composite wrench cone.

the point

(x, y) =
1

f2

x

+ f2

y

(m
z

f
y

,�m
z

f
x

),

and the head of the arrow is at (x+f
x

, y+f
y

). The moment is unchanged if we
slide the arrow anywhere along the line of the arrow, so any arrow of the same
direction and length along the line represents the same wrench (Figure 12.20).
If f

x

= f
y

= 0 and m
z

6= 0, the wrench is a pure moment, and we do not try to
represent it graphically.

Two wrenches, represented as arrows, can be summed graphically by sliding
the arrows along their lines until the bases of the arrows are coincident. The
arrow corresponding to the sum of the two wrenches is obtained as shown in Fig-
ure 12.20. The approach can be applied sequentially to sum multiple wrenches
represented as arrows.

422 Grasping and Manipulation

x̂

ŷ

F1

F2

+F1 F2

x̂

ŷ

Figure 12.20: (Left) The planar wrench F = (m
z

, f
x

, f
y

) = (2.5,�1, 2) repre-
sented as an arrow in the x̂-ŷ plane. (Middle) The same wrench can be repre-
sented by an arrow anywhere along the line of action. (Right) Two wrenches
are summed by sliding their arrows along their lines of action until the bases
of the arrows are coincident, then doing a vector sum by the parallelogram
construction.

12.2.2.2 Representing Wrench Cones

In the previous section, each wrench had a specified magnitude. But a rigid-
body contact implies that the contact normal force can be unbounded; it is
whatever is needed to prevent two bodies from penetrating. Therefore it is
useful to have a representation of all wrenches of the form kF , where k � 0 and
F 2 R3 is a basis vector.

One such representation is moment labeling. The arrow for the basis
wrench F is drawn as in Section 12.2.2.1. Then all points in the plane to the
left of the line of the arrow are labeled ‘+,’ indicating that any positive scaling of
F creates a positive moment m

z

about those points, and all points in the plane
to the right of the arrow are labeled ‘�,’ indicating that any positive scaling of
F creates a negative moment about those points. Points on the line are labeled
‘±.’

Generalizing, moment labels can represent any homogeneous convex pla-
nar wrench cone, much like a homogeneous convex planar twist cone can be
represented as a convex CoR region. Given a collection of directed force lines
corresponding to wrenches k

i

F
i

for all k
i

� 0, the wrench cone pos({F
i

}) can
be represented by labeling each point in the plane with a ‘+’ if each of the F

i

makes nonnegative moment about that point, a ‘�’ if each F
i

makes nonpositive
moment about that point, a ‘±’ if each makes zero moment about that point,
or a blank label if at least one wrench makes positive moment and at least one

12.2. Contact Forces and Friction 423

++ _

+_
+

_

+_

(a) (b) (c)

F1

F3

F1F2 F1 F2

Figure 12.21: (a) Representing a line of force by moment labels. (b) Represent-
ing the positive span of two lines of force by moment labels. (c) The positive
span of three lines of force.

wrench makes negative moment about that point.
The idea is best illustrated by an example. In Figure 12.21(a), the basis

wrench F
1

is represented by labeling the points to the left of the line with a +
and points to the right of the line with a �. Points on the line are labeled ±. In
Figure 12.21(b), another basis wrench is added, which could represent the other
edge of a planar friction cone. Only the points in the plane that are consistently
labeled for both lines of force retain their labels; inconsistently labeled points
lose their labels. Finally, a third basis wrench is added in Figure 12.21(c). The
result is a single region labeled +. A nonnegative linear combination of the
three basis wrenches can create any line of force in the plane that passes around
this region in a counterclockwise sense. No other wrench can be created.

If an additional basis wrench were added passing clockwise around the region
labeled + in Figure 12.21(c), then there would be no consistently labeled point
in the plane: the positive linear span of the four wrenches is the entire wrench
space R3.

The moment-labeling representation is equivalent to a homogeneous con-
vex wrench cone representation. The moment labeling regions in each of Fig-
ure 12.21(a), (b), and (c) is properly interpreted as a single convex region, much
like the CoR regions of Section 12.1.6.

12.2.3 Force Closure

Consider a single movable object and a number of frictional contacts. We say
the contacts result in force closure if the composite wrench cone contains the
entire wrench space—any external wrench F

ext

on the object can be balanced
by contact forces.

We can derive a simple linear test for force closure which is exact for planar

424 Grasping and Manipulation

_
+

(a) (b)

Figure 12.22: An equilateral triangle can be force-closure grasped by two fingers
on edges of the triangle if µ � tan 30� ⇡ 0.577. (a) This grasp with µ = 0.25
is not force closure, as indicated by the consistently labeled moment-labeling
region. (b) This grasp is force closure with µ = 1.

cases and approximate for spatial cases. Let F
i

, i = 1 . . . j, be the wrenches
corresponding to the edges of the friction cones for all the contacts. For planar
problems, each friction cone contributes two edges, and for spatial problems,
each friction cone contributes three or more edges, depending on the polyhedral
approximation chosen (see Figure 12.18(c)). The columns of the n ⇥ j matrix
F are the F

i

, where n = 3 for planar problems and n = 6 for spatial problems.
Now the test for force closure is identical to that for form closure. The contacts
yield force closure if

• rank(F) = n, and

• there exists a solution to the linear programming problem (12.14).

In the case of µ = 0, each contact can provide forces only along the normal
direction, and force closure is equivalent to first-order form closure.

12.2.3.1 Number of Contacts Needed for Force Closure

For planar problems, four contact wrenches are su�cient to positively span
the three-dimensional wrench space, which means that as few as two frictional
contacts (with two friction cone edges each) are su�cient for force closure. Using
moment labeling, we see that force closure is equivalent to having no consistent
moment labels. For example, if the two contacts can “see” each other by a line
inside both friction cones, we have force closure (Figure 12.22).

It is important to note that force closure simply means that the contact
friction cones can generate any wrench. It does not necessarily mean that the
object will not move in the presence of an external wrench, however. For the
example of Figure 12.22(b), whether the triangle falls under gravity or not
depends on the internal forces between the fingers. If the motors powering the
fingers cannot provide su�cient forces, or if they are restricted to only generate
forces in certain directions, the triangle may fall despite force closure.

12.2. Contact Forces and Friction 425

x y

z

r1

r3

r2

contact 3

contact 2

plane S

contact 1

Figure 12.23: A spatial rigid body restrained by three point contacts with fric-
tion.

Figure 12.24: Three possibilities for the intersection between a friction cone and
a plane.

Two frictional point contacts are insu�cient to yield force closure for spatial
parts, as there is no way to generate moment about the axis joining the two
contacts. A force-closure grasp can be obtained with as few as three frictional
contacts, however. A particularly simple and appealing result due to Li et al. [65]
reduces the force closure analysis of spatial frictional grasps to a planar force
closure problem. Referring to Figure 12.23, suppose a rigid body is constrained
by three point contacts with friction. If the three contact points happen to be
collinear, then obviously any moment applied about this line cannot be resisted
by the three contacts. We can therefore exclude this case, and assume that the
three contact points are not collinear. The three contacts then define a unique
plane S, and at each contact point, three possibilities arise (see Figure 12.24):

• The friction cone intersects S in a planar cone;

• The friction cone intersects S in a line;

• The friction cone intersects S in a point.

The object is in force closure if and only if each of the friction cones intersects
S in a planar cone, and S is also in planar force closure.

Theorem 12.2. Given a spatial rigid body restrained by three point contacts
with friction, the body is in force closure if and only if the friction cone at each
of the contacts intersects the plane S of the contacts in a cone, and the plane S
is in planar force closure.

426 Grasping and Manipulation

Proof. First, the necessity condition—if the spatial rigid body is in force closure,
then each of the friction cones intersects S in a planar cone and S is also in planar
force closure—is easily verified: if the body is in spatial force closure, then S
(which is a part of the body) must also be in planar force closure. Moreover, if
even one friction cone intersects S in a line or point, then there will be external
moments (e.g., about the line between the remaining two contact points) that
cannot be resisted by the grasp.

To prove the su�ciency condition—if each of the friction cones intersects S
in a planar cone and S is also in planar force closure, then the spatial rigid body
is in force closure—choose a fixed reference frame such that S lies in the x-y
plane, and let r

i

2 R3 denote the vector from the fixed frame origin to contact
point i (see Figure 12.23). Denoting the contact force at i by f

i

2 R3, the
contact wrench F

i

2 R6 is then of the form

F
i

=

m

i

f
i

�
, (12.17)

where each m
i

= r
i

⇥ f
i

, i = 1, 2, 3. Denote the arbitrary external wrench
F

ext

2 R6 by

F
ext

=

m

ext

f
ext

�
2 R6. (12.18)

Force closure then requires that there exist contact wrenches F
i

, i = 1, 2, 3, each
lying inside its respective friction cone, such that for any external disturbance
wrench F

ext

, the following equality is satisfied:

F
1

+ F
2

+ F
3

+ F
ext

= 0, (12.19)

or equivalently,

f
1

+ f
2

+ f
3

+ f
ext

= 0 (12.20)

(r
1

⇥ f
1

) + (r
2

⇥ f
2

) + (r
3

⇥ f
3

) +m
ext

= 0, (12.21)

If each of the contact forces and moments, as well as the external force and mo-
ment, is orthogonally decomposed into components lying on the plane spanned
by S (corresponding to the x-y plane in our chosen reference frame) and its
normal subspace N (corresponding to the z-axis in our chosen reference frame),
then the previous force closure equality relations can be written

f
1S

+ f
2S

+ f
3S

= �f
ext,S

(12.22)

(r
1

⇥ f
1S

) + (r
2

⇥ f
2S

) + (r
3

⇥ f
3S

) = �m
ext,S

(12.23)

f
1N

+ f
2N

+ f
3N

= �f
ext,N

(12.24)

(r
1

⇥ f
1N

) + (r
2

⇥ f
2N

) + (r
3

⇥ f
3N

) = �m
ext,N

. (12.25)

In what follows we shall use S to refer both to the slice of the rigid body
corresponding to the x-y plane, as well as the x-y plane itself. N will always be
identified with the z-axis.

12.2. Contact Forces and Friction 427

Proceeding with the proof of su�ciency, we now show that if S is in pla-
nar force closure, then the body is in spatial force closure. In terms of Equa-
tions (12.24)-(12.25) we wish to show that, for any arbitrary forces f

ext,S

2 S,
f
ext,N

2 N and arbitrary moments m
ext,S

2 S, m
ext,N

2 N , there exist contact
forces f

iS

2 S, f
iN

2 N , i = 1, 2, 3, that satisfy (12.24)-(12.25), and such that
for each i = 1, 2, 3, the contact force f

i

= f
iS

+ f
iN

lies in friction cone i.
First consider the force closure equations (12.24)-(12.25) in the normal di-

rection N . Given an arbitrary external force f
ext,N

2 N and external moment
m

ext,S

2 S, Equations (12.24)-(12.25) constitute a set of three linear equations
in three unknowns. From our assumption that the three contact points are never
collinear, these equations will always have a unique solution set {f⇤

1N

, f⇤
2N

, f⇤
3N

}
in N .

Since S is assumed to be in planar force closure, for any arbitrary f
ext,S

2 S
and m

ext,N

2 N , there will exist planar contact forces f
iS

2 S, i = 1, 2, 3, that
lie inside their respective planar friction cones and also satisfy Equations (12.22)-
(12.23). This solution set is not unique: one can always find a set of internal
forces ⌘

i

2 S, i = 1, 2, 3, each lying inside its respective friction cone, satisfying

⌘
1

+ ⌘
2

+ ⌘
3

= 0 (12.26)

(r
1

⇥ ⌘
1

) + (r
2

⇥ ⌘
2

) + (r
3

⇥ ⌘
3

) = 0. (12.27)

(To see why such ⌘
i

exist, recall that since S is assumed to be in planar force
closure, solutions to (12.22)-(12.23) must exist for f

ext,S

= µ
ext,N

= 0; these
solutions are precisely the internal forces ⌘

i

). Note that these two equations
constitute three linear equality constraints involving six variables, so that there
exists a three-dimensional linear subspace of solutions for {⌘

1

, ⌘
2

, ⌘
3

}.
Now if {f

1S

, f
2S

, f
3S

} satisfy (12.22)-(12.23), then so will {f
1S

+ ⌘
1

, f
2S

+
⌘
2

, f
3S

+ ⌘
3

}. The internal forces {⌘
1

, ⌘
2

, ⌘
3

} can in turn be chosen to have
su�ciently large magnitude so that the contact forces

f
1

= f⇤
1N

+ f
1S

+ ⌘
1

(12.28)

f
2

= f⇤
2N

+ f
2S

+ ⌘
2

(12.29)

f
3

= f⇤
3N

+ f
3S

+ ⌘
3

(12.30)

all lie inside their respective friction cone. This completes the proof of the
su�ciency condition.

12.2.3.2 Measuring the Quality of a Force-Closure Grasp

Friction forces are not always repeatable. For example, try putting a coin on a
book and tilting the book. The coin should begin to slide when the book is at an
angle ↵ = tan�1 µ with respect to horizontal. If you do the experiment several
times, you may find a range of measured values of µ, however, due to e↵ects
that are di�cult to model. For that reason, when choosing between grasps,
it is reasonable to choose finger locations that minimize the friction coe�cient
needed to achieve force closure.

428 Grasping and Manipulation

12.2.4 Duality of Force and Motion Freedoms

Our discussion of kinematic constraints and friction should make apparent that,
for any point contact and contact label, the number of equality constraints on
the part’s motion caused by that contact is equal to the number of wrench
freedoms it provides. For example, a breaking contact B provides zero equality
constraints on the part motion and also allows no contact force. A fixed contact
R provides 3 motion constraints (the motion of a point on the part is specified)
and 3 freedoms on the contact force: any wrench in the interior of the contact
wrench cone is consistent with the contact mode. Finally, a slipping contact
S provides 1 equality motion constraint (one equation on the part’s motion
must be satisfied to maintain the contact), and for a given motion satisfying the
constraint, the contact wrench has only 1 freedom, the magnitude of the contact
wrench on the edge of the friction cone and opposing the slipping direction. In
the planar case, the motion constraints and wrench freedoms for B, S, and R
contacts are 0, 1, and 2, respectively.

12.3 Manipulation

So far we have studied the feasible twists and contact forces due to a set of
contacts. We have also considered two types of manipulation: form- and force-
closure grasping.

Manipulation consists of much more than just grasping, however. It includes
almost anything where manipulators impose motions or forces with the purpose
of achieving motion or restraint of objects. Examples include carrying glasses
on a tray without toppling them, pivoting a refrigerator about a foot, pushing a
sofa on the floor, throwing and catching a ball, transporting parts on a vibratory
conveyor, etc. Endowing a robot with methods of manipulation beyond grasp-
and-carry allows it to manipulate several parts simultaneously; manipulate parts
that are too large to be grasped or too heavy to be lifted; or even to send parts
outside the workspace of the end-e↵ector by throwing.

To plan such manipulation tasks, we use the contact kinematic constraints
of Section 12.1, the Coulomb friction law of Section 12.2, and the dynamics of
rigid bodies. Restricting ourselves to a single rigid body and using the notation
of Chapter 8, the part’s dynamics are written

F
ext

+
X

k
i

F
i

= GV̇ � [adV]
TGV , k

i

� 0, F
i

2WC
i

, (12.31)

where V is the part’s twist, G is its spatial inertia matrix, F
ext

is the external
wrench acting on the part due to gravity, etc., WC

i

is the set of possible wrenches
acting on the object due to contact i, and

P
k
i

F
i

is the wrench due to the
contacts, and all wrenches are written in the part’s center of mass frame. Now,
given a set of motion- or force-controlled contacts acting on the part, and the
initial state of the system, one method for solving for the motion of the part is
the following:

12.3. Manipulation 429

(i) Enumerate the set of possible contact modes considering the current state
of the system (e.g., a contact that is currently sticking can transition to
sliding or breaking). The contact modes consist of the contact labels R, S,
and B at each contact.

(ii) For each contact mode, determine if there exists a contact wrench
P

k
i

F
i

that is consistent with the contact mode and Coulomb’s law, and an accel-
eration V̇ consistent with the kinematic constraints of the contact mode,
such that Equation (12.31) is satisfied. If so, this contact mode, contact
wrench, and part acceleration is a consistent solution to the rigid-body
dynamics.

This kind of “case analysis” may sound unusual; we are not simply solving
a set of equations. It also leaves open the possibility that we could find more
than one consistent solution, or perhaps no consistent solution. This is, in
fact, the case: we can define problems with multiple solutions (ambiguous)
and problems with no solutions (inconsistent). This state of a↵airs is a bit
unsettling; surely there is exactly one solution to any real mechanics problem!
But this is the price we pay to use the assumptions of perfectly rigid bodies and
Coulomb friction. Also, for many problems the method described above will
yield a unique contact mode and motion.

In this chapter we do not provide tools to solve the general simulation prob-
lem. Instead, we focus on manipulation problems that permit solutions using our
first-order kinematic analysis. We also consider quasistatic problems, where
the velocities and accelerations of the parts are small so that inertial forces
may be ignored. Contact wrenches and external wrenches are always in force
balance, and Equation (12.31) reduces to

F
ext

+
X

k
i

F
i

= 0, k
i

� 0, F
i

2WC
i

. (12.32)

Below we illustrate the methods of this chapter with several examples.

Example 12.6. A block carried by two fingers.
Consider a planar block in gravity supported by two fingers, as in Figure 12.25(a).
The friction coe�cient between one finger and the block is µ = 1, and the other
contact is frictionless. Thus the cone of wrenches that can be applied by the
fingers is pos({F

1

,F
2

,F
3

}), as shown using moment labeling in Figure 12.25(b).
Our first question is whether the stationary fingers can keep the block at

rest. To do so, the fingers must provide a wrench F = (m
z

, f
x

, f
y

) = (0, 0,mg)
to balance F

ext

= (0, 0,�mg) due to gravity, where g > 0. As shown in Fig-
ure 12.25(b), however, this wrench is not in the composite cone of possible
contact wrenches. Therefore the contact mode RR is not feasible, and the block
will move relative to the fingers.

Now consider the case where the fingers each accelerate to the left at 2g. In
this case, the contact mode RR requires that the block also accelerate to the left
at 2g. The wrench needed to cause this acceleration is (0,�2mg, 0). Therefore
the total wrench that the fingers must apply to the block is (0,�2mg, 0)�F

ext

=

430 Grasping and Manipulation

_

+

_

+

–mg

mg
F1 F2

F3

_

+

k3F3

k1F1 k2F2+

(a) (b)

(c) (d)

acceleration
force

mg

x̂

ŷ

Figure 12.25: (a) A planar block in gravity supported by two robot fingers, one
with a friction cone with µ = 1 and one with µ = 0. (b) The composite wrench
cone that can be applied by the fingers represented using moment labels. To
balance the block against gravity, the fingers must apply the line of force shown.
This line makes positive moment with respect to some points labeled �, and
therefore it cannot be generated by the two fingers. (c) For the block to match
the fingers’ acceleration to the left, the contacts must apply the vector sum of
the wrench to balance gravity plus the wrench needed to accelerate the block
to the left. This total wrench lies inside the composite wrench cone, as the
line of force makes positive moment with respect to the points labeled + and
negative moment with respect to the points labeled �. (d) The total wrench
applied by the fingers in Figure (c) can be translated along the line of action
without changing the wrench. This allows us to easily visualize the components
k
1

F
1

+ k
2

F
2

and k
3

F
3

provided by the fingers.

(0,�2mg,mg). As shown in Figures 12.25(c) and (d), this wrench lies inside the
composite wrench cone. Thus RR (the block stays stationary relative to the
fingers) is a solution as the fingers accelerate to the left at 2g.

This is called a dynamic grasp—inertial forces are used to keep the block
pressed against the fingers while the fingers move. If we plan to manipulate the
block using a dynamic grasp, we should make certain that no contact modes
other than RR are feasible, for completeness.

Moment labels are convenient for understanding this problem graphically,

12.3. Manipulation 431

but we can also solve it algebraically. Finger one contacts the block at (x, y) =
(�3,�1) and finger 2 contacts the block at (1, 1). This gives the basis contact
wrenches

F
1

=
1p
2
(�4,�1, 1)T

F
2

=
1p
2
(�2, 1, 1)T

F
3

= (1,�1, 0)T .

Let the fingers’ acceleration in the x direction be written a
x

. Then, under
the assumption that the block stays fixed to the fingers (RR contact mode),
Equation (12.31) can be written

k
1

F
1

+ k
2

F
2

+ k
3

F
3

+ (0, 0,�mg) = (0,ma
x

, 0). (12.33)

This yields three equations in the three unknowns, k
1

, k
2

, k
3

. Solving, we get

k
1

= � 1

2
p
2
(a

x

+ g)m, k
2

=
1

2
p
2
(a

x

+ 5g)m, k
3

= �1

2
(a

x

� 3g)m.

For the k
i

to be nonnegative, we need �5g a
x

 �g. For x-direction finger
accelerations in this range, a dynamic grasp is a consistent solution.

Example 12.7. The meter stick trick.
Try this experiment: Get a meter stick (or any similar long smooth stick) and
balance it horizontally on your two index fingers. Place your left finger near
the 10 cm mark and your right finger near the 60 cm mark. The center of mass
is closer to your right finger, but still between your fingers, so that the stick
is supported. Now, keeping your left finger stationary, slowly move your right
finger towards your left until they touch. What happens to the stick?

If you didn’t try the experiment, you might guess that your right finger
passes under the center of mass of the stick, at which point the stick falls. If
you did try the experiment, you saw something di↵erent. Let’s see why.

Figure 12.26 shows the stick supported by two frictional fingers. Since all
motions are slow, we use the quasistatic approximation that the stick’s accelera-
tion is zero, and the net contact wrench must balance the gravitational wrench.
As the two fingers move together, the stick must slip on one or both fingers to
accommodate the fact that the fingers are getting closer to each other. Fig-
ure 12.26 shows the moment-labeling representation of the composite wrench
cone for three di↵erent contact modes where the stick remains stationary on the
left finger (R) or slips left relative to it (Sl) while either remaining stationary
on the right finger (R) or slipping right relative to it (Sr). It is clear from the
figure that only the SlR contact mode can provide a wrench that balances the
gravitational wrench. In other words, the right finger, which supports more of
the stick’s weight, remains sticking, while the left finger slides under the stick.
Since the right finger is moving to the left in the world frame, this means the
center of mass is moving to the left at the same speed. This continues until the

432 Grasping and Manipulation

mg
R Sr

Sl R

mg
+

_

mg _+

mg

+ _

Sl Sr

+_

RSr

SlR

SlSr

Figure 12.26: Top left: Two frictional fingers supporting a meter stick in gravity.
The other three panels show the moment labels for the RSr, SlR, and SlSr
contact modes. Only the SlR contact mode yields force balance.

center of mass is halfway between the fingers, at which point the stick transi-
tions to the SlSr contact mode, and the center of mass stays centered between
the fingers until they meet. The stick never falls.

Note that this analysis relies on the quasistatic assumption. It is easy to
make the stick fall if you move your right finger quickly; the friction force at
the right finger is not large enough to create the large stick acceleration needed
to maintain a sticking contact. Also, in your experiment, you might notice that
when the center of mass is nearly centered, the stick does not actually achieve
the idealized SlSr contact mode, but instead switches rapidly between the SlR
and RSr contact modes. This is because the static friction coe�cient is larger
than the kinetic friction coe�cient.

Example 12.8. Stability of an assembly.

12.3. Manipulation 433

F1 F2 F3 F4
F5

F6
F7

F8
F9

F10
F11

F12
F13

F14 F15 F16

1 2
3

Figure 12.27: Left: An arch in gravity. Right: The friction cones at the contacts
of the stones 1 and 2.

Consider the arch in Figure 12.27. Is it stable under gravity?
For a problem like this, graphical planar methods are di�cult to use, since

there are potentially multiple moving parts. Instead we test algebraically for
consistency of the contact mode with all contacts labeled R. The friction cones
are shown in Figure 12.27. With these labelings of the friction cone edges,
the arch remaining standing is a consistent solution if there exist k

i

� 0 for
i = 1 . . . 16 satisfying the following nine wrench-balance equations, three for
each body:

8X

i=1

k
i

F
i

+ F
ext1

= 0

16X

i=9

k
i

F
i

+ F
ext2

= 0

�
12X

i=5

k
i

F
i

+ F
ext3

= 0.

The last set of equations comes from the fact that wrenches that body 1 applies
to body 3 are equal and opposite those that body 3 applies to body 1, and
similarly for bodies 2 and 3.

This linear constraint satisfaction problem can be solved by a variety of
methods, including linear programming.

Example 12.9. Peg insertion.
Figure 12.28 shows a force-controlled planar peg in two-point contact with a
hole during insertion. Also shown are the contact friction cones acting on the
peg and the corresponding composite wrench cone, illustrated using moment
labels. If the force controller applies the wrench F

1

to the peg, it may jam—
the hole may generate contact forces that balance F

1

. Therefore the peg may
get stuck in this position. If the force controller applies the wrench F

2

, however,
the contacts cannot balance the wrench and insertion proceeds.

If the friction coe�cients at the two contacts are large enough that the two
friction cones “see” each others’ base, the peg is in force closure, and the contacts
may be able to resist any wrench (depending on the internal force between the
two contacts). The peg is said to be wedged.

434 Grasping and Manipulation

F2

_

F1

Figure 12.28: Left: A peg in two-point contact with a hole. Right: The wrench
F

1

may cause the peg to jam, while the wrench F
2

continues to push the peg
into the hole.

12.4 Summary

• Three ingredients are needed to solve rigid-body contact problems with
friction: (1) contact kinematics, which describe the feasible motions of
rigid bodies in contact; (2) a contact force model, which describes what
forces can be transmitted through frictional contacts; and (3) rigid-body
dynamics, as described in Chapter 8.

• Let two rigid bodies, A and B, be in point contact at p
A

in a space frame.
Let n̂ 2 R3 be the unit contact normal, pointing into body A. Then the
spatial contact wrench F associated with a unit force along the contact
normal is F = (([p

A

]n̂)T n̂T)T . The impenetrability constraint is

FT (V
A

� V
B

) � 0,

where V
A

and V
B

are the spatial twists of A and B.

• A contact that is sticking or rolling is assigned the contact label R, a con-
tact that is sliding is assigned the contact label S, and a contact that is
breaking free is given the contact label B. For a body with multiple con-
tacts, the contact mode is the concatenation of the labels of the individual
contacts.

• A single rigid body subjected to multiple stationary point contacts has a
homogeneous (rooted at the origin) polyhedral convex cone of twists that
satisfy all the impenetrability constraints.

• A homogeneous polyhedral convex cone of planar twists in R3 can be
equivalently represented by a convex region of signed rotation centers in
the plane.

• If a set of stationary contacts prevents an object from moving, purely by
a kinematic analysis considering only the contact normals, the object is

12.5. Notes and References 435

said to be in first-order form closure. The contact wrenches F
i

for contacts
i = 1 . . . j positively span Rn, where n = 3 for the planar case and n = 6
for the spatial case.

• At least four point contacts are required for first-order form closure of a
planar part, and at least seven point contacts are required for first-order
form closure of a spatial part.

• The Coulomb friction law states that the tangential frictional force mag-
nitude f

t

at a contact satisfies f
t

 µf
n

, where µ is the friction coe�cient
and f

n

is the normal force. When the contact is sticking, the frictional
force can be anything satisfying this constraint. When the contact is slid-
ing, f

t

= µf
n

, and the direction of the friction force opposes the direction
of sliding.

• Given a set of frictional contacts acting on a body, the wrenches that can
be transmitted through these contacts is the positive span of the wrenches
that can be transmitted through the individual contacts. These wrenches
form a homogeneous convex cone. If the body is planar, or if the body
is spatial but the contact friction cones are approximated by polyhedral
cones, the wrench cone is also polyhedral.

• A homogeneous convex cone of planar wrenches in R3 can be represented
as a convex region of moment labels in the plane.

• An object is in force closure if the homogeneous convex cone of contact
wrenches from the stationary contacts is the entire wrench space (R3 or
R6). If the contacts are frictionless, force closure is equivalent to first-order
form closure.

12.5 Notes and References

The kinematics of contact draw heavily from concepts in linear algebra (see,
for example, the texts [131, 87]) and, more specifically, screw theory [4, 93, 13,
1, 86]. Graphical methods for analysis of planar constraints were introduced
by Reuleaux [104], and Mason introduced graphical construction of contact
labels for planar kinematics and moment labels for representation of homoge-
neous wrench cones [81, 82]. Polyhedral convex cones, and their application
in representing feasible twist cones and contact wrench cones, are discussed
in [82, 46, 30, 37]. The formalization of the friction law used in this chapter was
given by Coulomb in 1781 [21]. Surprising consequences of Coulomb friction are
problems of ambiguity and inconsistency [69, 82, 85] and that infinite friction
does not necessarily prevent slipping at an active contact [75].

Form closure and force closure are discussed in detail in the Handbook of
Robotics [100]. In particular, that reference uses the term “frictional form
closure” to mean the same thing that “force closure” means in this chapter.
According to [100], force closure additionally requires that the hand doing the

436 Grasping and Manipulation

grasping be su�ciently capable of controlling the internal “squeezing” forces.
Similar distinctions are made in [9] and the reviews [11, 10]. In this chapter
we do not consider the details of the robot hand and adopt a definition of force
closure based solely on the geometry and friction of the contacts.

The numbers of contacts needed for planar and spatial form closure were
established by Reuleaux [104] and Somo↵ [127], respectively. Other foundational
results in form and force closure grasping are developed in [56, 89, 78] and are
reviewed in [10, 100]. An overview of grasp quality metrics is given in [100].
The result that two friction cones that can “see” each other’s base are su�cient
for planar force closure was first reported in [92], and the result reviewed in this
chapter on three-finger force-closure grasps in 3D appeared in [65]. Salisbury
applied Grübler’s formula to calculate the mobility of a grasped object using
kinematic models of contact like those in Table 12.1 [84].

Second-order models of contact constraints were introduced by Rimon and
Burdick [106, 105, 107, 108] and used to show that curvature e↵ects allow form
closure by fewer contacts.

Jamming and wedging in robotic insertion were described in [125, 91, 139],
and the notion of a dynamic grasp was first introduced in [83].

An important class of methods for simulating systems of rigid bodies in
frictional contact, not covered in this chapter, are based on solving linear and
nonlinear complementarity problems [130, 94, 135]. These complementarity
formulations directly encode the fact that if a contact is breaking, then no force
is applied; if a contact is sticking, then the force can be anywhere inside the
friction cone; and if a contact is sliding, the force is on the edge of the friction
cone.

General references on contact modeling and manipulation include Handbook
of Robotics chapters [46, 100] and the texts by Mason [82] and Murray et al. [90].

12.6. Exercises 437

1 3

4

2 5

Figure 12.29: A triangle in contact with five stationary fingers, yielding first-
order form closure and therefore force closure. You will analyze the contact
when one or more of the fingers are removed. The hypotenuse of the triangle is
45� from vertical on the page, and contact normal 5 is 22.5� from vertical.

12.6 Exercises

1. Prove that the impenetrability constraint (12.4) is equivalent to the con-
straint (12.7).

2. (a) Consider the two planar twists V
1

= (!
z1

, v
x1

, v
y1

) = (1, 2, 0) and V
2

=
(!

z2

, v
x2

, v
y2

) = (1, 0,�1). Draw the corresponding CoRs in a planar coordinate
frame, and illustrate pos({V

1

,V
2

}) as CoRs. (b) Draw the positive span of
V
1

= (!
z1

, v
x1

, v
y1

) = (1, 2, 0) and V
2

= (!
z2

, v
x2

, v
y2

) = (�1, 0,�1) as CoRs.

3. A rigid body is contacted at p = (1, 2, 3) with a contact normal into the
object n̂ = (0, 1, 0). Write the constraint on the body’s twist V due to this
contact.

4. A space frame {s} is defined at a contact between a stationary constraint and
an object. The contact normal, into the object, is the ẑ-axis of the {s} frame.
(a) Write the constraint on the object’s twist V if the contact is a frictionless
point contact. (b) Write the constraints on V if the contact is a point contact
with friction. (c) Write the constraints on V if the contact is a soft contact.

5. Figure 12.29 shows five stationary “fingers” contacting an object. The object
is in first-order form closure and therefore force closure. If we take away one
finger, the object may still be in form closure. For which subsets of four fingers
is the object still in form closure? Prove your answers using graphical methods.

6. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29 is
contacted only by fingers 1 and 2. Label the feasible CoRs with their contact

438 Grasping and Manipulation

labels.

7. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29 is
contacted only by fingers 2 and 3. Label the feasible CoRs with their contact
labels.

8. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29 is
contacted only by fingers 2 and 3. Label the feasible CoRs with their contact
labels.

9. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29 is
contacted only by fingers 1 and 5. Label the feasible CoRs with their contact
labels.

10. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29
is contacted only by fingers 1, 2, and 3.

11. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29
is contacted only by fingers 1, 2, and 4.

12. Draw the set of feasible twists as CoRs when the triangle of Figure 12.29
is contacted only by fingers 1, 3, and 5.

13. Refer to the triangle of Figure 12.29. (a) Draw the wrench cone from
contact 5, assuming a friction angle ↵ = 22.5� (a friction coe�cient µ = 0.41),
using moment labeling. (b) Add contact 2 to the moment-labeling drawing.
The friction coe�cient at contact 2 is µ = 1.

14. Refer to the triangle of Figure 12.29. Draw the moment-labeling region
corresponding to contact 1 with µ = 1 and contact 4 with µ = 0.

15. (a) The planar grasp of Figure 12.30 consists of five frictionless point
contacts. The square is of size 4⇥ 4. Show that this grasp is not force closure.
(b) The grasp of part (a) can be made force closure by adding one frictionless
point contact. Draw all the possible locations for this contact.

16. Assume all contacts shown in Figure 12.31 are frictionless point contacts.
Determine whether the grasp is force closure. If it is not, how many additional
frictionless point contacts are needed to construct a force closure grasp?

17. (a) In Figure 12.32-(a), the planar object with two rectangular holes is re-
strained from the interior by four frictionless point contacts. Determine whether
this grasp is force closure.

12.6. Exercises 439

Figure 12.30: A 4⇥4 planar square restrained by five frictionless point contacts.

45°

45°

Figure 12.31: A planar disk restrained by three frictionless point contacts.

(b) In Figure 12.32-(b), the same planar object with two rectangular holes is
now restrained from the interior by three frictionless point contacts. Determine
whether this grasp is force closure.

18. The planar object of Figure 12.33 is restrained by four frictionless point
contacts.
(a) Determine if this grasp is force closure.
(b) Suppose the contacts A, B, C, D are now allowed to slide along the half-
circle (without crossing each other). Describe the set of all possible force closure
grasps.

19. (a) Determine whether the grasp of Figure 12.34-(a) is force closure. As-
sume all contacts are frictionless point contacts. If the grasp is not force closure,
slide the position of one of the contacts in order to construct a force closure

440 Grasping and Manipulation

1

1

1 1 1 1

2

2

2 2

(a)

1

1

1 1 1 1

2

2

2 2

(b)

Figure 12.32: A planar rigid body with two square holes.

Figure 12.33: A planar wedge-like object with a hole.

grasp.
(b) Now place two frictionless point contacts at the corners as shown in Fig-
ure 12.34-(b). Determine if this grasp is force closure.
(c) In the grasp of Figure 12.34-(c), contact A is a point contact with friction
(its friction cone is 90� as indicated in the figure), while contacts B and C are
frictionless point contacts. Determine whether this grasp is force closure.

20. Determine whether the grasp of Figure 12.35 is force closure. Assume all
contacts are point contacts with a friction coe�cient µ = 1.

12.6. Exercises 441

(a) (b)

(c)

Figure 12.34: A planar rigid body restrained by point contacts.

21. (a) In the planar triangle of Figure 12.36-(a), contacts A, B, and C are
all frictionless point contacts. is this grasp force closure? If not, what type of
external force or moment would cause the object to slip out of the grasp?
(b) In the planar triangle of Figure 12.36-(a), suppose now that contact A is
a point contact with friction coe�cient µ = 1, while contacts B and C are
frictionless point contacts. Determine whether the grasp shown is force closure.
(c) Now suppose contact point A can be moved to anywhere on the hypotenuse
of the triangle as shown in Figure 12.36-(b). Determine the range of all contact
points A for which the grasp is force closure.
(d) Contact points B and C are now moved as shown in Figure 12.37. Bill,
a clever student, argues that the two contacts B and C can be replaced by a
virtual point contact with friction (point D) with the given friction cone, and

442 Grasping and Manipulation

Figure 12.35: A planar rigid body restrained by three point contacts with fric-
tion.

(a) (b)

Figure 12.36: A planar triangle constrained by three point contacts.

Nguyen’s condition for force closure can now be applied to A and D, as shown
in the right Figure 12.37. Is Bill correct? Justify your answer with a derivation
of the appropriate force closure condition.

22. Consider the L-shaped planar object of Figure 12.38.
(a) Suppose both contacts are point contacts with friction coe�cient µ = 1.
Determine whether this grasp is force closure.
(b) Now suppose point contact 1 is a point contact with friction coe�cient
µ = 1, while point contact 2 is frictionless. Determine whether this grasp is

12.6. Exercises 443

Figure 12.37: A planar triangle constrained by three point contacts.

x

L L

L

L

1
2

Figure 12.38: An L-shaped planar object restrained by two point contacts with
friction.

force closure.
(c) Suppose now that the vertical position of contact 1 is allowed to vary; denote
its height by x. Find all positions x such that the grasp of part (b) is force
closure.

23. A square is restrained by three point contacts as shown in Figure 12.39:
contact f

1

is a point contact with friction coe�cient µ, while contacts f
2

and
f
3

are frictionless point contacts. If c = 1

4

and h = 1

2

, find the range of values
of µ such that grasp is force closure.

24. In the grasp of Figure 12.40, contacts f
1

and f
2

on the left are frictionless
point contacts, while contact f

3

on the right is a point contact with friction
coe�cient µ = 0.2. Determine whether this grasp is force closure.

25. A single point contact with friction coe�cient µ = 1 is applied to the left
side of the square doughnut as shown in Figure 12.41. A force closure grasp can

444 Grasping and Manipulation

x

y

f

f

f

h

0.5

0.5

1

C

1

3

2

α

Figure 12.39: A square restrained by three point contacts.

x

y

f

f

f

2

2

5

1

2

1

1

3

2

Figure 12.40: A rectangle restrained by three point contacts.

be constructed by adding another point contact with friction, also with µ = 1.
Draw all possible locations for this additional point contact.

26. (a) In the planar grasp of Figure 12.42(a), contacts A and B are frictionless,
while contact C has friction, with friction cone as shown given by the angle �.
Find the smallest value of � that makes this grasp a force closure grasp.
(b) Now suppose contacts A and B have friction, with 90� friction cones as

12.6. Exercises 445

Figure 12.41: A square doughnut.

1

1

1

1β

A B

C

(a)

1

1

1

1β

A B

C

(b)

Figure 12.42: Planar grasp.

shown in Figure 12.42(b). Find the smallest value of � that makes this grasp a
force closure grasp.

27. The square object of Figure 12.43 has four holes as shown. The four holes
form parts of a circle.
(a) In the planar grasp of Figure 12.43(a), contacts A, B, and C are all fric-
tionless point contacts. Suppose contact B is allowed to slide along any of the
three sides of the hole as shown in Figure 12.43(a). Find all possible locations
for B that make this grasp force closure.
(b) In the planar grasp of Figure 12.43(b), contacts A and B are frictionless
point contacts, while contact C is a point contact with friction cone (defined by
angle �) as shown. Determine the range of angle � so that the grasp is force
closure.
(c) In the planar grasp of Figure 12.43(c), contacts A and B are frictionless point

446 Grasping and Manipulation

A B

C

45°

4

2

1

0.5

(a)

45°

A B

C

45°

4

2

45°

β

1

0.5

(b)

45°

A

B

C

45°

4

2

β

θ α

α

(c)

Figure 12.43: Grasped object.

contacts, while contact C is a point contact with friction cone defined by angle
�. � lies in the range 0 < � < ⇡

4

. Angles ↵ and ✓ are defined as shown in Fig-
ure 12.43(c), with ✓ satisfying ↵ < ✓ < ⇡

2

�↵. Find the range of values for angles
� and ✓ such that the grasp is force closure. (Hint: Nguyen’s Theorem is useful).

28. Consider a planar donut-like rigid object shown in Figure 12.44(a).
(a) Does there exist any set of four frictionless point contacts that makes this
grasp force closure?
(b) Point contacts B and C, both with friction coe�cient µ > 0, are placed as
shown in Figure 12.44(b). The position of contact C is variable, so that the
angle ✓ = \BOC can vary. Find the range of ✓ that makes this grasp force
closure in terms of µ.

29. In Figure 12.45, the cross-shaped object with four circular holes is re-

12.6. Exercises 447

(a) Donut for Problem (a)

B

C

θ

(b) Donut with frictional point contacts

B and C for Problem (b)

Figure 12.44: Grasped donut

θ1

θ2

θ3

θ4

A

B

C

D

L

r

(a)

θ1

θ3

A

B

C

L

r

(b)

Figure 12.45: A cross-shaped object with holes.

strained from the interior by four point contacts (A,B,C,D). The distance
from the center of the cross to each hole is L, and the radius of each hole is r.
Angles ✓

1

, ✓
2

, ✓
3

, ✓
4

are defined as shown.

(a) Let ✓
1

= 7

4

⇡, ✓
2

= 1

2

⇡, ✓
3

= 3

2

⇡, ✓
4

= 3

4

⇡ and assume A,B,C,D are
frictionless point contacts. Is this grasp form closure?

(b) Suppose ✓
1

= 0, ✓
3

= 0, and A,B,C,D are frictionless point contacts.
For what values of ✓

2

and ✓
4

is the grasp form closure?

(c) Now suppose there is no contact at point D(there are only 3 contact points).

448 Grasping and Manipulation

A and C are frictionless point contacts, whereas B is a point contact with fric-
tion coe�cient µ = 1 as shown in Figure 12.45(b). Suppose L is large enough
to ignore r (i.e., L � r) and ✓

2

= 0. Find all values of ✓
1

and ✓
3

that makes
the grasp force closure.

1

1

A B

C

(a) Grasp for Problem (a)

1

1

A B

C

β

(b) Grasp for Problem (b)

Figure 12.46: Planar grasp.

30. (a) For the planar grasp of Figure 12.46(a), assume contact C is frictionless,
while contacts A and B have friction (assume µ=1). Determine whether this
grasp is force closure.
(b) For the planar grasp of Figure 12.46(b), assume contacts A and B are
frictionless, while contact C has a friction cone of angle �. Find the range of
values of � that makes this grasp force closure.

45

45

135

A

B

C

D

R

R

(a)

E

C

D

α

β

R

(b)

Figure 12.47: Grasped object.

12.6. Exercises 449

31. The object of Figure 12.47 consists of 4 semicircular petals with a circular
hole in the middle. Assume the radius is R for all semicircles.
(a) In the planar grasp of Figure 12.47(a), contacts A, B, C and D are frictionless.
Determine whether the grasp is force closure.
(b) In the planar grasp of Figure 12.47(b), contacts C and D are frictionless,
while contact E has friction with friction coe�cient µ = 1. Find the range of
angles ↵ and � such that the grasp is force closure.

1

1

frictionless

contact

friction

contact

μ=1

(a)

1

1

(b)

1

1

frictionless contacts

on the outside surface

(c)

Figure 12.48: A coin with a square hole.

32. Figure 12.48 shows a coin with a square hole in the middle grasped by
several point contacts as shown.
(a) Suppose the coin is grasped by two frictionless point contacts and one point
contact with friction coe�cient µ = 1 placed on the inside edge as shown in
Figure 12.48(a). Determine whether the grasp is force closure.

450 Grasping and Manipulation

(b) Suppose the coin is now grasped by four frictionless point contacts as shown
in Figure 12.48(b), three of which are placed on the inside edge at the locations
shown. The fourth point contact can be placed anywhere on the outside edge.
Determine all the contact point locations on the outside edge that makes this
grasp force closure.
(c) Three frictionless point contacts are placed on the inside edge as shown
in Figure 12.48(c). Suppose any number of frictionless point contacts can be
placed on the outside edge. Find the minimum number of outside edge point
contacts that makes this grasp force closure.
(d) Is it possible to construct a force closure grasp using exactly two frictionless
point contacts? Explain your answer.

Figure 12.49: Pie-shaped planar object.

33. A pie-shaped planar rigid body of radius R = 1 is grasped by four point
contacts A(t

1

), B(t
2

), C(✓
1

), and D(✓
2

) as shown in Figure 12.49. The contact
locations are constrained as follows:

0 < t
1

, t
2

< 1, 0 < ✓
1

<
⇡

4
,

⇡

4
< ✓

2

<
⇡

2
.

(a) Suppose all the point contacts are frictionless, and t
1

= 1/2, t
2

= 1/2,
✓
1

= ⇡/6, ✓
2

= ⇡/3. Use the convex hull test to determine if this grasp is force
closure.
(b) Suppose all the point contacts are frictionless, but that the contact locations
for A(t

1

), B(t
2

), C(✓
1

) are arbitrarily given. Does there always exist a feasible

12.6. Exercises 451

contact location for D(✓
2

) that makes the grasp force closure? If yes, explain
your answer based on the convex hull test. If no, provide a counterexample and
carefully explain your reasoning.
(c) Contact D is now eliminated, so that the body is now grasped by the three
contacts A, B, and C only. Assume that point contacts A and B have friction
coe�cient µ = 1

2

, with locations fixed at t
1

= 1/2 and t
2

= 1/2, respectively.
Assume point contact C is frictionless, with its location determined by angle ✓

1

.
Find the range of values for ✓

1

such that the grasp is always force closure.

Figure 12.50: A Planar object.

34. The planar object of Figure 12.50 is restrained by several point contacts.
A, B, D, and E are frictionless point contacts, while C is a frictional point
contact with µ = 1. Let 0 < L < 2.
(a) Suppose the object is restrained by point contacts A and E only. Is this
grasp force closure?
(b) Suppose the object is restrained by point contacts B, C, and D only. For
what range of values of L is the grasp force closure?
(c) Suppose the object is restrained by point contacts A, B, and C only. Is this
grasp force closure?

35. Come up with a formula, as a function of n, for the minimum friction
coe�cient needed for a two-fingered force-closure grasp of an n-sided regular
polygon, where n is odd. Assume the fingers can only make contact with the
edges, not the vertices. If the fingers could also contact the vertices, how does
your answer change? You can assume the fingers are circular.

36. Consider a table at rest, supported by four legs in frictional contact with the
floor. The normal forces provided by each leg are not unique; there is an infinite

452 Grasping and Manipulation

mg

Figure 12.51: A zero thickness rod supported by a single contact.

Figure 12.52: A frictionless finger pushes a box to the right. Gravity acts
downward. Does the box slide flat against the table, does it tip over the right
corner, or does it slide and tip on the right corner?

set of solutions to the normal forces yielding force balance with gravity. What
is the dimension of the space of normal force solutions? What is the dimension
of the space of contact force solutions if we include tangential frictional forces?

37. A thin rod in gravity is supported from below by a single stationary contact,
shown in Figure 12.51. You can place one more contact anywhere else on the
top or the bottom of the rod. Indicate all places you can put this contact while
balancing the gravitational force. Use moment labeling to justify your answer.
Prove the same using algebraic force balance, and comment on the magnitude
of the normal forces depending on the location of the second contact.

38. A frictionless finger begins pushing a box over a table (Figure 12.52). There
is friction between the box and the table, as indicated in the figure. There are
three possible contact modes between the box and the table: either the box
slides to the right flat against the table, or it tips over the right corner, or it tips
over the right corner while the the corner also slides to the right. Which actually
occurs? Assume quasistatic force balance and answer the following questions.
(a) For each of the three contact modes, draw the moment labeling regions
corresponding to the table friction cone edges active in that contact mode. (b)
For each moment labeling drawing, determine whether the pushing force plus the
gravitational force can be quasistatically balanced by the support forces. From
this, determine which contact mode actually occurs. (c) Graphically show a
support friction cone for which your answer changes.

12.6. Exercises 453

g

body 1 body 2

(x , 0)L
(x , 0)R

(x , y)1 1
(x , y)2 2

(x , y)L

x̂

ŷ

Figure 12.53: One body leaning on another (Exercise 39).

39. In Figure 12.53, body 1, of mass m
1

with center of mass at (x
1

, y
1

), leans
on body 2, of mass m

2

with center of mass at (x
2

, y
2

). Both are supported
by a horizontal line, and gravity acts downward. The friction coe�cient at all
four contacts (one at (0, 0), one at (x

L

, y), one at (x
L

, 0), and one at (x
R

, 0)) is
µ > 0. We want to know if it is possible for the assembly to stay standing by
some choice of contact forces within the friction cones. Write the six equations
of force balance for the two bodies in terms of the gravitational forces and the
contact forces, and express the conditions that must be satisfied for it to be
possible for this assembly to stay standing. How many equations and unknowns
are there?

40. Write a program that accepts a set of contacts acting on a planar part and
determines whether the part is in first-order form closure.

41. Write a program that accepts a set of contacts acting on a spatial part and
determines whether the part is in first-order form closure.

42. Write a program that accepts a friction coe�cient and a set of contacts
acting on a planar part and determines whether the part is in force closure.

43. Write a program that accepts a friction coe�cient and a set of contacts
acting on a spatial part and determines whether the part is in force closure.
Use a polyhedral approximation to the friction cone at each contact point that

454 Grasping and Manipulation

underestimates the friction cone and that has four facets.

44. Write a program to simulate the quasistatic meter stick trick of Exam-
ple 12.7. The program takes as input the initial x-position of the left finger, the
right finger, and the stick’s center of mass; the constant speed ẋ of the right
finger (toward the left finger); and the static and kinetic friction coe�cients,
where µ

s

� µ
k

. The program should simulate until the two fingers touch, or
until the stick falls. The program should plot the position of the left finger
(which is constant), the right finger, and the center of mass as a function of
time. Include an example where µ

s

= µ
k

, an example where µ
s

is only slightly
larger than µ

k

, and an example where µ
s

is much larger than µ
k

.

45. Write a program that determines if a given assembly of planar parts can
remain standing in gravity. Gravity g acts in the �ŷ direction. The assembly
is described by m bodies, n contacts, and the friction coe�cient µ, all entered
by the user. Each of the m bodies is described by its mass m

i

and the (x
i

, y
i

)
location of its center of mass. Each contact is described by the index i of each
of the two bodies involved in the contact and the unit normal direction (defined
as into the first body). If the contact has only one body involved, the second
body is assumed to be stationary (e.g., ground). The program should look for
a set of coe�cients k

j

� 0 multiplying the friction cone edges at the contacts
(if there are n contacts, then there are 2n friction cone edges and coe�cients)
such that each of the m bodies is in force balance, considering gravity. Except in
degenerate cases, if there are more force balance equations (3m) than unknowns
(2n), there is no solution. In the usual case where 2n > 3m, there is a family
of solutions, meaning that the force at each contact cannot be known with
certainty.

One approach is to have your program generate an appropriate linear pro-
gram, and use the programming language’s built-in linear programming solver.

46. This is a generalization of the previous exercise. Now, instead of sim-
ply deciding whether the assembly stays standing for a stationary base, the
base moves according to a trajectory specified by the user, and the program
determines whether the assembly can stay together during the trajectory (i.e.,
whether sticking contact at all contacts allows each body to follow the specified
trajectory). The three-dimensional trajectory of the base can be specified as a
polynomial in (x(t), y(t), ✓(t)), for a base reference frame defined at a particular
position. For this problem, you also need to specify the scalar moment of inertia
about the center of mass for each part. You may find it convenient to express
motion and forces (gravitational, contact, inertial) in the frame of each part and
solve for the dynamics in the body frames. Your program should check for sta-
bility (all contact normal forces are nonnegative while satisfying the dynamics)
at finely spaced discrete points along the trajectory. It should return a binary
result: the assembly can be maintained at all points along the trajectory, or
not.

Chapter 13

Wheeled Mobile Robots

A kinematic model of a mobile robot governs how wheel speeds map to robot
velocities, while a dynamic model governs how wheel torques map to robot
accelerations. In this chapter, we ignore dynamics and focus on kinematics.
We also assume that the robots roll on hard, flat, horizontal ground without
skidding (i.e., no tanks or skid-steered vehicles). The mobile robot is assumed
to have a single rigid-body chassis (not articulated like tractor-trailers) with a
configuration T

sb

2 SE(2) representing a chassis-fixed frame {b} relative to a
fixed space frame {s} in the horizontal plane. In this chapter we represent T

sb

by the three coordinates q = (�, x, y). We also usually represent the velocity of
the chassis as the time derivative of the coordinates, q̇ = (�̇, ẋ, ẏ). Occasionally
it will be convenient to refer to the chassis’ planar twist V

b

= (!
bz

, v
bx

, v
by

)
expressed in {b}, where

V
b

=

2

4
!
bz

v
bx

v
by

3

5 =

2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 (13.1)

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
1 0 0
0 cos� � sin�
0 sin� cos�

3

5

2

4
!
bz

v
bx

v
by

3

5 . (13.2)

This chapter covers kinematic modeling, motion planning, and feedback con-
trol for wheeled mobile robots, and concludes with a brief introduction to mobile
manipulation.

13.1 Types of Wheeled Mobile Robots

Wheeled mobile robots may be classified in two major categories, omnidi-
rectional and nonholonomic. Omnidirectional mobile robots have no equality
constraints on the chassis velocity q̇ = (�̇, ẋ, ẏ), while nonholonomic robots are
called “nonholonomic” because the chassis is subject to a single Pfa�an ve-
locity constraint A(q)q̇ = 0 (see Chapter 2.4 for an introduction to Pfa�an

455

456 Wheeled Mobile Robots

Figure 13.1: Left: A typical wheel that rolls without sideways slip (here a
unicycle wheel). Middle: An omniwheel. Right: A mecanum wheel. Omniwheel
and mecanum wheel images from www.vexrobotics.com, used with permission.

constraints). For a car-like robot, this constraint is that the car cannot move
directly sideways. Despite this velocity constraint, the car can reach any (�, x, y)
configuration in the obstacle-free plane. In other words, the velocity constraint
cannot be integrated to an equivalent configuration constraint, and therefore it
is a nonholonomic constraint.

Whether a wheeled mobile robot is omnidirectional or nonholonomic depends
on the type of wheels it employs (Figure 13.1). Nonholonomic mobile robots
employ “typical” wheels, such as one you might find on your car: it rotates
about an axle perpendicular to the plane of the wheel at the wheel’s center, and
optionally it can be steered by spinning the wheel about an axis perpendicular
to the ground at the contact point. The wheel rolls without sideways slip, which
is the source of the nonholonomic constraint on the robot’s chassis.

Omnidirectional wheeled mobile robots typically employ either omniwheels
or mecanum wheels.1 An omniwheel is a typical wheel augmented with rollers
on the outer circumference of the wheel. These rollers spin freely about axes in
the plane of the wheel and tangent to the wheel’s outer circumference, and they
allow sideways sliding while the wheel drives forward and backward without
slip in that direction. Mecanum wheels are similar, except the spin axes of the
circumferential rollers are not in the plane of the wheel (see Figure 13.1). The
sideways sliding allowed by omniwheels and mecanum wheels ensure that there
are no velocity constraints on the robot chassis.

Omniwheels and mecanum wheels are not steered, only driven forward or
backward. Because of the small diameter rollers, omniwheels and mecanum
wheels work best on hard, flat ground.

Because the issues in modeling, motion planning, and control of wheeled
mobile robots depend intimately on whether the robot is omnidirectional or
nonholonomic, we treat these two cases separately in the following sections.

1
These types of wheels are often called “Swedish wheels,” as they were invented by Bengt

Ilon working at the Swedish company Mecanum AB. The usage of, and the di↵erentiaiton

between, the terms “omniwheel,” “mecanum wheel,” and “Swedish wheel” is not completely

standard, but here we use one popular choice.

13.2. Omnidirectional Wheeled Mobile Robots 457

driving

free
“sliding”

driving

free
“sliding”

Figure 13.2: (Left) A mobile robot with three omniwheels. Also shown for one
of the omniwheels is the direction that the wheel can freely slide due to the
rollers, as well as the direction the wheel rolls without slipping when driven
by the wheel motor. (Top image from www.superdroidrobots.com, used with
permission.) (Right) The KUKA youBot mobile manipulator system, which uses
four mecanum wheels for its mobile base. (Top image used with permission.)

13.2 Omnidirectional Wheeled Mobile Robots

13.2.1 Modeling

To achieve an arbitrary three-dimensional chassis velocity q̇ = (�̇, ẋ, ẏ), an om-
nidirectional mobile robot must have at least three wheels, since each wheel has
only one motor (controlling its forward/backward velocity). Figure 13.2 shows
two omnidirectional mobile robots, one with three omniwheels and one with
four mecanum wheels. Also shown are the motions that are obtained by driving
the wheel motors as well as the free sliding motions allowed by the rollers.

Two important questions in kinematic modeling are:

(i) Given a desired chassis velocity q̇, at what speeds must the wheels be
driven?

(ii) Given limits on the individual wheel driving speeds, what are the limits
on the chassis velocity q̇?

To answer these questions, we need to understand the wheel kinematics

458 Wheeled Mobile Robots

driving direction

free “sliding” direction

γ

x^w

y^w v = (v , v)x y

v + v tan γx y

v / cos γy

free
component =

driven component =

Figure 13.3: (Left) The direction of the wheel motion due to driving the wheel’s
motor and the direction that its rollers allow it to slide freely. For an omniwheel,
� = 0, and for a mecanum wheel, typically � = ±45�. (Right) The driven and
free-sliding speeds for the wheel velocity v = (v

x

, v
y

) expressed in the wheel
frame x̂

w

-ŷ
w

, where the x̂
w

-axis is aligned with the forward driving direction.

illustrated in Figure 13.3. In a frame x̂
w

-ŷ
w

at the center of the wheel, the
linear velocity of the center of the wheel is written v = (v

x

, v
y

), which satisfies

v
x

v
y

�
= v

drive

1
0

�
+ v

slide

� sin �
cos �

�
, (13.3)

where � denotes the angle at which free “sliding” occurs (allowed by the passive
rollers on the circumference of the wheel), v

drive

is the driving speed, and v
slide

is
the sliding speed. For an omniwheel, � = 0, and for a mecanum wheel, typically
� = ±45�. Solving Equation (13.3), we get

v
drive

= v
x

+ v
y

tan �

v
slide

= v
y

/ cos �.

Letting r be the radius of the wheel and u be the driving angular speed of the
wheel,

u =
v
drive

r
=

1

r
(v

x

+ v
y

tan �). (13.4)

To derive the full transformation from a chassis velocity q̇ = (�̇, ẋ, ẏ) to
the driving angular speed u

i

for wheel i, refer to the notation illustrated in
Figure 13.4. The chassis frame {b} is at q = (�, x, y) in the fixed space frame
{s}. The center of the wheel and its driving direction are given by (�

i

, x
i

, y
i

)
expressed in {b}, the wheel’s radius is r

i

, and the wheel’s sliding direction is
given by �

i

. Then u
i

is related to q̇ by

u
i

= h
i

(�)q̇ =

1

r
i

,
tan �

i

r
i

�
cos�

i

sin�
i

� sin�
i

cos�
i

�
1 0 �y

i

0 1 x
i

�2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 .

(13.5)

13.2. Omnidirectional Wheeled Mobile Robots 459

driving direction

free “sliding”
direction

x^b
y^b

x^

y^

{s}

(x, y)

φ

γi

iβ

ii(x , y)

wheel i

{b}

Figure 13.4: The fixed space frame {s}, a chassis frame {b} at (�, x, y) in {s},
and wheel i at (x

i

, y
i

) with a driving direction �
i

, both expressed in {b}. The
sliding direction of wheel i is defined by �

i

.

Reading from right to left, the first transformation expresses q̇ as V
b

; the next
transformation produces the linear velocity at the wheel in {b}; the next trans-
formation expresses this linear velocity in the wheel frame x̂

w

-ŷ
w

; and the final
transformation calculates the driving angular velocity using Equation (13.4).

Evaluating Equation (13.5) for h
i

(�), we get

h
i

(�) =
1

r
i

cos �
i

2

4
x
i

sin(�
i

+ �
i

)� y
i

cos(�
i

+ �
i

)
cos(�

i

+ �
i

+ �)
sin(�

i

+ �
i

+ �)

3

5
T

. (13.6)

For an omnidirectional robot with m � 3 wheels, the matrix H(�) 2 Rm⇥3

mapping a desired chassis velocity q̇ 2 R3 to the vector of wheel driving speeds
u 2 Rm is constructed by stacking the m rows h

i

(�):

u = H(�)q̇ =

2

6664

h
1

(�)
h
2

(�)
...

h
n

(�)

3

7775

2

4
�̇
ẋ
ẏ

3

5 . (13.7)

We can also express the relationship between u and the body twist V
b

. This
mapping does not depend on the chassis orientation �:

u = H(0)V
b

=

2

6664

h
1

(0)
h
2

(0)
...

h
n

(0)

3

7775

2

4
!
bz

v
bx

v
by

3

5 . (13.8)

460 Wheeled Mobile Robots

x^b

y^b

d

γ = 0, β = 01

wheel 1
1

γ = 0, β = 2π/33

wheel 3
3 γ = 0, β = –2π/32

wheel 2
2

x^b

y^b

γ = –π/41γ = π/44

γ = –π/43 γ = π/42

wheel 1wheel 4

wheel 3 wheel 2

w

Figure 13.5: Kinematic models for mobile robots with three omniwheels and
four mecanum wheels. The radius of all wheels is r and the driving direction
for each of the mecanum wheels is �

i

= 0.

The wheel positions and headings (�
i

, x
i

, y
i

) in {b}, and their free slid-
ing directions �

i

, must be chosen so that H(0) is rank 3. For example, if we
constructed a mobile robot of omniwheels whose driving directions and sliding
directions were all aligned, the rank of H(0) would be two, and there would be
no way to controllably generate translational motion in the sliding direction.

In the case m > 3, such as the four-wheeled youBot of Figure 13.2, choosing
u such that Equation (13.8) is not satisfied for any V

b

2 R3 implies that the
wheels must skid in their driving directions.

Using the notation in Figure 13.5, the kinematic model of the mobile robot
with three omniwheels is

u =

2

4
u
1

u
2

u
3

3

5 = H(0)V
b

=
1

r

2

4
�d 1 0
�d �1/2 � sin(⇡/3)
�d �1/2 sin(⇡/3)

3

5

2

4
!
bz

v
bx

v
by

3

5 (13.9)

and the kinematic model of the mobile robot with four mecanum wheels is

u =

2

664

u
1

u
2

u
3

u
4

3

775 = H(0)V
b

=
1

r

2

664

�`� w 1 �1
`+ w 1 1
`+ w 1 �1
�`� w 1 1

3

775

2

4
!
bz

v
bx

v
by

3

5 . (13.10)

For the mecanum robot, to move in +x̂
b

, all wheels drive forward at the same
speed; to move in +ŷ

b

, wheels 1 and 3 drive backward and wheels 2 and 4 drive
forward at the same speed; and to rotate in the counterclockwise direction,
wheels 1 and 4 drive backward and wheels 2 and 3 drive forward at the same
speed. Note that the robot chassis is capable of the same speeds in the forward
and sideways directions.

13.2. Omnidirectional Wheeled Mobile Robots 461

ωbz

bxv
byv

ωbz

bxv byv

bxv

byv

bxv

byv

x^b

y^b

x^b
y^b

Figure 13.6: (Top row) Regions of feasible body twists V for the three-wheeled
(left) and four-wheeled (right) robots of Figure 13.5. Also shown for the three-
wheeled robot is the intersection with the !

bz

= 0 plane. (Bottom row) The
bounds in the !

bz

= 0 plane (translational motions only).

If the driving angular velocity of wheel i is subject to bounds |u
i

| u
i,max

,
i.e.,

�u
i,max

 u
i

= h
i

(0)V
b

 u
i,max

,

two parallel constraint planes defined by �u
i,max

= h
i

(0)V
b

and u
i,max

=
h
i

(0)V
b

are generated in the three-dimensional space of body twists. Any V
b

between these two planes is a feasible chassis body twist according to wheel i,
while any V

b

outside this slice is infeasible. The normal direction to the con-
straint planes is hT

i

(0), and the points on the planes closest to the origin are
�u

i,max

hT

i

(0)/kh
i

(0)k2 and u
i,max

hT

i

(0)/kh
i

(0)k2.
If the robot has m wheels, then the region of feasible body twists V is

bounded by the m pairs of parallel constraint planes. The region V is therefore
a convex three-dimensional polyhedron, with the origin (zero twist) in the center
and 2m faces. Visualizations of the 6-sided and 8-sided regions V for the three-
wheeled and four-wheeled models in Figure 13.5 are shown in Figure 13.6.

13.2.2 Motion Planning

Since omnidirectional mobile robots are free to move in any direction, any of
the trajectory planning methods for kinematic systems in Chapter 9, and most

462 Wheeled Mobile Robots

of the motion planning methods of Chapter 10, can be adapted.

13.2.3 Feedback Control

Given a desired trajectory q
d

(t), we can adopt the feedforward plus proportional
feedback linear controller (11.1) of Chapter 11 to track the trajectory:

q̇
com

(t) = q̇
d

(t) +K
p

(q̇
d

(t)� q(t)), (13.11)

where K
p

2 R3⇥3 is positive definite and q(t) is an estimate of the actual con-
figuration derived from sensors. Then q̇

com

(t) can be converted to commanded
wheel driving velocities u

com

(t) using Equation (13.7).

13.3 Nonholonomic Wheeled Mobile Robots

In Chapter 2.4, the k Pfa�an velocity constraints acting on a system with
configuration q 2 Rn were written as A(q)q̇ = 0, where A(q) 2 Rk⇥n. Instead
of specifying the k directions in which velocities are not allowed, we can write
the allowable velocities of a kinematic system as a linear combination of n� k
velocity directions. This representation is equivalent, and it has the advantage
that the coe�cients of the linear combinations are precisely the controls available
to us. We will see this representation in the kinematic models below.

By the title of this section, we are implying that the velocity constraints
are not integrable to equivalent configuration constraints. We will establish this
formally in Section 13.3.2.

13.3.1 Modeling

13.3.1.1 The Unicycle

The simplest wheeled mobile robot is a single upright rolling wheel, or unicycle.
Let r be the radius of the wheel. We write the configuration of the wheel as
q = (�, x, y, ✓)T , where (x, y) is the contact point, � is the heading direction,
and ✓ is the rolling angle of the wheel (Figure 13.7). The configuration of the
“chassis” (e.g., the seat of the unicycle) is (�, x, y). The kinematic equations of
motion are

q̇ =

2

664

�̇
ẋ
ẏ
✓̇

3

775 =

2

664

0 1
r cos� 0
r sin� 0

1 0

3

775

u
1

u
2

�

= G(q)u = g
1

(q)u
1

+ g
2

(q)u
2

. (13.12)

The control inputs are u = (u
1

, u
2

)T , with u
1

the forward-backward angular
speed and u

2

the angular turning speed. The controls are subject to the con-
straints �u

1,max

 u
1

 u
1,max

and �u
2,max

 u
2

 u
2,max

.

13.3. Nonholonomic Wheeled Mobile Robots 463

x^
y^

z^ θ

(x, y)
φ

Figure 13.7: A wheel rolling on a plane without slipping.

x^

y^

Figure 13.8: The vector field (ẋ, ẏ) = (�y, x).

The vector-valued functions g
i

(q) 2 R4 are the columns of the matrix G(q),
and these are called the tangent vector fields (also called the control vector
fields or simply velocity vector fields) over q associated with the controls u

i

= 1.
Evaluated at a specific configuration q, g

i

(q) is a tangent vector (or velocity
vector) of the tangent vector field.

An example of a vector field on R2 is illustrated in Figure 13.8.
All of our kinematic models of nonholonomic mobile robots will have the

form q̇ = G(q)u, as in (13.12). Three things to notice about these models are:
(1) there is no drift—zero controls mean zero velocity; (2) the vector fields g

i

(q)
are generally functions of the configuration q; and (3) q̇ is linear in the controls.

Since we are not usually concerned with the rolling angle of the wheel, we

464 Wheeled Mobile Robots

(x, y)

x^

y^
d

Figure 13.9: A di↵-drive robot consisting of two typical wheels and one ball
caster wheel, shaded gray.

can drop the fourth row from (13.12) to get the simplified control system

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
0 1

r cos� 0
r sin� 0

3

5

u
1

u
2

�
. (13.13)

13.3.1.2 The Di↵erential-Drive Robot

The di↵erential-drive robot, or di↵-drive, is perhaps the simplest wheeled
mobile robot architecture. A di↵-drive robot consists of two independently
driven wheels of radius r that rotate about the same axis, as well as one or more
caster wheels, ball casters, or low-friction sliders that keep the robot horizontal.
Let the distance between the wheels be 2d and choose the (x, y) reference point
halfway between the wheels (Figure 13.9). Writing the configuration as q =
(�, x, y, ✓

L

, ✓
R

)T , where ✓
L

and ✓
R

are the rolling angles of the left and right
wheels, respectively, the kinematic equations are

q̇ =

2

66664

�̇
ẋ
ẏ
✓̇
L

✓̇
R

3

77775
=

2

66664

� r

2d

r

2d

r

2

cos� r

2

cos�
r

2

sin� r

2

sin�
1 0
0 1

3

77775

u
L

u
R

�
, (13.14)

where u
L

is the angular speed of the left wheel and u
R

is the angular speed of
the right wheel. Positive angular speed of each wheel corresponds to forward
motion at that wheel. The controls at each wheel are taken from the interval
[�u

max

, u
max

].
Since we are not usually concerned with the rolling angles of the two wheels,

we can drop the last two rows to get the simplified control system

q̇ =

2

4
�̇
ẋ
ẏ

3

5 =

2

4
� r

2d

r

2d

r

2

cos� r

2

cos�
r

2

sin� r

2

sin�

3

5

u
L

u
R

�
. (13.15)

13.3. Nonholonomic Wheeled Mobile Robots 465

(x, y)

CoR

rmin

Figure 13.10: The two front wheels of a car are steered at di↵erent angles using
Ackermann steering so that all wheels roll without slipping. The car is shown
executing a turn at its minimum turning radius r

min

.

Two advantages of a di↵-drive robot are its simplicity (typically a motor
attached directly to the axle of each wheel) and high maneuverability (the robot
can spin in place by rotating the wheels in opposite directions). Casters are often
not appropriate for outdoor use, however.

13.3.1.3 The Car-Like Robot

The most familiar wheeled vehicle is a car, with two steered front wheels and
two fixed-heading rear wheels. To prevent slipping of the front wheels, they are
steered using Ackermann steering, as illustrated in Figure 13.10. The center
of rotation of the car’s chassis lies on the line passing through the rear wheels
at the intersection with the perpendicular bisectors of the front wheels.

To define the configuration of the car, we ignore the rolling angles of the four
wheels and write q = (�, x, y,)T , where (x, y) is the location of the midpoint
between the rear wheels, � is the car’s heading direction, and is the steering
angle of the car, defined at the virtual wheel at the midpoint between the front
wheels. The controls are the forward speed v of the car at its reference point
and the angular speed w of the steering angle. The car’s kinematics are

q̇ =

2

664

�̇
ẋ
ẏ
 ̇

3

775 =

2

664

tan

`

0
cos� 0
sin� 0
0 1

3

775

v
w

�
, (13.16)

where ` is the wheelbase between the front and rear wheels. The control v is
limited to a closed interval [v

min

, v
max

] where v
min

< 0 < v
max

, the steering rate
is limited to [�w

max

, w
max

] with w
max

> 0, and the steering angle is limited
to [

min

,
max

].

466 Wheeled Mobile Robots

The kinematics (13.16) can be simplified if the steering control is actually
the steering angle and not its rate w. This assumption is justified if the
steering rate limit w

max

is high so that the steering angle can be changed nearly
instantaneously by a lower-level controller. In this case, is eliminated as a
state variable, and the car’s configuration is simply q = (�, x, y)T . We use the
control inputs (v,!), where v is still the car’s forward speed and ! is now its
rate of rotation. These can be converted to the controls (v,) by the relations

v = v, = tan�1

✓
`!

v

◆
. (13.17)

The constraints on the controls (v,!) due to the constraints on (v,) take a
somewhat complicated form, as we see shortly.

The simplified car kinematics can now be written

q̇ =

2

4
�̇
ẋ
ẏ

3

5 = G(q)u =

2

4
0 1

cos� 0
sin� 0

3

5

v
!

�
. (13.18)

The nonholonomic constraint associated with this system can be derived by
using one of the equations from (13.18)

ẋ = v cos�

ẏ = v sin�

to solve for v, then plugging the result into the other equation to get

A(q)q̇ = [0, sin�,� cos�] q̇ = ẋ sin�� ẏ cos� = 0.

13.3.1.4 Canonical Simplified Model for Nonholonomic Mobile Robots

The kinematics (13.18) are a canonical simplified model for nonholonomic mobile
robots. Using control transformations such as (13.17), the simplified unicycle
kinematics (13.13) and the simplified di↵erential-drive kinematics (13.15) can
also be expressed in this form. The control transformation for the simplified
unicycle kinematics (13.13) is

u
1

=
v

r
, u

2

= !

and the transformation for the simplified di↵-drive kinematics (13.15) is

u
L

=
v � !d

r
, u

R

=
v + !d

r
.

With these input transformations, the only di↵erence between the simplified
unicycle, di↵-drive robot, and car kinematics are the control limits on (v,!).
These are illustrated in Figure 13.11.

We can use the two control inputs (v,!) in the canonical model (13.18) to
directly control the two components of the linear velocity of a reference point

13.3. Nonholonomic Wheeled Mobile Robots 467

v v v

unicycle diff-drive robot car forward-only car Dubins car

v

Figure 13.11: The (v,!) control sets for the simplified unicycle, di↵-drive robot,
and car kinematics. The car’s control set illustrates that it is incapable of
turning in place. The angle of the sloped lines in the car’s bowtie control set
is determined by the car’s minimum turning radius. If the car has no reverse
gear, only the right half of the bowtie is available.

(x, y)

P (,)yrx r

x^b
y^b

Figure 13.12: The point P is located at (x
r

, y
r

) in the chassis-fixed frame {b}.

P fixed to the robot chassis. This is useful when a sensor is located at P , for
example. Let (x

P

, y
P

) be the coordinates of P in the world frame, and (x
r

, y
r

)
be the (constant) coordinates in the chassis frame {b}, with x̂

b

in the robot’s
heading direction (Figure 13.12). To find the controls (v,!) needed to achieve
a desired world-frame motion (ẋ

P

, ẏ
P

), we first write

x
P

y
P

�
=

x
y

�
+

cos� � sin�
sin� cos�

�
x
r

y
r

�
. (13.19)

Di↵erentiating, we get

ẋ
P

ẏ
P

�
=

ẋ
ẏ

�
+ �̇

� sin� � cos�
cos� � sin�

�
x
r

y
r

�
. (13.20)

Substituting ! for �̇ and (v cos�, v sin�) for (ẋ, ẏ) and solving, we get

v
!

�
=

1

x
r

x
r

cos�� y
r

sin� x
r

sin�+ y
r

cos�
� sin� cos�

�
ẋ
P

ẏ
P

�
. (13.21)

This equation may be read as (v,!)T = J�1(q)(ẋ
P

, ẏ
P

)T , where J(q) is the
Jacobian relating (v,!) to the world-frame motion of P . Note that the Jacobian
J(q) is singular when P is chosen on the line x

r

= 0. Points on this line, such as
at the midway point between the wheels of a di↵-drive robot or the rear wheels
of a car, can only move in the heading direction of the vehicle.

468 Wheeled Mobile Robots

13.3.2 Controllability

Feedback control for an omnidirectional robot is simple, as there is a set of wheel
driving speeds for any desired chassis velocity q̇ (Equation (13.7)). In fact, if
the goal of the feedback controller is simply to stabilize the robot to the origin
q = (0, 0, 0), not trajectory tracking as in the control law (13.11), we could use
the even simpler feedback controller

q̇
com

(t) = �Kq(t) (13.22)

for any positive definite K. The feedback gain matrix �K acts like a spring to
pull q to the origin, and Equation (13.7) is used to transform q̇

com

(t) to u
com

(t).
The same type of “linear spring” controller could be used to stabilize the point
P on the canonical nonholonomic robot (Figure 13.12) to (x

P

, y
P

) = (0, 0) since,
by Equation (13.21), any desired (ẋ

P

, ẏ
P

) can be achieved by controls (v,!).2

In short, the kinematics of the omnidirectional robot, as well as the kine-
matics of the point P for the nonholonomic robot, can be rewritten in the
single-integrator form

ẋ = ⌫, (13.23)

where x is the configuration we are trying to control and ⌫ is a “virtual control”
that is actually implemented using the transformations in Equation (13.7) for
an omnidirectional robot or Equation (13.21) for the control of P by a nonholo-
nomic robot. Equation (13.23) is a simple example of the more general class of
linear control systems

ẋ = Ax+B⌫ (13.24)

which are known to be linearly controllable if the Kalman rank condition
is satisfied:

rank([B AB A2B . . . An�1B]) = dim(x) = n,

where x 2 Rn, ⌫ 2 Rm, A 2 Rn⇥n, B 2 Rn⇥m. In Equation (13.23), A = 0
and B is the identity matrix, trivially satisfying the rank condition for linear
controllability, since m = n. This implies the existence of the simple linear
control law

⌫ = �Kx,

as in Equation (13.22), to stabilize the origin.
There is no linear controller that can stabilize the full chassis configuration

to q = 0 for a nonholonomic robot, however; the nonholonomic robot is not
linearly controllable. More than that, there is no controller that is a continuous
function of q that can stabilize q = 0. This fact is embedded in the following
well known result, which we state without proof.

Theorem 13.1. A system q̇ = G(q)u with rank(G(0)) < dim(q) cannot be
stabilized to q = 0 by a continuous time-invariant feedback control law.

2
For the moment we ignore the di↵erent constraints on (v,!) for the unicycle, di↵-drive

robot, and car-like robot, as they do not change the main point.

13.3. Nonholonomic Wheeled Mobile Robots 469

q

W(q)

q

STLA STLC

Figure 13.13: Illustrations of small-time local accessibility (STLA) and small-
time local controllability (STLC) in a two-dimensional space. The shaded re-
gions are the reachable sets without leaving the neighborhood W (q).

This theorem applies to our canonical nonholonomic robot model, since the rank
of G(q) is two everywhere (there are only two control vector fields), while the
chassis configuration is three dimensional.

For nonlinear systems of the form q̇ = G(q)u, there are other notions of
controllability, however. We consider a few of these next, and show that even
though the canonical nonholonomic robot is not linearly controllable, it still
satisfies other important notions of controllability. In particular, the velocity
constraint does not integrate to a configuration constraint.

13.3.2.1 Definitions of Controllability

We begin with some standard definitions of nonlinear controllability.

Definition 13.1. A robot is controllable from q if, for any q
goal

, there exists
a control trajectory u(t) that drives the robot from q to q

goal

in finite time T .
The robot is small-time locally accessible from q if, for any time T > 0
and any neighborhood3 W (q), the reachable set in time less than T without
leaving W (q) is a full-dimensional subset of the configuration space. The robot
is small-time locally controllable (STLC) from q if, for any time T > 0 and
any neighborhood W (q), the reachable set in time less than T without leaving
W (q) is a neighborhood of q.

Small-time local accessibility (STLA) and small-time local controllability
(STLC) are illustrated in Figure 13.13 for a two-dimensional configuration space.
Clearly STLC at q is a stronger condition than STLA at q. If a system is
STLC at all q, then it is controllable from any q, by patching together paths in
neighborhoods from q to q

goal

.
For all the examples in this chapter, if a controllability property holds for

any q, then it holds for all q, since the maneuverability of the robot does not
change with configuration.

Consider the examples of a car and a forward-only car with no reverse gear.
A forward-only car is STLA, as we will see shortly, but it is not STLC; if it is
confined to a tight space (a small neighborhood W), it cannot reach configu-
rations directly behind its initial configuration. On the other hand, a car with

3
A neighborhood W (q) of a configuration q is any full-dimensional set of configuration

space containing q in the interior. For example, the set of configurations in a ball of radius

r > 0 centered at q (i.e., all qb satisfying kqb � qk < r) is a neighborhood of q.

470 Wheeled Mobile Robots

a reverse gear is STLC. Both cars are controllable in the obstacle-free plane,
because even a forward-only car can drive anywhere.

If there are obstacles in the plane, there may be some free space configura-
tions the forward-only car cannot reach that the STLC car can reach. (Consider
an obstacle directly in front of the car, for example.) If the obstacles are all
defined as closed subsets of the plane containing their boundaries, the STLC
car can reach any configuration in its connected component of the free space.

It is worth thinking about this last statement for a moment. All free configu-
rations have collision-free neighborhoods, since the free space is defined as open
and the obstacles are defined as closed (containing their boundaries). Therefore
it is always possible to maneuver in any direction. This means that if the length
of your car is shorter than the available parking space, you can parallel park
into it, even if it takes a long time!

If any of the controllability properties holds (controllable, STLA, or STLC),
then the reachable configuration space is full dimensional, and therefore any
velocity constraints on the system are nonholonomic.

13.3.2.2 Controllability Tests

Consider a driftless, linear-in-the-control (“control a�ne”) system

q̇ = G(q)u =
mX

i=1

g
i

(q)u
i

, q 2 Rn, u 2 U ⇢ Rm,m < n, (13.25)

generalizing the canonical nonholonomic model where n = 3 andm = 2. The set
of feasible controls is U ⇢ Rm. For example, the control sets U for the unicycle,
di↵-drive, car-like, and forward-only car-like robots are shown in Figure 13.11.
In this chapter we consider two types of control sets U : those whose positive
linear span is Rm, i.e., pos(U) = Rm, such as the control sets for the unicycle,
di↵-drive robot, and car in Figure 13.11, and those whose positive linear span
does not cover Rm but whose linear span does, i.e., span(U) = Rm, such as the
control set for the forward-only car in Figure 13.11.

Local controllability properties (STLA or STLC) of (13.25) depend on the
non-commutativity of motions along the vector fields g

i

. Let F g

i

✏

(q) be the
configuration reached by following the vector field g

i

for time ✏ starting from
q. Then g

i

(q) and g
j

(q) commute if F
g

j

✏

(F g

i

✏

(q)) = F g

i

✏

(F
g

j

✏

(q)), i.e., the order
of following the vector fields does not matter. If they do not commute, i.e.,
F

g

j

✏

(F g

i

✏

(q))�F g

i

✏

(F
g

j

✏

(q)) 6= 0, then the order of application of the vector fields
a↵ects the final configuration. In addition, if we define the noncommutativity
as

�q = F g

j

✏

(F g

i

✏

(q))� F g

i

✏

(F g

j

✏

(q)) for small ✏,

if �q is in a direction that cannot be achieved directly by any of the other vector
fields g

k

, then switching between g
i

and g
j

can create motion in a direction not
present in the original set of vector fields. A familiar example is parallel parking
a car: there is no vector field corresponding to direct sideways translation, but

13.3. Nonholonomic Wheeled Mobile Robots 471

by alternating forward and backward motion along two di↵erent vector fields,
it is possible to create a net motion to the side.

To approximately calculate q(2✏) = F
g

j

✏

(F g

i

✏

(q(0))) for small ✏, we use a
Taylor expansion and truncate the expansion at O(✏3). We start by following
g
i

for time ✏, and use the fact that q̇ = g
i

(q) and q̈ = @g

i

@q

q̇ = @g

i

@q

g
i

(q):

q(✏) = q(0) + ✏q̇(0) +
1

2
✏2q̈(0) +O(✏3)

= q(0) + ✏g
i

(q(0)) +
1

2
✏2
@g

i

@q
g
i

(q(0)) +O(✏3).

Now, after following g
j

for time ✏:

q(2✏) = q(✏) + ✏g
j

(q(✏)) +
1

2
✏2
@g

j

@q
g
j

(q(✏)) +O(✏3)

= q(0) + ✏g
i

(q(0)) +
1

2
✏2
@g

i

@q
g
i

(q(0)) +

✏g
j

(q(0) + ✏g
i

(q(0))) +
1

2
✏2
@g

j

@q
g
j

(q(0)) +O(✏3)

= q(0) + ✏g
i

(q(0)) +
1

2
✏2
@g

i

@q
g
i

(q(0)) +

✏g
j

(q(0)) + ✏2
@g

j

@q
g
i

(q(0)) +
1

2
✏2
@g

j

@q
g
j

(q(0)) +O(✏3). (13.26)

Note the presence of the ✏2 @gj
@q

g
i

term, the only term that depends on the order

of the vector fields. Using the expression (13.26), we can calculate the noncom-
mutativity

�q = F g

j

✏

(F g

i

✏

(q))�F g

i

✏

(F g

j

✏

(q)) = ✏2
✓
@g

j

@q
g
i

� @g
i

@q
g
j

◆
(q(0))+O(✏3). (13.27)

In addition to measuring noncommutativity, �q is also the net motion (to order
✏2) obtained by following g

i

for time ✏, then g
j

for time ✏, then �g
i

for time ✏,
then �g

j

for time ✏.

The term @g

j

@q

g
i

� @g

i

@q

g
j

in Equation (13.27) is important enough that we
give it its own name:

Definition 13.2. The Lie bracket of the vector fields g
i

(q) and g
j

(q) is

[g
i

, g
j

](q) =

✓
@g

j

@q
g
i

� @g
i

@q
g
j

◆
(q). (13.28)

This Lie bracket is the same as the Lie bracket for rigid-body motions in-
troduced in Chapter 8.2.2. The only di↵erence is that the Lie bracket in Chap-
ter 8.2.2 was thought of as the noncommutativity of two constant twists V

i

,V
j

defined at a given instant, rather than of two velocity vector fields defined over

472 Wheeled Mobile Robots

all configurations q. The Lie bracket [V
i

,V
j

] = [V
i

][V
j

] � [V
j

][V
i

] from Chap-
ter 8.2.2 would be identical to the expression in Equation (13.28) if the constant
twists were represented as vector fields g

i

(q), g
j

(q) in local coordinates q. See
Exercise 1, for example.

The Lie bracket of two vector fields g
i

(q) and g
j

(q) should itself be thought
of as a vector field [g

i

, g
j

](q), where approximate motion along the Lie bracket
vector field can be obtained by switching between the original two vector fields.
As we saw in our Taylor expansion, however, motion along the Lie bracket vector
field is slow relative to motions along the original vector fields—for small times
✏, motion of order ✏ can be obtained in the directions of the original vector
fields, while motion in the Lie bracket direction is only of order ✏2. This agrees
with our common experience that moving a car sideways by parallel parking
motions is slow relative to forward and backward or turning motions, as in the
next example.

Example 13.1. Consider the canonical nonholonomic robot with vector fields
g
1

(q) = (0, cos�, sin�)T and g
2

(q) = (1, 0, 0)T . The Lie bracket vector field
g
3

(q) = [g
1

, g
2

](q) is

g
3

(q) = [g
1

, g
2

](q) =

✓
@g

2

@q
g
1

� @g
1

@q
g
2

◆
(q)

=

2

4
0 0 0
0 0 0
0 0 0

3

5

2

4
0

cos�
sin�

3

5�

2

4
0 0 0
0 0 � sin�
0 0 cos�

3

5

2

4
1
0
0

3

5

=

2

4
0

sin�
� cos�

3

5 .

The Lie bracket direction is a sideways “parallel parking” motion, as illustrated
in Figure 13.14. The net motion obtained by following g

1

for ✏, g
2

for ✏, �g
1

for ✏, and �g
2

for ✏ is a motion of order ✏2 in this Lie bracket direction, plus a
term of order ✏3.

Based on the result of Example 13.1, no matter how small the maneuvering
space is for a car with a reverse gear, it can generate sideways motion. Thus
we have shown that the Pfa�an velocity constraint implicit in the kinematics
q̇ = G(q)u for the canonical nonholonomic mobile robot is not integrable to a
configuration constraint.

A Lie bracket [g
i

, g
j

] is called a Lie product of degree 2, because the orig-
inal vector fields appear two times in the bracket. For the canonical nonholo-
nomic model, it is only necessary to consider the degree 2 Lie product to show
that there are no configuration constraints. To test whether there are config-
uration constraints for more general systems of the form (13.25), however, it
may be necessary to consider even deeper Lie brackets, such as [g

i

, [g
j

, g
k

]] or
[g

i

, [g
i

, [g
i

, g
j

]]], which are Lie products of degree 3 and 4, respectively. Just as
it is possible to generate motions in Lie bracket directions by switching between

13.3. Nonholonomic Wheeled Mobile Robots 473

 g1

 g2

2[g1, g2]

{

O(3)

Top View of Unicycle

x^

y^

^
θ

x^

y^

– g1
 g2–

Figure 13.14: The Lie bracket of the forward-backward vector field g
1

(q) and
the spin-in-place vector field g

2

(q) is a sideways vector field.

the original vector fields, it is possible to generate motion in Lie product direc-
tions of degree greater than 2. Generating motions in these directions is even
slower than for degree 2 Lie products, however.

The Lie algebra of a set of vector fields is defined by all Lie products of all
degrees, including Lie products of degree 1 (the original vector fields themselves):

Definition 13.3. The Lie algebra of a set of vector fields G = {g
1

, . . . , g
m

},
written Lie(G), is the linear span of all Lie products of degree 1 . . .1 of the
vector fields G.

For example, for G = {g
1

, g
2

}, Lie(G) is given by the linear combinations of
the following Lie products:

degree 1: g
1

, g
2

degree 2: [g
1

, g
2

]
degree 3: [g

1

, [g
1

, g
2

]], [g
2

, [g
1

, g
2

]]
degree 4: [g

1

, [g
1

, [g
1

, g
2

]], [g
1

, [g
2

, [g
1

, g
2

]]], [g
2

, [g
1

, [g
1

, g
2

]], [g
2

, [g
2

, [g
1

, g
2

]]]
...

...

Since Lie products obey the following identities,

• [g
i

, g
i

] = 0

• [g
i

, g
j

] = �[g
j

, g
i

]

• [g
i

, [g
j

, g
k

]] + [g
k

, [g
i

, g
j

]] + [g
j

, [g
k

, g
i

]] = 0 (the Jacobi identity),

474 Wheeled Mobile Robots

not all bracket combinations need to be considered at each degree level.
In practice, there will be a finite degree k beyond which higher-degree

Lie products yield no more information about the Lie algebra. This hap-
pens, for example, when the dimension of the Lie algebra is n at all q, i.e.,
dim(Lie(G)(q)) = n for all q; no further Lie brackets can yield new motion
directions, as all motion directions have already been obtained. If this never
happens, however, in general there is no way to know when to stop trying higher-
degree Lie products. For a class of systems (13.25) called regular, however, if
there is a degree k that yields no new motion directions not included at lower
degrees, then there is no need to look deeper.

With all of this as background, we are finally ready to state our main theorem
on controllability.

Theorem 13.2. The control system (13.25), with vector fields G = {g
1

(q), . . . , g
m

(q)},
is small-time locally accessible from q if dim(Lie(G)(q)) = n and span(U) = Rm.
If additionally pos(U) = Rm, then the system is small-time locally controllable
from q.

We omit the proof, but the intuition is as follows. If the Lie algebra is full
rank, then the vector fields (followed both forward and backward) locally permit
motion in any direction. If pos(U) = Rm (like a car with a reverse gear), then
it is possible to directly follow all vector fields forward or backward, or it is
possible to switch between feasible controls to follow any vector field forward
and backward arbitrarily closely, and therefore the Lie algebra rank condition
implies STLC. If the controls only satisfy span(U) = Rm (like a forward-only
car), then some vector fields may only be followed forward or backward. Still,
the Lie algebra rank condition ensures there are no equality constraints on the
reachable set, so the system is STLA.

For any system of the form (13.25), the question of whether the velocity
constraints are integrable is finally answered by Theorem 13.2. If the system is
STLA at any q, the constraints are not integrable.

Let us apply Theorem 13.2 to a few examples.

Example 13.2 (Controllability of the canonical nonholonomic mo-
bile robot). In Example 13.1, we computed the Lie bracket g

3

= [g
1

, g
2

] =
(0, sin�,� cos�)T for the canonical nonholonomic robot. Putting the column
vectors g

1

(q), g
2

(q), and g
3

(q) side-by-side in a matrix and calculating its de-
terminant, we find

det[g
1

(q) g
2

(q) g
3

(q)] = det

2

4
0 1 0

cos� 0 sin�
sin� 0 � cos�

3

5 = cos2 �+ sin2 � = 1,

i.e., the three vector fields are linearly independent at all q, and therefore the
dimension of the Lie algebra is three at all q. By Theorem 13.2 and the control
sets illustrated in Figure 13.11, the unicycle, di↵-drive, and car are all STLC at
all q, while the forward-only car is only STLA at all q. Each of the unicycle,
di↵-drive, car, and forward-only car is controllable in the obstacle-free plane.

13.3. Nonholonomic Wheeled Mobile Robots 475

Example 13.3 (Controllability of the full configuration of the unicy-
cle). We already know from the previous example that the unicycle is STLC
on its (�, x, y) subspace; what if we include the rolling angle ✓ in the descrip-
tion of the configuration? According to Equation (13.12), for q = (�, x, y, ✓)T ,
the two vector fields are g

1

(q) = (0, r cos�, r sin�, 1)T and g
2

(q) = (1, 0, 0, 0)T .
Calculating the degree 2 and 3 Lie brackets

g
3

(q) = [g
1

, g
2

](q) = (0, r sin�,�r cos�, 0)T

g
4

(q) = [g
2

, g
3

](q) = (0, r cos�, r sin�, 0)T ,

we see that these directions correspond to sideways translation and forward/backward
motion without changing the wheel rolling angle ✓, respectively. These are
clearly linearly independent of g

1

(q) and g
2

(q), but we can confirm that by
evaluating

det[g
1

(q) g
2

(q) g
3

(q) g
4

(q)] = �r2,

i.e., dim(Lie(G)(q)) = 4 for all q. Since pos(U) = R2 for the unicycle by Fig-
ure 13.11, the unicycle is STLC at all points in its four-dimensional configuration
space.

Think about a short “parallel parking” type maneuver which results in a
net change in the rolling angle ✓ with zero net change in the other configuration
variables.

Example 13.4 (Controllability of the full configuration of the di↵–
drive). The full configuration of the di↵-drive is five dimensional, q = (�, x, y, ✓

L

, ✓
R

)T ,
including the angles of both wheels. The two control vector fields are given in
Equation (13.14). Proceeding to take Lie brackets of these vector fields, we
would find that we can never create more than four linearly independent vector
fields, i.e.,

dim(Lie(G)(q)) = 4

at all q. This is because there is a fixed relationship between the two wheel angles
(✓

L

, ✓
R

) and the angle of the robot chassis �. The three velocity constraints
(dim(q) = 5, dim(u) = 2) implicit in the kinematics (13.14) therefore can be
viewed as two nonholonomic constraints and one holonomic constraint. On the
full five-dimensional configuration space, the di↵-drive is nowhere STLA.

Since we usually only worry about the configuration of the chassis, this
negative result is not of much concern.

13.3.3 Motion Planning

13.3.3.1 Obstacle-Free Plane

It is easy to find feasible motions between any two chassis configurations q
0

and q
goal

in the obstacle-free plane for any of the four nonholonomic robot
models (unicycle, di↵-drive, car, or forward-only car). The problem gets more
interesting when we try to optimize an objective function. Below we consider
shortest paths for the forward-only car, shortest paths for the car, and fastest

476 Wheeled Mobile Robots

CSC CC Cα

Figure 13.15: The two classes of shortest paths for a forward-only car. The
CSC path could be written RSL, and the CC

↵

C path could be written LR
↵

L.

paths for the di↵-drive. The solutions to these problems depend on optimal
control theory, and the proofs are left to the original references (see the Notes
and References at the end of the chapter).

Shortest Paths for the Forward-Only Car The shortest path problem is
to find a path from q

0

to q
goal

that minimizes the length of the path followed by
the robot’s reference point. This is not an interesting question for the unicycle or
the di↵-drive; a shortest path for each of them is a rotation to point toward the
goal position (x

goal

, y
goal

), a translation, then a rotation to the goal orientation.
The total path length is

p
(x

0

� x
goal

)2 + (y
0

� y
goal

)2.
The problem is more interesting for the forward-only car, sometimes called

theDubins car in honor of the mathematician who first studied the structure of
the shortest planar curves with bounded curvature between two oriented points.

Theorem 13.3. For a forward-only car with the control set shown in Fig-
ure 13.11, shortest paths consist only of arcs at the minimum turning radius and
straight-line segments. Denoting a circular arc segment as C and a straight-line
segment as S, the shortest path between any two configurations follows either
the sequence (a) CSC or (b) CC

↵

C, where C
↵

indicates a circular arc of angle
↵ > ⇡. Any of the C or S segments can be of length zero.

The two optimal path classes for a forward-only car are illustrated in Fig-
ure 13.15. We can calculate the shortest path by enumerating the possible CSC
and CC

↵

C paths. Construct the two minimum-turning-radius circles of the ve-
hicle at both q

0

and q
goal

and solve for (a) the points where lines (with the
correct heading direction) are tangent to one of the circles at q

0

and one of the
circles at q

goal

, and (b) the points where a minimum-turning-radius circle (with
the correct heading direction) is tangent to one of the circles at q

0

and one of the
circles at q

goal

. The solutions to (a) correspond to CSC paths and the solutions
to (b) correspond to CC

↵

C solutions. The shortest of all the solutions is the
optimal path. The shortest path may not be unique.

If we break the C segments into two categories, L (when the steering wheel
is pegged to the left) and R (when the steering wheel is pegged to the right),

13.3. Nonholonomic Wheeled Mobile Robots 477

CSC CC|C C|C|C

Figure 13.16: Three of the nine classes of shortest paths for a car.

we see there are four types of CSC paths (LSL, LSR, RSL, and RSR) and
two types of CC

↵

C paths (RL
↵

R and LR
↵

L).
A shortest path is also a minimum-time path for the forward-only car control

set illustrated in Figure 13.11, where the only controls (v,!) ever used are the
three controls (v

max

, 0) (an S segment) and (v
max

,±!
max

) (a C segment).

Shortest Paths for the Car The shortest paths for a car with a reverse gear,
sometimes called the Reeds-Shepp car in honor of the mathematicians who
first studied the problem, again only use straight-line segments and minimum-
turning-radius arcs. Using the notation C for a minimum-turning-radius arc, C

a

for an arc of angle a, S for a straight-line segment, and | for a cusp (a reversal
of the linear velocity), Theorem 13.4 enumerates all the possible shortest path
sequences.

Theorem 13.4. For a car with the control set shown in Figure 13.11, the
shortest path between any two configurations is in one of the following nine
classes:

C|C|C CC|C C|CC CC
a

|C
a

C C|C
a

C
a

|C
C|C

⇡/2

SC CSC
⇡/2

|C C|C
⇡/2

SC
⇡/2

|C CSC

Any of the C or S segments can be of length zero.

Three of the nine shortest path classes are illustrated in Figure 13.16. Again,
the actual shortest path may be found by enumerating the finite set of possible
solutions in the path classes in Theorem 13.4. The shortest path may not be
unique.

If we break the C segments into four categories, L+, L�, R+, and R�, where
L and R mean the steering wheel is turned all the way to the left or right and
+ and � indicate the gear shift (forward or reverse), then the nine path classes
of Theorem 13.4 can be expressed as (6⇥ 4) + (3⇥ 8) = 48 di↵erent types:

4 types (6 classes): C|C|C, CC|C, C|CC, CC
a

|C
a

C, C|C
a

C
a

|C,
C|C

⇡/2

SC
⇡/2

|C
8 types (3 classes): C|C

⇡/2

SC, CSC
⇡/2

|C, CSC

478 Wheeled Mobile Robots

motion number
segments of types motion sequences

1 4 F , B, R, L
2 8 FR, FL, BR, BL, RF , RB, LF , LB
3 16 FRB, FLB, FR

⇡

B, FL
⇡

B,
BRF , BLF , BR

⇡

F , BL
⇡

F ,
RFR, RFL, RBR, RBL,
LFR, LFL, LBR, LBL

4 8 FRBL, FLBR, BRFL, BLFR,
RFLB, RBLF , LFRB, LBRF

5 4 FRBLF , FLBRF , BRFLB, BLFRB

Table 13.1: The 40 time-optimal trajectory types for the di↵-drive. The notation
R
⇡

and L
⇡

indicate spins of angle ⇡.

The four types for six of the path classes are determined by the four di↵erent
initial motion directions, L+, L�, R+, and R�. The eight types for three of the
path classes are determined by the four initial motion directions and whether
the turn is to the left or the right after the straight-line segment. There are only
four types in the C|C

⇡/2

SC
⇡/2

|C class because the turn after the S segment is
always opposite the turn before the S segment.

If it takes zero time to reverse the linear velocity, a shortest path is also a
minimum-time path for the car control set illustrated in Figure 13.11, where the
only controls (v,!) ever used are the two controls (±v

max

, 0) (an S segment) or
the four controls (±v

max

,±!
max

) (a C segment).

Minimum-Time Motions for the Di↵-Drive For a di↵-drive robot with
the diamond-shaped control set in Figure 13.11, any minimum-time motion
consists of only translational motions and spins in place.

Theorem 13.5. For a di↵-drive robot with the control set illustrated in Fig-
ure 13.11, minimum-time motions consist of forward and backward translations
(F and B) at maximum speed ±v

max

and spins in place (R and L for right turns
and left turns) at maximum angular speed ±!

max

. There are 40 types of time-
optimal motions, categorized in Table 13.1 by the number of motion segments.
The notations R

⇡

and L ⇡ indicate spins of angle ⇡.

Note that Table 13.1 includes both FR
⇡

B and FL
⇡

B, which are equivalent,
as well as BR

⇡

F and BL
⇡

F . Each of the trajectory types is time optimal
for some pair {q

0

, q
goal

}, and the time-optimal trajectory may not be unique.
Notably absent are three-segment sequences where the first and last motions
are translations in the same direction (i.e., FRF , FLF , BRB, and BLB).

While any reconfiguration of the di↵-drive can be achieved by spinning,
translating, and spinning, in some cases other three-segment sequences have a
shorter travel time. For example consider a di↵-drive with v

max

= !
max

= 1

13.3. Nonholonomic Wheeled Mobile Robots 479

1
1

qgoal

q0 –7π/8

π/16

1.962

–15π/16

LFR

–7π/8

1
1

FRB

(1.924, 0.383)

Figure 13.17: (Top) A motion planning problem specified as a motion from
q
0

= (0, 0, 0) to q
goal

= (�7⇡/8, 1.924, 0.383). (Bottom left) A non-optimal LFR
solution taking time 5.103. (Bottom right) The time-optimal FRB solution,
through a “via point,” taking time 4.749.

and q
0

= 0, q
goal

= (�7⇡/8, 1.924, 0.383) as shown in Figure 13.17. The time
needed for a spin of angle ↵ is |↵|/!

max

= |↵| and the time for a translation of
d is |d|/v

max

= |d|. Therefore, the time needed for the LFR sequence is

⇡

16
+ 1.962 +

15⇡

16
= 5.103

while the time needed for the FRB sequence through a “via point” is

1 +
7⇡

8
+ 1 = 4.749.

13.3.3.2 With Obstacles

If there are obstacles in the plane, the grid-based motion planning methods
of Chapter 10.4.2 can be applied to the unicycle, di↵-drive, car, or forward-
only car using discretized versions of the control sets in Figure 13.11. See,
for example, the discretizations in Figure 10.14 that use the extremal con-
trols from Figure 13.11. Using the extremal controls takes advantage of our
observation that shortest paths for cars and the di↵-drive consist of minimum-
turning-radius turns and straight-line segments. Also, because the C-space is
only three-dimensional, the grid size should be manageable for reasonable reso-
lutions along each dimension.

480 Wheeled Mobile Robots

q(0)

q(1/2)
q(1/4)

q(1)

q(0)

q(1)

Figure 13.18: (Left) The original path from q(0) to q(1), found by a motion
planner that does not respect the car’s motion constraints. (Right) The recursive
path subdivision transformation terminates with via points at q(1/4) and q(1/2).

We can also apply the sampling methods of Chapter 10.5. For RRTs, we can
again use a discretization of the control set, as mentioned above, or, for both
PRMs and RRTs, the local planner that attempts to connect two configurations
could use the shortest paths from Theorem 13.3, Theorem 13.4, or Theorem 13.5.

Another option for a car is to use any e�cient obstacle-avoiding path planner,
even if it ignores the motion constraints of the vehicle. Since the car is STLC,
and since the free configuration space is defined to be open (obstacles are closed,
containing their boundaries), the car can follow the path arbitrarily closely. To
follow the path closely, however, the motion may be slow—imagine using parallel
parking to travel a kilometer down the road.

Instead, the initial constraint-free path can be quickly transformed into a
fast, feasible path that respects the car’s motion constraints. To do this, repre-
sent the initial path as q(s), s 2 [0, 1]. Then try to connect q(0) to q(1) using
a shortest path from Theorem 13.4. If this path is in collision, then divide the
original path in half and try to connect q(0) to q(1/2) and q(1/2) to q(1) using
shortest paths. If either of these are in collision, divide that path, and so on.
Because the car is STLC and the initial path lies in open free space, the process
will eventually terminate, and the new path consists of a sequence of subpaths
from Theorem 13.4. The process is illustrated in Figure 13.18.

13.3.4 Feedback Control

We can consider three types of feedback control problems for the canonical
nonholonomic mobile robot (13.18) with controls (v,!):

(i) Stabilization of a configuration. As we saw in Theorem 13.1, no
time-invariant feedback law continuous in the state variables can stabilize
a configuration for a nonholonomic mobile robot. There do exist time-
varying and discontinuous feedback laws that accomplish the task, but we
will not consider this problem further in this chapter.

13.3. Nonholonomic Wheeled Mobile Robots 481

(ii) Trajectory tracking. Given a desired trajectory q
d

(t), drive the error
q(t)� q

d

(t) to zero as time goes to infinity.

(iii) Path tracking. Given a path q(s), follow the geometric path, without
regard to the time of the motion. This provides more control freedom than
the trajectory tracking problem; essentially, we can choose the reference
configuration along the path to help reduce tracking error, in addition to
choosing (v,!).

Path tracking and trajectory tracking are “easier” than stabilizing a config-
uration, in the sense that there exist continuous time-invariant feedback laws
to stabilize the desired motions. In this section we consider the problem of
trajectory tracking.

Assume that the reference trajectory is specified as q
d

(t) = (�
d

(t), x
d

(t), y
d

(t))
for t 2 [0, T], with a corresponding nominal control (v

d

(t),!
d

(t)) 2 int(U) for
t 2 [0, T]. The requirement that the nominal control be in the interior of the
feasible control set U is to ensure that some control e↵ort is “left over” to ac-
commodate small errors. This implies that the reference trajectory is neither a
shortest path nor a time-optimal trajectory, since optimal motions saturate the
controls. The reference trajectory could be planned using not-quite-extremal
controls.

A simple first controller idea is to choose a reference point P on the chassis
of the robot (not on the axis of the two driving wheels), as in Figure 13.12.
The desired trajectory q

d

(t) is then represented by the desired trajectory of the
reference point (x

Pd

(t), y
Pd

(t)). To track this reference point trajectory, we can
use a proportional feedback controller

ẋ
P

ẏ
P

�
=

k
p

(x
Pd

� x
P

)
k
p

(y
Pd

� y
p

)

�
(13.29)

where k
p

> 0. This simple linear control law is guaranteed to pull the ac-
tual point position along with the moving desired point position. The velocity
(ẋ

P

, ẏ
P

) calculated by the control law (13.29) is converted to (v,!) by Equa-
tion (13.21).

The idea is that, as long as the reference point is moving, over time the
entire robot chassis will line up with the desired orientation of the chassis. The
problem is that the controller may choose the opposite orientation of what is
intended; there is nothing in the control law to prevent this. Figure 13.19 shows
two simulations, one where the control law (13.29) produces the desired chassis
motion and one where the control law causes an unintended reversal in the sign
of the driving velocity v. In both simulations, the controller succeeds in causing
the reference point to track the desired motion.

To fix this, let us explicitly incorporate chassis angle error in the control
law. The fixed space frame is written {s}, the chassis frame {b} is at the point
between the two wheels of the di↵-drive (or the two rear wheels for a car) with
the forward driving direction along the x̂

b

-axis, and the frame corresponding to

482 Wheeled Mobile Robots

q(0)

q (0)d

q (T)d
q(T)

q(0)

q (0)d

q(T) q (T)d

Figure 13.19: (Left) A nonholonomic mobile robot with a reference point. (Mid-
dle) A scenario where the linear control law (13.29) tracking a desired reference
point trajectory yields the desired trajectory tracking behavior for the entire
chassis. (Right) A scenario where the point-tracking control law causes an un-
intended cusp in the robot motion. The reference point converges to the desired
path but the robot’s orientation is opposite the intended orientation.

{b}

{s}
{d}

(x ,y)e e

φ
(x,y)

φd
planned path

Figure 13.20: The space frame {s}, the robot frame {b}, and the desired con-
figuration {d} driving forward along the planned path. The heading direction
error is �

e

= �� �
d

.

q
d

(t) is written {d}. We define the error coordinates

q
e

=

2

4
�
e

x
e

y
e

3

5 =

2

4
1 0 0
0 cos�

d

sin�
d

0 � sin�
d

cos�
d

3

5

2

4
�� �

d

x� x
d

y � y
d

3

5 , (13.30)

as illustrated in Figure 13.20. The vector (x
e

, y
e

) is the {s}-coordinate error
vector (x� x

d

, y � y
d

) expressed in the reference frame {d}.
Consider the nonlinear feedforward plus feedback control law

v
!

�
=

(v

d

� k
1

|v
d

|(x
e

+ y
e

tan�
e

))/ cos�
e

!
d

� (k
2

v
d

y
e

+ k
3

|v
d

| tan�
e

) cos2 �
e

�
, (13.31)

where k
1

, k
2

, k
3

> 0. Note two things about this control law: (1) if the error
is zero, the control is simply the nominal control (v

d

,!
d

), and (2) the controls
grow without bound as �

e

approaches ⇡/2 or �⇡/2. In practice, we assume
that |�

e

| is less than ⇡/2 during trajectory tracking.
In the controller for v, the second term, �k

1

|v
d

|x
e

/ cos�
e

, attempts to reduce
x
e

by driving to catch up or slow down to the reference frame. The third term,
�k

1

|v
d

|y
e

tan�
e

/ cos�
e

, attempts to reduce y
e

based on the component of the
forward/backward velocity that impacts y

e

.

13.4. Odometry 483

actual
path

desired
path

q(0)

q (0)d

q (T)d

Figure 13.21: A mobile robot implementing the nonlinear control law (13.31).

In the controller for the turning velocity !, the second term, �k
2

v
d

y
e

cos2 �
e

,
attempts to reduce y

e

in the future by turning the heading direction of the
robot toward the reference frame origin. The third term, �k

3

|v
d

| tan�
e

cos2 �
e

,
attempts to reduce the heading error �

e

.
A simulation of the control law is shown in Figure 13.21.
The control law (13.31) requires |v

d

| 6= 0, so it is not appropriate for stabi-
lizing “spin-in-place” motions for a di↵-drive. The proof of the stability of the
control law requires methods beyond the scope of this book. In practice, the
gains should be chosen large enough to provide significant corrective action, but
not so large that the controls chatter at the boundary of the feasible control set
U .

13.4 Odometry

Odometry is the process of estimating the chassis configuration q from wheel
motions, essentially integrating the wheel velocities. Since wheel rotation sens-
ing is available on all mobile robots, odometry is cheap and convenient. Esti-
mation errors tend to accumulate over time, though, due to unexpected slipping
and skidding of the wheels and due to numerical integration error. Therefore, it
is common to supplement odometry with other position sensors, like GPS, visual
recognition of landmarks, ultrasonic beacons, laser or ultrasonic range sensing,
etc. Those sensing modalities have their own measurement uncertainty, but er-
rors do not accumulate over time. As a result, odometry generally gives superior
results on short time scales, but the odometric estimates should either (a) be
periodically corrected by other sensing modalities or, preferably, (b) integrated
with other sensing modalities in an estimation framework based on a Kalman
filter, particle filter, or similar.

In this section we focus on odometry. We assume each wheel of an omni-
directional robot, and each rear wheel of a di↵-drive or car, has an encoder
that senses how far the wheel has rotated in its driving direction. If the wheels
are driven by stepper motors, then we know the driving rotation of each wheel

484 Wheeled Mobile Robots

based on the steps we have commanded to it.
The goal is to estimate the new chassis configuration q

k+1

as a function of
the previous chassis configuration q

k

given the change in wheel angles from the
instant k to the instant k + 1.

Let �✓
i

be the change in wheel i’s driving angle since the wheel angle was
last queried �t ago. Since we only know the net change in the wheel driving
angle, not the time history of how the wheel angle evolved during the time
interval, the simplest approximation is that the wheel’s angular velocity was
constant during the time interval, ✓̇

i

= �✓
i

/�t. The choice of units used to
measure the time interval is not relevant (since we will eventually integrate the
chassis body twist V

b

over the same time interval), so set �t = 1, i.e., ✓̇
i

= �✓.
For omnidirectional mobile robots, the vector of wheel speeds ✓̇, and there-

fore �✓, is related to the body twist V
b

= (!
bz

, v
bx

, v
by

)T of the chassis by
Equation (13.8)

�✓ = H(0)V
b

,

where H(0) for the three-omniwheel robot is given by Equation (13.9) and H(0)
for the four-mecanum-wheel robot is given by Equation (13.10). Therefore, the
body twist V

b

corresponding to �✓ is

V
b

= H†(0)�✓ = F�✓,

where F = H†(0) is the pseudoinverse of H(0). For the three-omniwheel robot,

V
b

= F�✓ = r

2

4
�1/(3d) �1/(3d) �1/(3d)

2/3 �1/3 �1/3
0 �1/(2 sin(⇡/3)) 1/(2 sin(⇡/3))

3

5�✓, (13.32)

and for the four-mecanum-wheel robot,

V
b

= F�✓ =
r

4

2

4
�1/(`+ w) 1/(`+ w) 1/(`+ w) �1/(`+ w)

1 1 1 1
�1 1 �1 1

3

5�✓.

(13.33)
The relationship V

b

= F ✓̇ = F�✓ also holds for the di↵-drive robot and the
car (Figure 13.22), where �✓ = (�✓

L

,�✓
R

)T (the increments of the left and
right wheels) and

V
b

= F�✓ = r

2

4
�1/(2d) 1/(2d)

1/2 1/2
0 0

3

5

�✓
L

�✓
R

�
. (13.34)

Since the wheel speeds are assumed constant during the time interval, so is
the body twist V

b

. Calling V
b6

the six-dimensional version of the planar twist
V
b

(i.e., V
b6

= (0, 0,!
bz

, v
bx

, v
by

, 0)T), V
b6

can be integrated to generate the
displacement created by the wheel angle increment vector �✓:

T
bb

0 = e[Vb6

].

13.5. Mobile Manipulation 485

x^b
y^b

d

left
wheel

right
wheel

d

rθL
.

rθR
.

Figure 13.22: The left and right wheels of a di↵-drive or the left and right rear
wheels of a car.

From T
bb

0 2 SE(3), which expresses the new chassis frame {b0} relative to the
initial frame {b}, we can extract the change in coordinates relative to the body
frame {b}, �q

b

= (��
b

,�x
b

,�y
b

)T , in terms of (!
bz

, v
bx

, v
by

)T :

if !
bz

= 0 : �q
b

=

2

4
��

b

�x
b

�y
b

3

5 =

2

4
0
v
bx

v
by

3

5 (13.35)

if !
bz

6= 0 : �q
b

=

2

4
��

b

�x
b

�y
b

3

5 =

2

4
!
bz

(v
bx

sin(!
bz

) + v
by

(cos(!
bz

)� 1))/!
bz

(v
by

sin(!
bz

) + v
bx

(1� cos(!
bz

)))/!
bz

3

5 .

Transforming �q
b

in {b} to �q in the fixed frame {s} using the chassis angle
�
k

,

�q =

2

4
1 0 0
0 cos�

k

� sin�
k

0 sin�
k

cos�
k

3

5�q
b

, (13.36)

the updated odometry estimate of the chassis configuration is finally

q
k+1

= q
k

+�q.

In summary, �q is calculated using Equations (13.35) and (13.36) as a func-
tion of V

b

and the previous chassis angle �
k

, and either Equation (13.32), (13.33),
or (13.34) is used to calculate V

b

as a function of the wheel angle changes �✓ for
the three-omniwheel robot, the four-mecanum-wheel robot, or the di↵-drive/car,
respectively.

13.5 Mobile Manipulation

For a robot arm mounted on a mobile base, mobile manipulation is the
coordination of the motion of the base and the robot joints to achieve a desired
motion at the end-e↵ector. Typically the motion of the arm can be controlled
more precisely than the motion of the base, so the most popular type of mobile
manipulation is to drive the base, park it, let the arm perform the precise motion
task, then drive away.

486 Wheeled Mobile Robots

{s}

{b}

{e}

{0}

Figure 13.23: The space frame {s} and the frames {b}, {0}, and {e} attached
to the mobile manipulator.

In some cases, however, it is advantageous, or even necessary, for the end-
e↵ector motion to be achieved by a combination of motion of the base and
motion of the arm. Defining the fixed space frame {s}, the chassis frame {b}, a
frame at the base of the arm {0}, and an end-e↵ector frame {e}, the configura-
tion of {e} in {s} is

X(q, ✓) = T
se

(q, ✓) = T
sb

(q) T
b0

T
0e

(✓),

where ✓ 2 Rn is the set of arm joint variables, T
0e

(✓) is the forward kinematics
of the arm, T

b0

is the fixed o↵set of {0} from {b}, q = (�, x, y) is the planar
configuration of the mobile base, and

T
sb

(q) =

2

664

cos� � sin� 0 x
sin� cos� 0 y
0 0 1 0
0 0 0 1

3

775 .

See Figure 13.23.
Let X(t) be a path for the end-e↵ector as a function of time. Then [V

e

(t)] =
X�1(t)Ẋ(t) is the se(3) representation of the end-e↵ector twist expressed in {e}.
Further, let the vector of wheel velocities, whether the robot is omnidirectional
or nonholonomic, be written u 2 Rm. For kinematic control of the end-e↵ector
frame using wheel and joint velocities, we need the Jacobian J

e

(✓) 2 R6⇥(m+n)

satisfying

V
e

= J
e

(✓)

u
✓̇

�
= [J

base

(✓) J
arm

(✓)]

u
✓̇

�
.

Note that the Jacobian J
e

(✓) does not depend on q; the end-e↵ector velocity
expressed in {e} is independent of the configuration of the mobile base. Also,
we can partition J

e

(✓) into J
base

(✓) 2 R6⇥m and J
arm

(✓) 2 R6⇥n. The term
J
base

(✓)u expresses the contribution of the wheel velocities u to the end-e↵ector’s
velocity, and the term J

arm

(✓)✓̇ expresses the contribution of the joint velocities
to the end-e↵ector’s velocity.

13.5. Mobile Manipulation 487

In Chapter 5, we developed a method to derive J
arm

(✓), which is called the
body Jacobian J

b

(✓) in that chapter. All that remains is to find J
base

(✓). As
we saw in Section 13.4, for any type of mobile base there exists an F satisfying

V
b

= Fu.

To create a six-dimensional twist V
b6

corresponding to the planar twist V
b

, we
can define the 6⇥m matrix

F
6

=

2

664

0
m

0
m

F
0
m

3

775 ,

where two rows of m zeros are stacked above F and one row is placed below.
Now

V
b6

= F
6

u.

This chassis twist can be expressed in the end-e↵ector frame as

[Ad
T

eb

(✓)

]V
b6

= [Ad
T

�1

0e

(✓)T

�1

b0

]V
b6

= [Ad
T

�1

0e

(✓)T

�1

b0

]F
6

u = J
base

(✓)u.

Therefore,
J
base

(✓) = [Ad
T

�1

0e

(✓)T

�1

b0

]F
6

.

Now that we have the complete Jacobian J
e

(✓) = [J
base

(✓) J
arm

(✓)], we can
perform numerical inverse kinematics (Chapter 6.2) or implement kinematic
feedback control laws to track a desired end-e↵ector trajectory. For example,
given a desired end-e↵ector trajectory X

d

(t), we can choose the kinematic task-
space feedforward plus feedback control law (11.2),

V
com

(t) = V
d

(t) +K
p

X
err

(t), (13.37)

where V
d

(t) = X�1

d

(t)Ẋ
d

(t) and [X
err

] = log(X�1X
d

). The commanded end-
e↵ector-frame twist V

com

(t) is implemented as

u
✓̇

�
= J†

e

(✓)V
com

.

As discussed in Chapter 6.3, it is possible to use a weighted pseudoinverse to
penalize certain wheel or joint velocities.

An example is shown in Figure 13.24. The mobile base is a di↵-drive and the
arm moves in the plane with only one revolute joint. The desired motion of the
end-e↵ector X

d

(t), t 2 [0, 1], is parameterized by ↵ = �⇡t, x
e

(t) = �3 cos(⇡t),
and y

e

(t) = 3 sin(⇡t), where ↵ indicates the planar angle from the x̂
s

-axis to the
x̂
e

-axis (see Figure ??).

488 Wheeled Mobile Robots

X (0)d
X (1)d{s}

{e}

L1
θ1

xr
{b}2d

Figure 13.24: A di↵-drive with a 1R planar arm with end-e↵ector frame {e}.
(Top) The desired end-e↵ector trajectory X

d

(t) and the initial configuration of
the robot. (Bottom) Trajectory tracking using the control law (13.37).

13.6 Summary

• The chassis configuration of a wheeled mobile robot moving in the plane is
q = (�, x, y). The velocity can be represented either as q̇ or as the planar
twist V

b

= (!
bz

, v
bx

, v
by

)T expressed in the chassis-fixed frame {b}, where

V
b

=

2

4
!
bz

v
bx

v
by

3

5 =

2

4
1 0 0
0 cos� sin�
0 � sin� cos�

3

5

2

4
�̇
ẋ
ẏ

3

5 .

• The chassis of a nonholonomic mobile robot is subject to a single non-
integrable Pfa�an velocity constraint A(q)q̇ = [0, sin�,� cos�] q̇ =
ẋ sin�� ẏ cos� = 0. An omnidirectional robot, employing omniwheels or
mecanum wheels, has no such constraint.

• For a properly constructed omnidirectional robot withm � 3 wheels, there

13.6. Summary 489

exists a rank 3 matrix H(�) 2 Rm⇥3 that maps the chassis velocity q̇ to
the wheel driving velocities u:

u = H(�)q̇.

In terms of the body twist V
b

,

u = H(0)V
b

.

The driving speed limits of each wheel place two parallel planar constraints
on the feasible body twists, creating a polyhedron V of feasible body
twists.

• Motion planning and feedback control for omnidirectional robots is sim-
plified by the fact that there are no chassis velocity equality constraints.

• Nonholonomic mobile robots are described as driftless linear-in-the-control
systems

q̇ = G(q)u, u 2 U ⇢ Rm,

where G(q) 2 Rn⇥m, n > m. The columns g
i

(q) of G(q) are called the
control vector fields.

• The canonical simplified nonholonomic mobile robot model is

q̇ =

2

4
�̇
ẋ
ẏ

3

5 = G(q)u =

2

4
0 1

cos� 0
sin� 0

3

5

v
!

�
.

The control sets U di↵er for the unicycle, di↵-drive, car, and forward-only
car.

• A control system is small-time locally accessible (STLA) from q if, for any
time T > 0 and any neighborhoodW (q), the reachable set in time less than
T without leaving W (q) is a full-dimensional subset of the configuration
space. A control system is small-time locally controllable (STLC) from
q if, for any time T > 0 and any neighborhood W (q), the reachable set
in time less than T without leaving W (q) is a neighborhood of q. If the
system is STLC from a given q, it can locally maneuver in any direction.

• The Lie bracket of two vector fields g
1

and g
2

is the vector field

[g
1

, g
2

] =

✓
@g

2

@q
g
1

� @g
1

@q
g
2

◆
.

• A Lie product of degree k is a Lie bracket term where the original vector
fields appear k times. A Lie product of degree 1 is just one of the original
vector fields.

490 Wheeled Mobile Robots

• The Lie algebra of a set of vector fields G = {g
1

, . . . , g
m

}, written Lie(G),
is the linear span of all Lie products of degree 1 . . .1 of the vector fields
G.

• A driftless control-a�ne system is small-time locally accessible from q if
dim(Lie(G)(q)) = n and span(U) = Rm. If additionally pos(U) = Rm,
then the system is small-time locally controllable from q.

• For a forward-only car in the obstacle-free plane, shortest paths always
follow a turn at the tightest turning radius (C) or straight-line motions
(S). There are two classes of shortest paths: CSC and CC

↵

C, where C
↵

is a turn of angle |↵| > ⇡. Any of the C or S segments can be of length
zero.

• For a car with a reverse gear, shortest paths always consist of a sequence
of straight-line segments or turns at the tightest turning radius. Shortest
paths always belong to one of nine classes.

• For the di↵-drive, minimum-time motions always consist of turn-in-place
motions and straight-line motions.

• For the canonical nonholonomic robot, there is no time-invariant control
law continuous in the configuration that stabilizes the origin configuration.
Continuous time-invariant control laws exist to stabilize a trajectory, how-
ever.

• Odometry is the process of estimating the chassis configuration based
on how far the robot’s wheels have rotated in their driving direction,
assuming no skidding in the driving direction and, for typical wheels (not
omniwheels or mecanum wheels), no slip in the orthogonal direction.

• For a mobile manipulator with m wheels and n joints in the robot arm,
the end-e↵ector twist V

e

in the end-e↵ector frame {e} is written

V
e

= J
e

(✓)

u
✓̇

�
= [J

base

(✓) J
arm

(✓)]

u
✓̇

�
.

The 6⇥m Jacobian J
base

(✓) maps the wheel velocities u to a velocity at
the end-e↵ector, and the 6 ⇥ n Jacobian is the body Jacobian derived in
Chapter 5. The Jacobian J

base

(✓) is given by

J
base

(✓) = [Ad
T

�1

0e

(✓)T

�1

b0

]F
6

where F
6

is the transformation from the wheel velocities to the chassis
twist, V

b6

= Fu.

13.7 Notes and References

13.8. Exercises 491

13.8 Exercises

1.

492 Wheeled Mobile Robots

Appendix A

Summary of Useful
Formulas

Chapter 2

• dof = (sum of freedoms of bodies) � (number of independent configuration
constraints)

• Grübler’s formula is an expression of the previous formula for mechanisms
with N links (including ground) and J joints, where joint i has f

i

de-
grees of freedom and m = 3 for planar mechanisms or m = 6 for spatial
mechanisms:

dof = m(N � 1� J) +
JX

i=1

f
i

.

• Pfa�an velocity constraints take the form A(✓)✓̇ = 0.

Chapter 3

Rotations Rigid-Body Motions

R 2 SO(3) : 3⇥ 3 matrices satisfying T 2 SE(3) : 4⇥ 4 matrices

RTR = I, detR = 1 T =

R p
0 1

�
,

where R 2 SO(3), p 2 R3

R�1 = RT T�1 =

RT �RT p
0 1

�

change of coord frame: change of coord frame:
R

ab

R
bc

= R
ac

, R
ab

p
b

= p
a

T
ab

T
bc

= T
ac

, T
ab

p
b

= p
a

continued...

493

494 Summary of Useful Formulas

Rotations (cont.) Rigid-Body Motions (cont.)

rotating a frame {b}: displacing a frame {b}:

R = Rot(!̂, ✓) T =

Rot(!̂, ✓) p

0 1

�

R
sb

0 = RR
sb

: rotate ✓ about !̂
s

= !̂ T
sb

0 = TT
sb

: rotate ✓ about !̂
s

= !̂
(moves {b} origin), translate p in {s}

R
sb

00 = R
sb

R: rotate ✓ about !̂
b

= !̂ T
sb

00 = T
sb

T : translate p in {b},
rotate ✓ about !̂ in new body frame

unit rotation axis is !̂ 2 R3, “unit” screw axis is S =

!
v

�
2 R6,

where k!̂k = 1 where either (i) k!k = 1 or
(ii) ! = 0 and kvk = 1

for a screw axis {q, ŝ, h} with finite h,

S =

!
v

�
=

ŝ

�ŝ⇥ q + hŝ

�

angular velocity can be written ! = !̂✓̇ twist can be written V = S ✓̇

for any 3-vector, e.g., ! 2 R3, for V =

!
v

�
2 R6,

[!] =

2

4
0 �!

3

!
2

!
3

0 �!
1

�!
2

!
1

0

3

5 2 so(3) [V] =

[!] v
0 0

�
2 se(3)

identities: for !, x 2 R3, R 2 SO(3): (the pair (!, v) can be a twist V
[!] = �[!]T , [!]x = �[x]!, or a “unit” screw axis S,

[!][x] = ([x][!])T , R[!]RT = [R!] depending on the context)

ṘR�1 = [!
s

], R�1Ṙ = [!
b

] Ṫ T�1 = [V
s

], T�1Ṫ = [V
b

]

[Ad
T

] =

R 0

[p]R R

�
2 R6⇥6

identities: [Ad
T

]�1 = [Ad
T

�1],
[Ad

T

1

][Ad
T

2

] = [Ad
T

1

T

2

]

change of coord frame: change of coord frame:
!̂
a

= R
ab

!̂
b

, !
a

= R
ab

!
b

S
a

= [Ad
T

ab

]S
b

, V
a

= [Ad
T

ab

]V
b

!̂✓ 2 R3 are exp coords for R 2 SO(3) S✓ 2 R6 are exp coords for T 2 SE(3)

exp : [!̂]✓ 2 so(3)! R 2 SO(3) exp : [S]✓ 2 se(3)! T 2 SE(3)

R = Rot(!̂, ✓) = e[!̂]✓ = T = e[S]✓ =

e[!̂]✓ ⇤
0 1

�

I + sin ✓[!̂] + (1� cos ✓)[!̂]2 where ⇤ =
(I✓ + (1� cos ✓)[!] + (✓ � sin ✓)[!]2)v

log : R 2 SO(3)! [!̂]✓ 2 so(3) log : T 2 SE(3)! [S]✓ 2 se(3)
algorithm in Chapter 3.2.3.3 algorithm in Chapter 3.3.3.2

moment change of coord frame: wrench change of coord frame:
m

a

= R
ab

m
b

F
a

= (m
a

, f
a

) = [Ad
T

ba

]TF
b

495

Chapter 4

• The product of exponentials formula for a serial chain manipulator is

space frame: T = e[S1

]✓

1 . . . e[Sn

]✓

nM

body frame: T = Me[B1

]✓

1 . . . e[Bn

]✓

n

where M is the frame of the end-e↵ector in the space frame when the
manipulator is at its home position, S

i

is the spatial twist when joint i
rotates (or translates) at unit speed while all other joints are at their zero
position, and B

i

is the body twist of the end-e↵ector frame when joint i
moves at unit speed and all other joints are at their zero position.

Chapter 5

• For a manipulator end-e↵ector configuration written in coordinates x, the
forward kinematics is x = f(✓), and the di↵erential kinematics is given by
ẋ = @f

@✓

✓̇ = J(✓)✓̇, where J(✓) is the manipulator Jacobian.

• Written using twists, the relation is V⇤ = J⇤(✓)✓̇, where ⇤ is either s (space
Jacobian) or b (body Jacobian). The columns V

si

of the space Jacobian
are

V
si

(✓) = [Ad
e

[S
1

]✓

1

...e

[S
i�1

]✓

i�1

]S
i

and the columns V
bi

of the body Jacobian are

V
bi

(✓) = [Ad
e

�[B
n

]✓

n

...e

�[B
i+1

]✓

i+1

]B
i

.

The spatial twist caused by joint i motion is only altered by the config-
urations of joints inboard from joint i (between the joint and the space
frame), while the body twist caused by joint i is only altered by the con-
figurations of joints outboard from joint i (between the joint and the body
frame).

The two Jacobians are related by

J
b

(✓) = [Ad
T

bs

(✓)

]J
s

(✓) , J
s

(✓) = [Ad
T

sb

(✓)

]J
b

(✓).

• Generalized forces at the joints ⌧ are related to wrenches expressed in the
space or end-e↵ector body frame by

⌧ = JT

⇤ (✓)F⇤,

where ⇤ is s (space frame) or b (body frame).

• The manipulability ellipsoid is defined by

VT (JJT)�1V = 1,

where V may be a set of task space coordinate velocities q̇, a spatial or
body twist, or the angular or linear components of a twist, and J is the

496 Summary of Useful Formulas

appropriate Jacobian satisfying V = J(✓)✓̇. The principal axes of the
manipulability ellipsoid are aligned with the eigenvectors of JJT , and the
semi-axis lengths are the square roots of the corresponding eigenvalues.

• The force ellipsoid is defined by

FTJJTF = 1,

where J is a Jacobian (possibly in terms of a minimum set of task space
coordinates, or in terms of the spatial or body wrench) and F is an end-
e↵ector force or wrench satisfying ⌧ = JTF . The principal axes of the
manipulability ellipsoid are aligned with the eigenvectors of (JJT)�1, and
the semi-axis lengths are the square roots of the corresponding eigenvalues.

Chapter 6

• The law of cosines states that c2 = a2+b2�2ab cos �, where a, b, and c are
the lengths of the sides of a triangle and � is the interior angle opposite
side c. This formula is often useful to solve inverse kinematics problems.

• Numerical methods are used to solve the inverse kinematics for systems
for which closed-form solutions do not exist. A Newton-Raphson method
using the Jacobian pseudoinverse J†(✓) is outlined below.

(i) Initialization: Given T
sd

and an initial guess ✓
0

2 Rn. Set i = 0.

(ii) Set [V
b

] = log
�
T�1

sb

(✓
i

)T
sd

�
. While k!

b

k > ✏
!

or kv
b

k > ✏
v

for small
✏
!

, ✏
v

:

– Set ✓
i+1

= ✓
i

+ J†
b

(✓
i

)V
b

.

– Increment i.

If J is square and full rank, then J† = J�1. If J 2 Rm⇥n is full rank (rank
m for n > m or rank n for n < m), i.e., the robot is not at a singularity,
the pseudoinverse can be calculated as

J† = JT (JJT)�1 if J is fat, n > m (called a right inverse, since JJ† = I)

J† = (JTJ)�1JT if J is tall, n < m (called a left inverse, since J†J = I).

Chapter 8

• The Lagrangian is the kinetic minus the potential energy, L(✓, ✓̇) = K(✓, ✓̇)�
P(✓).

• The Euler-Lagrange equations are

⌧ =
d

dt

@L
@✓̇
� @L
@✓

.

497

• The equations of motion of a robot can be written in the following equiv-
alent forms:

⌧ = M(✓)✓̈ + h(✓, ✓̇)

= M(✓)✓̈ + c(✓, ✓̇) + g(✓)

= M(✓)✓̈ + ✓̇T�(✓)✓̇ + g(✓)

= M(✓)✓̈ + C(✓, ✓̇)✓̇ + g(✓),

where M(✓) is the n⇥n symmetric positive-definite mass matrix, h(✓, ✓̇) is
the sum of generalized forces due to gravity and quadratic velocity terms,
c(✓, ✓̇) are quadratic velocity forces, g(✓) are gravitational forces, �(✓) is
an n⇥ n⇥ n matrix of Christo↵el symbols of the first kind obtained from
partial derivatives of M(✓) with respect to ✓, and C(✓, ✓̇) is the n ⇥ n
Coriolis matrix whose (i, j) entry is given by

c
ij

(✓, ✓̇) =
nX

k=1

�
ijk

(✓)✓̇
k

.

If the end-e↵ector of the robot is applying a wrench F
tip

to the environ-
ment, the term JT (✓)F

tip

should be added to the right-hand side of the
robot’s dynamic equations.

• The symmetric positive-definite rotational inertia matrix of a rigid body
is

I
b

=

2

4
I
xx

I
xy

I
xz

I
xy

I
yy

I
yz

I
xz

I
yz

I
zz

3

5 ,

where

I
xx

=
R
B(y

2 + z2)⇢(x, y, z)dV I
yy

=
R
B(x

2 + z2)⇢(x, y, z)dV
I
zz

=
R
B(x

2 + y2)⇢(x, y, z)dV I
xy

= �
R
B xy⇢(x, y, z)dV

I
xz

= �
R
B xz⇢(x, y, z)dV I

yz

= �
R
B yz⇢(x, y, z)dV,

B is the body, dV is a di↵erential volume element, and ⇢(x, y, z) is the
density function.

• If I
b

is defined in a frame {b} at the center of mass, with axes aligned
with the principal axes of inertia, then I

b

is diagonal.

• If {b} is at the center of mass but its axes are not aligned with the principal
axes of inertia, there always exists a rotated frame {c} defined by the
rotation matrix R

bc

such that I
c

= RT

bc

I
b

R
bc

is diagonal.

• If I
b

is defined in a frame {b} at the center of mass, then I
q

, the inertia
in a frame {q} aligned with {b}, but displaced from the origin of {b} by
q 2 R3 in {b} coordinates, is

I
q

= I
b

+m(qT qI
3

� qqT)

by Steiner’s theorem.

498 Summary of Useful Formulas

• The spatial inertia matrix G
b

expressed in a frame {b} at the center of
mass is defined as the 6⇥ 6 matrix

G
b

=

I
b

0
0 mI

�
.

• The Lie bracket of two twists V
1

and V
2

is

[V
1

,V
2

] = adV
1

(V
2

) = [adV
1

]V
2

,

where

[adV] =

[!] 0
[v] [!]

�
2 R6⇥6.

• The twist-wrench formulation of the rigid-body dynamics of a single rigid
body is

F
b

= G
b

V̇
b

� [adV
b

]TG
b

V
b

.

• The kinetic energy of a rigid body is 1

2

VT

b

G
b

V
b

, and the kinetic energy of

an open-chain robot is 1

2

✓̇TM(✓)✓̇.

• The forward-backward Newton-Euler inverse dynamics algorithm is the
following:

Initialization: Attach a frame {0} to the base, frames {1} to {n} to
the centers of mass of links {1} to {n}, and a frame {n + 1} at the end-
e↵ector, fixed in the frame {n}. Define M

i�1,i

to be the configuration of
{i} in {i � 1} when ✓

i

= 0. Let A
i

be the screw axis of joint i expressed
in {i}, and G

i

be the 6⇥ 6 spatial inertia matrix of link i. Define V
0

to be
the twist of the base frame {0} expressed in base frame coordinates. (This
quantity is typically zero.) Let g 2 R3 be the gravity vector expressed in
base frame {0} coordinates, and define V̇

0

= (0,�g). (Gravity is treated
as an acceleration of the base in the opposite direction.) Define F

n+1

=
F

tip

= (m
tip

, f
tip

) to be the wrench applied applied to the environment
by the end-e↵ector expressed in the end-e↵ector frame {n+ 1}.
Forward iterations: Given ✓, ✓̇, ✓̈, for i = 1 to n do

T
i�1,i

= M
i�1,i

e[Ai

]✓

i

V
i

= Ad
T

i,i�1

(V
i�1

) +A
i

✓̇
i

V̇
i

= Ad
T

i,i�1

(V̇
i�1

) + [V
i

,A
i

]✓̇
i

+A
i

✓̈
i

.

Backward iterations: For i = n to 1 do

F
i

= AdT
T

i+1,i

(F
i+1

) + G
i

V̇
i

� adTV
i

(G
i

V
i

)

⌧
i

= FT

i

A
i

.

499

• Let J
ib

(✓) to be the Jacobian relating ✓̇ to the body twist V
i

in link i’s
center-of-mass frame {i}. Then the mass matrix M(✓) of the manipulator
can be expressed as

M(✓) =
nX

i=1

JT

ib

(✓)G
i

J
ib

(✓).

• The robot’s dynamics M(✓)✓̈ + h(✓, ✓̇) can be expressed in the task space
as

F = ⇤(✓)V̇ + ⌘(✓,V),

where F is the wrench applied to the end-e↵ector, V is the twist of the end-
e↵ector, and F , V, and the Jacobian J(✓) are all defined in the same frame.
The task-space mass matrix ⇤(✓) and gravity and quadratic velocity forces
⌘(✓,V) are

⇤(✓) = J�TM(✓)J�1

⌘(✓,V) = J�Th(✓, J�1V)� ⇤(✓)J̇J�1V.

• Define two n⇥ n projection matrices of rank n� k

P (✓) = I �AT (AM�1AT)�1AM�1

P
¨

✓

(✓) = M�1PM = I �M�1AT (AM�1AT)�1A

corresponding to the k Pfa�an constraints acting on the robot, A(✓)✓̇ = 0,
A 2 Rk⇥n. Then the n+ k constrained equations of motion

⌧ = M(✓)✓̈ + h(✓, ✓̇) +AT (✓)�

A(✓)✓̇ = 0

can be reduced to these equivalent forms by eliminating the Lagrange
multipliers �:

P ⌧ = P (M ✓̈ + h)

P
¨

✓

✓̈ = P
¨

✓

M�1(⌧ � h).

The matrix P projects away joint force/torque components that act on the
constraints without doing work on the robot, and the matrix P

¨

✓

projects
away acceleration components that do not satisfy the constraints.

Chapter 9

• A straight-line path in joint space is given by ✓(s) = ✓
start

+s(✓
end

�✓
start

)
as s goes from 0 to 1.

• A constant-screw-axis motion of the end-e↵ector from X
start

2 SE(3) to
X

end

is X(s) = X
start

exp(log(X�1

start

X
end

)s) as s goes from 0 to 1.

500 Summary of Useful Formulas

• The path-constrained dynamics of a robot can be written

m(s)s̈+ c(s)ṡ2 + g(s) = ⌧ 2 Rn

as s goes from 0 to 1.

Appendix B

Other Representations of
Rotations

B.1 Euler Angles

As we established earlier, the orientation of a rigid body can be parametrized
by three independent coordinates. For example, consider a rigid body with a
body frame {b} attached to it, initially aligned with the space frame {s}. Now
rotate the body by ↵ about the body ẑ

b

-axis, then by � about the body ŷ
b

-axis,
and finally by � about the body x̂

b

-axis. Then (↵,�, �) are the ZYX Euler
angles representing the final orientation of the body (see Figure B.1). Since the
successive rotations are done in the body frame, this corresponds to the final
rotation matrix

R(↵,�, �) = I Rot(ẑ,↵)Rot(ŷ,�)Rot(x̂, �),

where

Rot(ẑ,↵) =

2

4
cos↵ � sin↵ 0
sin↵ cos↵ 0
0 0 1

3

5 , Rot(ŷ,�) =

2

4
cos� 0 sin�
0 1 0

� sin� 0 cos�

3

5 ,

Rot(x̂, �) =

2

4
1 0 0
0 cos � � sin �
0 sin � cos �

3

5 .

Writing out the entries explicitly, we get

R(↵,�, �) =

2

4
c
↵

c
�

c
↵

s
�

s
�

� s
↵

c
�

c
↵

s
�

c
�

+ s
↵

s
�

s
↵

c
�

s
↵

s
�

s
�

+ c
↵

c
�

s
↵

s
�

c
�

� c
↵

s
�

�s
�

c
�

s
�

c
�

c
�

3

5 , (B.1)

where s
↵

is shorthand for sin↵, c
↵

for cos↵, etc.

501

502 Other Representations of Rotations

Int
ro

du
cti

on
 to

 R
ob

ot
ics

Me
ch

an
ics

, P
lan

nin
g,

an
d C

on
tro

l

Introduction to Robotics
Mechanics, Planning, and Control

α

β

γ
x^b

z^b

y^b

Figure B.1: To understand the ZYX Euler angles, use the corner of a box or a
book as the body frame. The ZYX Euler angles are successive rotations of the
body about the ẑ

b

-axis by ↵, the ŷ
b

-axis by �, and the x̂
b

-axis by �.

We now ask the following question: given an arbitrary rotation matrix R,
does there exist (↵,�, �) satisfying Equation (B.1)? In other words, can the
ZYX Euler angles represent all orientations? The answer is yes, and we prove
this fact constructively as follows. Let r

ij

be the ij-th element of R. Then
from Equation (B.1) we know that r2

11

+ r2
21

= cos2 �; as long as cos� 6= 0, or
equivalently � 6= ±90�, we have two possible solutions for �:

� = atan2

✓
�r

31

,
q
r2
11

+ r2
21

◆

and

� = atan2

✓
�r

31

,�
q
r2
11

+ r2
21

◆
.

(The atan2 two-argument arctangent is described at the beginning of Chapter 6.)
In the first case � lies in the range [�90�, 90�], while in the second case � lies
in the range [90�, 270�]. Assuming the � obtained above is not ±90�, ↵ and �
can then be determined from the following relations:

↵ = atan2(r
21

, r
11

)

� = atan2(r
32

, r
33

).

In the event that � = ±90�, there exists a one-parameter family of solutions
for ↵ and �. This is most easily seen from Figure B.3. If � = 90�, then ↵ and
� represent rotations (in the opposite direction) about the same vertical axis.
Hence, if (↵,�, �) = (↵̄, 90�, �̄) is a solution for a given rotation R, then any
triple (↵̄0, 90�, �̄0) where ↵̄0 � �̄0 = ↵̄� �̄ is also a solution.

B.1. Euler Angles 503

B.1.1 Algorithm for Computing the ZYX Euler Angles

Given R 2 SO(3), we wish to find angles ↵, � 2 [0, 2⇡) and � 2 [�⇡/2,⇡/2)
that satisfy

R =

2

4
c
↵

c
�

c
↵

s
�

s
�

� s
↵

c
�

c
↵

s
�

c
�

+ s
↵

s
�

s
↵

c
�

s
↵

s
�

s
�

+ c
↵

c
�

s
↵

s
�

c
�

� c
↵

s
�

�s
�

c
�

s
�

c
�

c
�

3

5 , (B.2)

where s
↵

is shorthand for sin↵, c
↵

for cos↵, etc. Denote by r
ij

the ij-th entry
of R.

(i) If r
31

6= ±1, set

� = atan2

✓
�r

31

,
q
r2
11

+ r2
21

◆
(B.3)

↵ = atan2(r
21

, r
11

) (B.4)

� = atan2(r
32

, r
33

), (B.5)

where the square root is taken to be positive.

(ii) If r
31

= 1, then � = ⇡/2, and a one-parameter family of solutions for ↵
and � exists. One possible solution is ↵ = 0 and � = atan2(r

12

, r
22

).

(iii) If r
31

= �1, then � = �⇡/2, and a one-parameter family of solutions for
↵ and � exists. One possible solution is ↵ = 0 and � = �atan2(r

12

, r
22

).

B.1.2 Other Euler Angle Representations

The ZYX Euler angles can be visualized using the wrist mechanism shown in
Figure B.2. The ZYX Euler angles (↵,�, �) refer to the angle of rotation about
the three joint axes of this mechanism. In the figure the wrist mechanism is
shown in its zero position, i.e., when all three joints are set to zero.

Four reference frames are defined as follows: frame {0} is the fixed frame,
while frames {1}, {2}, and {3} are attached to the three links of the wrist
mechanism as shown. When the wrist is in the zero position, all four refer-
ence frames have the same orientation. At the joint angles (↵,�, �), frame {1}
relative to {0} is R

01

(↵) = Rot(ẑ,↵), and similarly R
12

(�) = Rot(ŷ,�) and
R

23

(�) = Rot(x̂, �). Therefore R
03

(↵,�, �) = Rot(ẑ,↵)Rot(ŷ,�)Rot(x̂, �) as in
Equation (B.1).

It should be evident that the choice of zero position for � is, in some sense,
arbitrary. That is, we could just as easily have defined the home position of the
wrist mechanism to be as in Figure B.3; this would then lead to another three-
parameter representation (↵,�, �) for SO(3). In fact, Figure B.3 illustrates the
ZYZ Euler angles. The resulting rotation matrix can be obtained via the
following sequence of rotations, equivalent to rotating the body in Figure B.1

504 Other Representations of Rotations

γ

β

α

{0}
x

y

z

{1}

x
y

z

{2}x
y

zx y

z {3}

Figure B.2: Wrist mechanism illustrating the ZYX Euler angles.

first about the body’s ẑ
b

-axis, then about the ŷ
b

-axis, then about the ẑ
b

-axis:

R(↵,�, �) = Rot(ẑ,↵)Rot(ŷ,�)Rot(ẑ, �)

=

2

4
c
↵

�s
↵

0
s
↵

c
↵

0
0 0 1

3

5

2

4
c
�

0 s
�

0 1 0
�s

�

0 c
�

3

5

2

4
c
�

�s
�

0
s
�

c
�

0
0 0 1

3

5

=

2

4
c
↵

c
�

c
�

� s
↵

s
�

�c
↵

c
�

s
�

� s
↵

c
�

c
↵

s
�

s
↵

c
�

c
�

+ c
↵

s
�

�s
↵

c
�

s
�

+ c
↵

c
�

s
↵

s
�

�s
�

c
�

s
�

s
�

c
�

3

5 . (B.6)

Just as before, we can show that for every rotation R 2 SO(3), there exists
a triple (↵,�, �) that satisfies R = R(↵,�, �) for R(↵,�, �) as given in Equa-
tion (B.6). (Of course, the resulting formulas will di↵er from those for the ZYX
Euler angles.)

From the wrist mechanism interpretation of the ZYX and ZYZ Euler angles,
it should be evident that for Euler angle parametrizations of SO(3), what really
matters is that rotation axis 1 is orthogonal to rotation axis 2, and that rotation
axis 2 is orthogonal to rotation axis 3 (axis 1 and axis 3 need not necessarily be
orthogonal to each other). Specifically, any sequence of rotations of the form

Rot(axis1,↵) · Rot(axis2,�) · Rot(axis3, �), (B.7)

where axis1 is orthogonal to axis2, and axis2 is orthogonal to axis3, can serve
as a valid three-parameter representation for SO(3). The angle of rotation for

B.2. Roll-Pitch-Yaw Angles 505

γ

β

α

=90
o

Figure B.3: Configuration corresponding to � = 90� for ZYX Euler angles.

the first and third rotations ranges in value over a 2⇡ interval, while that of the
second rotation ranges in value over an interval of length ⇡.

B.2 Roll-Pitch-Yaw Angles

While Euler angles refer to a sequence of rotations about a body-fixed frame, the
roll-pitch-yaw angles refer to a sequence of rotations about axes fixed in the
space frame. Referring to Figure B.4, given a frame at the identity configuration
(that is, R = I), we first rotate this frame by an angle � about the x̂-axis of
the fixed frame, followed by an angle � about the ŷ-axis of the fixed frame, and
finally by an angle ↵ about the ẑ-axis of the fixed frame.

Since the three rotations are in the fixed frame, the final orientation is

R(↵,�, �) = Rot(ẑ,↵)Rot(ŷ,�)Rot(x̂, �)I

=

2

4
c
↵

�s
↵

0
s
↵

c
↵

0
0 0 1

3

5

2

4
c
�

0 s
�

0 1 0
�s

�

0 c
�

3

5

2

4
1 0 0
0 c

�

�s
�

0 s
�

c
�

3

5 I

=

2

4
c
↵

c
�

c
↵

s
�

s
�

� s
↵

c
�

c
↵

s
�

c
�

+ s
↵

s
�

s
↵

c
�

s
↵

s
�

s
�

+ c
↵

c
�

s
↵

s
�

c
�

� c
↵

s
�

�s
�

c
�

s
�

c
�

c
�

3

5 . (B.8)

This product of three rotations is exactly the same as that for the ZYX Euler
angles given in (B.2). We see that the same product of three rotations admits

506 Other Representations of Rotations

α

X̂

Ŷ

Z ̂

X'^

Y'̂
Z'̂

β

X̂

Ŷ

Z ̂

X''^

Y''^
Z''^

γ

X̂

Ŷ

Z ̂

X'''^

Y'''^
Z'''^

Figure B.4: Illustration of XYZ roll-pitch-yaw angles.

two di↵erent physical interpretations: as a sequence of rotations with respect
to the body frame (ZYX Euler angles), or, reversing the order of rotations, as
a sequence of rotations with respect to the fixed frame (the XYZ roll-pitch-yaw
angles).

The terms roll, pitch, and yaw are often used to describe the rotational mo-
tion of a ship or aircraft. In the case of a typical fixed-wing aircraft, for example,
suppose a body frame is attached such that the x̂-axis is in the direction of for-
ward motion, the ẑ-axis is the vertical axis pointing downward toward ground
(assuming the aircraft is flying level with respect to ground), and the ŷ-axis
extends in the direction of the wing. The roll, pitch, and yaw motions are then
defined according to the XYZ roll-pitch-yaw angles (↵,�, �) of Equation (B.8).

B.3 Unit Quaternions

One disadvantage of the exponential coordinates on SO(3) is that because of
the division by sin ✓ in the logarithm formula, the logarithm can be numerically
sensitive to small rotation angles ✓. The necessary singularity of the three-
parameter representation occurs at R = I. The unit quaternions are an
alternative representation of rotations that alleviates this singularity, but at
the cost of introducing an additional fourth parameter. We now illustrate the
definition and use of these coordinates.

Let R 2 SO(3) have the exponential coordinate representation !̂✓, i.e., R =
e[!̂]✓, where as usual k!̂k = 1 and ✓ 2 [0,⇡]. The unit quaternion representation
of R is constructed as follows. Define q 2 R4 according to

q =

2

664

q
0

q
1

q
2

q
3

3

775 =

cos ✓

2

!̂ sin ✓

2

�
2 R4. (B.9)

q as defined clearly satifies kqk = 1. Geometrically, q is a point lying on the

B.3. Unit Quaternions 507

three-dimensional unit sphere in R4, and for this reason the unit quaternions
are also identified with the three-sphere, denoted S3. Naturally among the
four coordinates of q, only three can be chosen independently. Recalling that
1 + 2 cos ✓ = tr R, and using the cosine double angle formula, i.e., cos 2� =
2 cos2 �� 1, the elements of q can be obtained directly from the entries of R as
follows:

q
0

=
1

2

p
1 + r

11

+ r
22

+ r
33

(B.10)
2

4
q
1

q
2

q
3

3

5 =
1

4q
0

2

4
r
32

� r
23

r
13

� r
31

r
21

� 2
12

3

5 . (B.11)

Going the other way, given a unit quaternion (q
0

, q
1

, q
2

, q
3

), the correspond-
ing rotation matrix R is obtained as a rotation about the unit axis in the direc-
tion of (q

1

, q
2

, q
3

), by an angle 2 cos�1 q
0

. Explicitly,

R =

2

4
q2
0

+ q2
1

� q2
2

� q2
3

2(q
1

q
2

� q
0

q
3

) 2(q
0

q
2

+ q
1

q
3

)
2(q

0

q
3

+ q
1

q
2

) q2
0

� q2
1

+ q2
2

� q2
3

2(q
2

q
3

� q
0

q
1

)
2(q

1

q
3

� q
0

q
2

) 2(q
0

q
1

+ q
2

q
3

) q2
0

� q2
1

� q2
2

+ q2
3

3

5 . (B.12)

From the above explicit formula it should be apparent that both q 2 S3 and its
antipodal point�q 2 S3 produce the same rotation matrix R. For every rotation
matrix there exists two unit quaternion representations that are antipodal to
each other.

The final property of the unit quaternions concerns the product of two rota-
tions. Let R

q

, R
p

2 SO(3) denote two rotation matrices, with unit quaternion
representations ±q,±p 2 S3, respectively. The unit quaternion representation
for the product R

q

R
p

can then be obtained by first arranging the elements of q
and p in the form of the following 2⇥ 2 complex matrices:

Q =

q
0

+ iq
1

q
2

+ ip
3

�q
2

+ iq
3

q
0

� iq
1

�
, P =

p
0

+ ip
1

p
2

+ ip
3

�p
2

+ ip
3

p
0

� ip
1

�
, (B.13)

where i denotes the imaginary unit. Now take the product N = QP , where the
entries of N are written

N =

n
0

+ in
1

n
2

+ in
3

�n
2

+ in
3

n
0

� in
1

�
. (B.14)

The unit quaternion for the product R
q

R
p

is then given by ±(n
0

, n
1

, n
2

, n
3

)
obtained from the entries of N :

2

664

n
0

n
1

n
2

n
3

3

775 =

2

664

q
0

p
0

� q
1

p
1

� q
2

p
2

� q
3

p
3

q
0

p
1

+ p
0

q
1

+ q
2

p
3

� q
3

p
2

q
0

p
2

+ p
0

q
2

� q
1

p
3

+ q
3

p
1

q
0

p
3

+ p
0

q
3

+ q
1

p
2

� q
2

p
1

3

775 . (B.15)

508 Other Representations of Rotations

B.4 Cayley-Rodrigues Parameters

Another set of widely used local coordinates for SO(3) is the Cayley-Rodrigues
parameters. These parameters can be obtained from the exponential represen-
tation on SO(3) as follows: given R = e[!̂]✓ for some unit vector !̂ and angle ✓,
the Cayley-Rodrigues parameter r 2 R3 is obtained by setting

r = !̂ tan
✓

2
. (B.16)

Referring again to the radius ⇡ solid ball picture of SO(3), the above parametriza-
tion has the e↵ect of infinitely “stretching” the radius of this ball via the tangent
half-angle function. These parameters can be derived from a general formula at-
tributed to Cayley that is also valid for rotation matrices of arbitrary dimension:
if R 2 SO(3) such that tr(R) 6= �1, then (I �R)(I +R)�1 is skew-symmetric.
Denoting this skew-symmetric matrix by [r], it is known that R and [r] are
related as follows:

R = (I � [r])(I + [r])�1 (B.17)

[r] = (I �R)(I +R)�1. (B.18)

The above two formulas establish a one-to-one correspondence between so(3)
and those elements of SO(3) with trace not equal to �1. In the event that
tr(R) = �1, the following alternative formulas can be used to relate SO(3)
(this time excluding those with unit trace) and so(3) in a one-to-one fashion:

R = �(I � [r])(I + [r])�1 (B.19)

[r] = (I +R)(I �R)�1 (B.20)

Equation (B.18) can furthermore be explicitly computed as

R =
(1� rT r)I + 2rrT + 2[r]

1 + rT r
(B.21)

with its inverse mapping given by

[r] =
R�RT

1 + tr(R)
. (B.22)

(This formula is valid when tr(R) 6= �1). The vector r = 0 therefore corre-
sponds to the identity matrix, and �r represents the inverse of the rotation
corresponding to r.

The following two identities also follow from the above formulas:

1 + tr(R) =
4

1 + rT r
(B.23)

R�RT =
4 [r]

1 + rT r
(B.24)

B.4. Cayley-Rodrigues Parameters 509

One of the attractive features of the Cayley-Rodrigues parameters is the
particularly simple form for the composition of two rotation matrices. If r

1

and
r
2

denote the Cayley-Rodrigues parameter representations of two rotations R
1

and R
2

, respectively, then the Cayley-Rodrigues parameter representation for
R

3

= R
1

R
2

, denoted r
3

, is given by

r
3

=
r
1

+ r
2

+ (r
1

⇥ r
2

)

1� rT
1

r
2

(B.25)

In the event that rT
1

r
2

= 1, or equivalently tr(R
1

R
2

) = �1, the following
alternative composition formula can be used. Define

s =
rp

1 + rT r
(B.26)

so that the rotation corresponding to r can be written

R = I + 2
p

1� sT s [s] + 2[s]2. (B.27)

The direction of s coincides with that of r, and ksk = sin ✓

2

. The composition
law now becomes

s
3

= s
1

q
1� sT

2

s
2

+ s
2

q
1� sT

1

s
1

+ (s
1

⇥ s
2

) (B.28)

Angular velocities and accelerations also admit a simple form in terms of the
Cayley-Rodrigues parameters. If r(t) denotes the Cayley-Rodrigues parameter
representation of the orientation trajectory R(t), then in vector form

!
s

=
2

1 + krk2 (r ⇥ ṙ + ṙ) (B.29)

!
b

=
2

1 + krk2 (�r ⇥ ṙ + ṙ). (B.30)

The angular acceleration with respect to the inertial and body-fixed frames can
now be obtained by time-di↵erentiating the above expressions:

!̇
s

=
2

1 + krk2 (r ⇥ r̈ + r̈ � rT ṙ !
s

) (B.31)

!̇
b

=
2

1 + krk2 (�r ⇥ r̈ + r̈ � rT ṙ !
b

). (B.32)

510 Other Representations of Rotations

Appendix C

Denavit-Hartenberg
Parameters and Their
Relationship to the Product
of Exponentials

C.1 Denavit-Hartenberg Representation

The basic idea underlying the Denavit-Hartenberg approach to forward kine-
matics is to attach reference frames to each link of the open chain, and to
derive the forward kinematics based on knowledge of the relative displacements
between adjacent link frames. Assume that a fixed reference frame has been es-
tablished, and that a reference frame (the end-e↵ector frame) has been attached
to some point on the last link of the open chain. For a chain consisting of n
one degree of freedom joints, the links are numbered sequentially from 0 to n,
in which the ground link is labeled 0, and the end-e↵ector frame is attached to
link n. Reference frames attached to the links are also correspondingly labeled
from {0} (the fixed frame) to {n} (the end-e↵ector frame). The joint variable
corresponding to the i-th joint is denoted ✓

i

. The forward kinematics of the
n-link open chain can then be expressed as

T
0n

(✓
1

, . . . , ✓
n

) = T
01

(✓
1

)T
12

(✓
2

) · · ·T
n�1,n

(✓
n

), (C.1)

where T
i,i�1

2 SE(3) denotes the relative displacement between link frames
{i� 1} and {i}. Depending on how the link reference frames have been chosen,
each T

i�1,i

can be obtained in a straightforward fashion.

511

512Denavit-Hartenberg Parameters and Their Relationship to the Product of Exponentials

axis iaxis i-1

x
i-1

^

z
i-1

^

y
i-1

^

z
i

^

x
i

^

y
 i

^ d i

a i-1

� i-1

� i

Figure C.1: Illustration of Denavit-Hartenberg parameters.

C.1.1 Assigning Link Frames

Rather than attaching reference frames to each link in arbitrary fashion, in the
Denavit-Hartenberg convention a set of rules for assigning link frames is ob-
served. Figure C.1 illustrates the frame assignment convention for two adjacent
revolute joints i� 1 and i that are connected by link i� 1.

The first rule is that the ẑ
i

-axis coincides with joint axis i, and ẑ
i�1

coincides
with joint axis i� 1. The direction of each link frame’s ẑ-axis is determined via
the right-hand rule, i.e., such that positive rotations are counterclockwise about
the ẑ-axis.

Once the ẑ-axis direction has been assigned, the next rule determines the
origin of the link reference frame. First, find the line segment that orthogonally
intersects both joint axes ẑ

i�1

and ẑ
i

. For now let us assume that this line
segment is unique; the case where it is not unique (i.e., when the two joint
axes are parallel), or fails to exist (i.e., when the two joint axes intersect), is
addressed later. Connecting joint axes i� 1 and i by a mutually perpendicular
line, the origin of frame {i � 1} is then located at the point where this line
intersects joint axis i� 1.

Determining the remaining x̂- and ŷ-axes of each link reference frame is now
straightforward: the x̂ axis is chosen to be in the direction of the mutually
perpendicular line pointing from the i� 1 axis to the i axis. The ŷ-axis is then
uniquely determined from the cross-product x̂ ⇥ ŷ = ẑ. Figure C.1 depicts the

C.1. Denavit-Hartenberg Representation 513

link frames {i} and {i� 1} chosen according to this convention.
Having assigned reference frames in this fashion for links i and i�1, we now

define four parameters that exactly specify T
i�1,i

:

• The length of the mutually perpendicular line, denoted by the scalar a
i�1

,
is called the link length of link i� 1. Despite its name, this link length
does not necessarily correspond to the actual length of the physical link.

• The link twist ↵
i�1

is the angle from ẑ
i�1

to ẑ
i

, measured about x̂
i�1

.

• The link o↵set d
i

is the distance from the intersection of x̂
i�1

and ẑ
i

to
the link i frame origin (the positive direction is defined to be along the ẑ

i

axis).

• The joint angle �
i

is the angle from x̂
i�1

to x̂
i

, measured about the
ẑ
i

-axis.

These parameters constitute the Denavit-Hartenberg parameters. For an
open chain with n one-degree-of-freedom joints, the 4n Denavit-Hartenberg pa-
rameters are su�cient to completely describe the forward kinematics. In the
case of an open chain with all joints revolute, the link lengths a

i�1

, twists ↵
i�1

,
and o↵set parameters d

i

are all constant, while the joint angle parameters �
i

act as the joint variables.
We now consider the case where the mutually perpendicular line is undefined

or fails to be unique, as well as when some of the joints are prismatic, and finally,
how to choose the ground and end-e↵ector frames.

When Adjacent Revolute Joint Axes Intersect

If two adjacent revolute joint axes intersect each other, then the mutually per-
pendicular line between the joint axes fails to exist. In this case the link length
is set to zero, and we choose x̂

i�1

to be perpendicular to the plane spanned
by ẑ

i�1

and ẑ
i

. There are two possibilities here, both of which are acceptable:
one leads to a positive value of the twist angle ↵

i�1

, while the other leads to a
negative value.

When Adjacent Revolute Joint Axes are Parallel

The second special case occurs when two adjacent revolute joint axes are paral-
lel. In this case there exist many possibilities for a mutually perpendicular line,
all of which are valid (more precisely, a one-dimensional family of mutual per-
pendicular lines is said to exist). A useful guide is to try to choose the mutually
perpendicular line that is the most physically intuitive, and simplifies as many
Denavit-Hartenberg parameters as possible (e.g., such that their values become
zero).

514Denavit-Hartenberg Parameters and Their Relationship to the Product of Exponentials

axis i-1

axis i

a i-1
x i-1
^

y i-1
^

z i-1
^

α i-1

x i
^

y i
^

z i
^

d i

ϕ i

Figure C.2: Link frame assignment convention for prismatic joints. Joint i� 1
is a revolute joint, while joint i is a prismatic joint.

Prismatic Joints

For prismatic joints, the ẑ-direction of the link reference frame is chosen to be
along the positive direction of translation. This convention is consistent with
that for revolute joints, in which the ẑ-axis indicates the positive axis of rotation.
With this choice the link o↵set d

i

is the joint variable and the joint angle �
i

is
constant (see Figure C.2). The procedure for choosing the link frame origin, as
well as the remaining x̂ and ŷ-axes, remains the same as for revolute joints.

Assigning the Ground and End-E↵ector Frames

Our frame assignment procedure described thus far does not specify how to
choose the ground and final link frames. Here as before, a useful guideline is to
choose initial and final frames that are the most physically intuitive, and simplify
as many Denavit-Hartenberg parameters as possible. This usually implies that
the ground frame is chosen to coincide with the link 1 frame in its zero (rest)
position; in the event that the joint is revolute, this choice forces a

0

= ↵
0

= d
1

=
0, while for a prismatic joint we have a

0

= ↵
0

= �
1

= 0. The end-e↵ector frame
is attached to some reference point on the end-e↵ector, usually at a location
that makes the description of the task intuitive and natural, and also simplifies
as many of the Denavit-Hartenberg parameters as possible (e.g., their values
become zero).

It is important to realize that arbitrary choices of the ground and end-
e↵ector frames may not always be possible, since there may not exist a valid set
of Denavit-Hartenberg parameters to describe the relative transformation. We
elaborate on this point below.

C.1. Denavit-Hartenberg Representation 515

X̂

Ŷ

Ẑ

X̂

Ŷ

Ẑ

{a} {b}

{c}

a

a

a

Ẑ

X̂

Ŷc=

c

c b

b

b

Figure C.3: An example of three frames {a}, {b}, and {c}, in which the trans-
formations T

ab

and T
ac

cannot be described by any set of Denavit-Hartenberg
parameters.

C.1.2 Why Four Parameters are Su�cient

In our earlier study of spatial displacements, we argued that a minimum of
six independent parameters were required to describe the relative displacement
between two frames in space: three for the orientation, and three for the po-
sition. Based on this result, it would seem that for an n-link arm, a total of
6n parameters would be required to completely describe the forward kinematics
(each T

i�1,i

in the above equation would require six parameters). Surprisingly,
in the Denavit-Hartenberg parameter representation only four parameters are
required for each transformation T

i�1,i

. Although this result may at first appear
to contradict our earlier results, this reduction in the number of parameters is
accomplished by the carefully stipulated rules for assigning link reference frames.
If the link reference frames had been assigned in arbitrary fashion, then more
parameters would have been required.

Consider, for example, the link frames shown in Figure C.3. The trans-
formation from frame {a} to frame {b} is a pure translation along the ŷ-axis
of frame {a}. If one were to try to express the transformation T

ab

in terms
of the Denavit-Hartenberg parameters (↵, a, d, ✓) as prescribed above, it should
become apparent that no such set of parameter values exist. Similarly, the trans-
formation T

ac

also does not admit a description in terms of Denavit-Hartenberg
parameters, as only rotations about the x̂- and ẑ- axes are permissible. Under
our Denavit-Hartenberg convention, only rotations and translations along the
x̂ and ẑ axes are allowed, and no combination of such motions can achieve the
transformation shown in Figure C.3.

Given that the Denavit-Hartenberg convention uses exactly four parameters
to describe the transformation between link frames, one might naturally wonder
if the number of parameters can be reduced even further, by an even more clever
set of link frame assignment rules. Denavit and Hartenberg show that this is
not possible, and that four is the minimum number of parameters [24].

We end this section with a reminder that there are alternative conventions

516Denavit-Hartenberg Parameters and Their Relationship to the Product of Exponentials

for assigning link frames. Whereas we chose the ẑ-axis to coincide with the joint
axis, some authors choose the x̂-axis, and reserve the ẑ-axis to be the direction
of the mutually perpendicular line. To avoid ambiguities in the interpretation
of the Denavit-Hartenberg parameters, it is essential to include a concise de-
scription of the link frames together with the parameter values.

C.1.3 Manipulator Forward Kinematics

Once all the transformations T
i�1,i

between adjacent link frames are known
in terms of their Denavit-Hartenberg parameters, the forward kinematics is
obtained by sequentially multiplying these link transformations. Each link frame
transformation is of the form

T
i�1,i

= Rot(x̂,↵
i�1

)Trans(x̂, a
i�1

)Trans(ẑ, d
i

)Rot(ẑ,�
i

)

=

2

664

cos�
i

� sin�
i

0 a
i�1

sin�
i

cos↵
i�1

cos�
i

cos↵
i�1

� sin↵
i�1

�d
i

sin↵
i�1

sin�
i

sin↵
i�1

cos�
i

sin↵
i�1

cos↵
i�1

d
i

cos↵
i�1

0 0 0 1

3

775 ,

where

Rot(x̂,↵
i�1

) =

2

664

1 0 0 0
0 cos↵

i�1

� sin↵
i�1

0
0 � sin↵

i�1

cos↵
i�1

0
0 0 0 1

3

775 (C.2)

Trans(x̂, a
i�1

) =

2

664

1 0 0 a
i�1

0 1 0 0
0 0 1 0
0 0 0 1

3

775 (C.3)

Trans(ẑ, d
i

) =

2

664

1 0 0 0
0 1 0 0
0 0 1 d

i

0 0 0 1

3

775 (C.4)

Rot(ẑ,�
i

) =

2

664

cos�
i�1

� sin�
i�1

0 0
� sin�

i�1

cos�
i�1

0 0
0 0 1 0
0 0 0 1

3

775 . (C.5)

A useful way to visualize T
i,i�1

is to transport frame {i � 1} to frame {i} via
the following sequence of four transformations:

(i) Rotate frame {i� 1} about its x̂ axis by an angle ↵
i�1

.

(ii) Translate this new frame along its x̂ axis by a distance a
i�1

.

(iii) Translate this new frame along its ẑ axis by a distance d
i

.

(iv) Rotate this new frame about its ẑ axis by an angle �
i

.

C.1. Denavit-Hartenberg Representation 517

x 1
^

y 1
^

z 1
^

x 0
^

y 0
^z 0

^

x 2
^

x 3
^

x4
^

y 2
^

y3
^

y 4
^

z 2
^

z3
^ z 4

^

L 2

θ 1θ2

θ3

θ 4

Figure C.4: An RRRP spatial open chain.

Note that switching the order of the first and second steps will not change the
final form of T

i�1,i

. Similarly, the order of the third and fourth steps can also
be switched without a↵ecting T

i�1,i

.

C.1.4 Examples

We now derive the Denavit-Hartenberg parameters for some common spatial
open chain structures.

Example: A 3R Spatial Open Chain

Consider the 3R spatial open chain of Figure 4.3, shown in its zero position
(i.e., with all its joint variables set to zero). The assigned link reference frames
are shown in the figure, and the corresponding Denavit-Hartenberg parameters
listed in the following table:

i ↵
i�1

a
i�1

d
i

�
i

1 0 0 0 ✓
1

2 90� L
1

0 ✓
2

� 90�

3 �90� L
2

0 ✓
3

Note that frames {1} and {2} are uniquely specified from our frame assign-
ment convention, but that we have some latitude in choosing frames {0} and
{3}. Here we choose the ground frame {0} to coincide with frame {1} (resulting
in ↵

0

= a
0

= d
1

= 0), and frame {3} such that x̂
3

= x̂
2

(resulting in no o↵set
to the joint angle ✓

3

).

Example: A Spatial RRRP Open Chain

The next example we consider is the four degree-of-freedom RRRP spatial open
chain of Figure C.4, here shown in its zero position. The link frame assignments

518Denavit-Hartenberg Parameters and Their Relationship to the Product of Exponentials

x 0
^

y 0
^

z 0
^

x 1
^

y 1
^z 1

^

x 2
^

y 2
^

z 2
^

θ 1

θ2

θ3 θ 4

θ5
θ6

L 2
L1

x 3
^

y3
^

z3
^

x4
^

y 4
^

z 4
^

x5
^

x6
^

y5
^

y6
^

z5
^

z 6
^

Figure C.5: A 6R spatial open chain.

are as shown, and the corresponding Denavit-Hartenberg parameters are listed
in the following table:

i ↵
i�1

a
i�1

d
i

�
i

1 0 0 0 ✓
1

2 90� 0 0 ✓
2

3 0 L
2

0 ✓
3

+ 90�

4 90� 0 ✓
4

0

The four joint variables are (✓
1

, ✓
2

, ✓
3

, ✓
4

), where ✓
4

is the displacement of
the prismatic joint. As in the previous example, the ground frame {0} and final
link frame {4} have been chosen to make as many of the Denavit-Hartenberg
parameters zero.

Example: A Spatial 6R Open Chain

The final example we consider is a widely used six 6R robot arm (Figure C.5).
This open chain has six rotational joints: the first three joints function as a
Cartesian positioning device, while the last three joints act as a ZYZ Euler
angle-type wrist. The link frames are shown in the figure, and the corresponding
Denavit-Hartenberg parameters are listed in the following table:

i ↵
i�1

a
i�1

d
i

�
i

1 0 0 0 ✓
1

2 90� 0 0 ✓
2

3 0 L
1

0 ✓
3

+ 90�

4 90� 0 L
2

✓
4

+ 180�

5 90� 0 0 ✓
5

+ 180�

6 90� 0 0 ✓
6

C.1. Denavit-Hartenberg Representation 519

C.1.5 Relation between the Product of Exponential and the
Denavit-Hartenberg Representations

The product of exponentials formula can be derived directly from the Denavit-
Hartenberg parameter-based representation of the forward kinematics. As be-
fore, denote the relative displacement between adjacent link frames by

T
i�1,i

= Rot(x̂,↵
i�1

)Trans(x̂, a
i�1

)Trans(ẑ, d
i

)Rot(ẑ,�
i

).

If joint i is revolute, the first three matrices can be regarded as constant, and
�
i

becomes the revolute joint variable. Define ✓
i

= �
i

, and

M
i

= Rot(x̂,↵
i�1

)Trans(x̂, a
i�1

)Trans(ẑ, d
i

), (C.6)

and write Rot(ẑ, ✓
i

) as the following matrix exponential:

Rot(ẑ, ✓
i

) = e[Ai

]✓

i , [A
i

] =

2

664

0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3

775 . (C.7)

With the above definitions we can write T
i�1,i

= M
i

e[Ai

]✓

i .
If joint i is prismatic, then d

i

becomes the joint variable, �
i

is a constant
parameter, and the order of Trans(ẑ, d

i

) and Rot(ẑ,�
i

) in T
i�1,i

can be reversed
(recall that reversing translations and rotations taken along the same axis still
results in the same motion). In this case we can still write T

i�1,i

= M
i

e[Ai

]✓

i ,
where ✓

i

= d
i

and

M
i

= Rot(x̂,↵
i�1

)Trans(x̂, a
i�1

)Rot(ẑ,�
i

) (C.8)

[A
i

] =

2

664

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

775 . (C.9)

Based on the above, for an n-link open chain containing both revolute and
prismatic joints, the forward kinematics can be written

T
0,n

= M
1

e[A1

]✓

1M
2

e[A2

]✓

2 · · ·M
n

e[An

]✓

n (C.10)

where ✓
i

denotes joint variable i, and [A
i

] is either of the form (C.7) or (C.9)
depending on whether joint i is revolute or prismatic.

We now make use of the matrix identity MePM�1 = eMPM

�1

, which holds
for any nonsingular M 2 Rn⇥n and arbitrary P 2 Rn⇥n. The above can also be
rearranged as MeP = eMPM

�1

M . Beginning from the left of Equation (C.10),
if we repeatedly apply this identity, after n iterations we obtain the product of
exponentials formula as originally derived:

T
0n

= eM1

[A
1

]M

�1

1

✓

1(M
1

M
2

)e[A2

]✓

2 · · · e[An

]✓

n

= eM1

[A
1

]M

�1

1

✓

1e(M1

M

2

)[A
2

](M

1

M

2

)

�1

✓

2(M
1

M
2

M
3

)e[A3

]✓

3 · · · e[An

]✓

n

= e[S1

]✓

1 · · · e[Sn

]✓

nM, (C.11)

520Denavit-Hartenberg Parameters and Their Relationship to the Product of Exponentials

where

[S
i

] = (M
1

· · ·M
i�1

)[A
i

](M
1

· · ·M
i�1

)�1, i = 1, . . . , n (C.12)

M = M
1

M
2

· · ·M
n

. (C.13)

We now re-examine the physical meaning of the S
i

by recalling how a screw
twist transforms under a change of reference frames. If S

a

represents the screw
twist for a given screw motion with respect to frame {a}, and S

b

represents the
screw twist for the same physical screw motion but this time with respect to
frame {b}, then recall that S

a

and S
b

are related by

[S
b

] = T
ba

[S
a

]T�1

ba

, (C.14)

or using the adjoint notation Ad
T

ba

,

S
b

= Ad
T

ba

(S
a

). (C.15)

Seen from the perspective of this transformation rule, Equation (C.13) suggests
that A

i

is the screw twist for joint axis i as seen from link frame {i}, while S
i

is the screw twist for joint axis i as seen from the fixed frame {0}.

Bibliography

[1] J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Meth-
ods, and Algorithms. Springer, 2006.

[2] A. R. Ansari and T. D. Murphey. Sequential action control: closed-form
optimal control for nonlinear and nonsmooth systems. IEEE Transactions
on Robotics, 2016. Preprint published online.

[3] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[4] R. S. Ball. A Treatise on the Theory of Screws (1998 reprint). Cambridge
University Press, 1900.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field
techniques for robot path planning. IEEE Transactions on Systems, Man,
and Cybernetics, 22(2):224–241, 1992.

[6] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obstacles.
Algorithmica, 10:121–155, 1993.

[7] A. K. Bejczy. Robot arm dynamics and control. Technical memo 33-669,
Jet Propulsion Lab, February 1974.

[8] R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[9] A. Bicchi. On the closure properties of robotic grasping. International
Journal of Robotics Research, 14(4):319–334, August 1995.

[10] A. Bicchi. Hands for dexterous manipulation and robust grasping: a
di�cult road toward simplicity. IEEE Transactions on Robotics and Au-
tomation, 16(6):652–662, December 2000.

[11] A. Bicchi and V. Kumar. Robotic grasping and contact: a review. In
IEEE International Conference on Robotics and Automation, 2000.

521

522 BIBLIOGRAPHY

[12] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control
of robotic manipulators along specified paths. International Journal of
Robotics Research, 4(3):3–17, Fall 1985.

[13] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications,
1990.

[14] R. W. Brockett. Robotic manipulators and the product of exponentials
formula. In International Symposium on the Mathematical Theory of Net-
works and Systems, Beer Sheba, Israel, 1983.

[15] F. Bullo and R. M. Murray. Tracking for fully actuated mechanical sys-
tems: a geometric framework. Automatica, 35:17–34, 1999.

[16] J. Canny. The Complexity of Robot Motion Planning. MIT Press, Cam-
bridge, MA, 1988.

[17] J. Canny, J. Reif, B. Donald, and P. Xavier. On the complexity of kino-
dynamic planning. In IEEE Symposium on the Foundations of Computer
Science, pages 306–316, White Plains, NY, 1988.

[18] M. Do Carmo. Di↵erential Geometry of Curves and Surfaces. Prentice-
Hall, Upper Saddle River, NJ, 1976.

[19] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementations. MIT Press, Cambridge, MA, 2005.

[20] W. K. Chung, L.-C. Fu, and T. Kröger. Motion control. In B. Siciliano and
O. Khatib, editors, Handbook of Robotics, Second Edition, pages 163–194.
Springer-Verlag, 2016.

[21] C. A. Coulomb. Théorie des machines simples en ayant égard au frot-
tement de leurs parties et à la roideur des cordages. Mémoires des
mathématique et de physique présentés à l’Académie des Sciences, 1781.

[22] J. Craig. Introduction to Robotics: Mechanics and Control (third edition).
Prentice-Hall, Upper Saddle River, NJ, 2004.

[23] C. Canudas de Wit, B. Siciliano, and G. Bastin, editors. Theory of Robot
Control. Springer, 1996.

[24] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair
mechanisms based on matrices. ASME Journal of Applied Mechanics,
23:215–221, 1955.

[25] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, December 1959.

BIBLIOGRAPHY 523

[26] B. R. Donald and P. Xavier. Provably good approximation algorithms
for optimal kinodynamic planning for Cartesian robots and open chain
manipulators. Algorithmica, 4(6):480–530, 1995.

[27] B. R. Donald and P. Xavier. Provably good approximation algorithms for
optimal kinodynamic planning: robots with decoupled dynamics bounds.
Algorithmica, 4(6):443–479, 1995.

[28] J. Du↵y. The fallacy of modern hybrid control theory that is based on
“orthogonal complements” of twist and wrench spaces. Journal of Robotic
Systems, 7(2):139–144, 1990.

[29] A. G. Erdman and G. N. Sandor. Advanced Mechanism Design: Analysis
and Synthesis Volumes I and II. Prentice-Hall, Upper Saddle River, NJ,
1996.

[30] Michael A. Erdmann. On a representation of friction in configuration
space. International Journal of Robotics Research, 13(3):240–271, 1994.

[31] B. Faverjon. Obstacle avoidance using an octree in the configuration space
of a manipulator. In IEEE International Conference on Robotics and
Automation, pages 504–512, 1984.

[32] R. Featherstone. Rigid Body Dynamics Algorithms. Springer, 2008.

[33] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of
Dynamic Systems, Seventh Edition. Pearson, 2014.

[34] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for com-
puting the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics and Automation, 4(2):193–203, April 1988.

[35] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968.

[36] M. Herman. Fast, three-dimensional, collision-free motion planning. In
IEEE International Conference on Robotics and Automation, pages 1056–
1063, 1986.

[37] S. Hirai and H. Asada. Kinematics and statics of manipulation using
the theory of polyhedral convex cones. International Journal of Robotics
Research, 12(5):434–447, October 1993.

[38] N. Hogan. Impedance control: An approach to manipulation: Part I—
theory. ASME Journal of Dyanmic Systems, Measurement, and Control,
7:1–7, March 1985.

[39] N. Hogan. Impedance control: An approach to manipulation: Part II—
implementation. ASME Journal of Dyanmic Systems, Measurement, and
Control, 7:8–16, March 1985.

524 BIBLIOGRAPHY

[40] N. Hogan. Impedance control: An approach to manipulation: Part III—
applications. ASME Journal of Dyanmic Systems, Measurement, and
Control, 7:17–24, March 1985.

[41] J. M. Hollerbach. Dynamic scaling of manipulator trajectories. ASME
Journal of Dynamic Systems, Measurement, and Control, 106:102–106,
1984.

[42] S. Howard, M. Žefran, and V. Kumar. On the 6 ⇥ 6 Cartesian sti↵ness
matrix for three-dimensional motions. Mechanism and Machine Theory,
33(4):389–408, 1998.

[43] P. M. Hubbard. Approximating polyhedra with spheres for time-critical
collision detection. ACM Transactions on Graphics, 15(3):179–210, July
1996.

[44] M. L. Husty, M. Pfurner, and H.-P. Schröcker. A new and e�cient al-
gorithm for the inverse kinematics of a general serial 6R manipulator.
Mechanism and Machine Theory, 42(1):66–81, January 2007.

[45] S. Kambhampati and L. S. Davis. Multiresolution path planning for mo-
bile robots. IEEE Journal of Robotics and Automation, 2(3):135–145,
September 1986.

[46] I. Kao, K. M. Lynch, and J. W. Burdick. Contact modeling and manip-
ulation. In B. Siciliano and O. Khatib, editors, Handbook of Robotics,
Second Edition, pages 931–954. Springer-Verlag, 2016.

[47] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. International Journal of Robotics Research, 30(7):846–894,
2011.

[48] L. Kavraki, P. Švestka, J.-C. Latombe, and M. Overmars. Probabilistic
roadmaps for fast path planning in high dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12:566–580, 1996.

[49] L. E. Kavraki and S. M. LaValle. Motion planning. In B. Siciliano and
O. Khatib, editors, Handbook of Robotics, Second Edition, pages 139–161.
Springer-Verlag, 2016.

[50] R. Kelly. PD control with desired gravity compensation of robotic manip-
ulators: a review. International Journal of Robotics Research, 16(5):660–
672, October 1997.

[51] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotics Research, 5(1):90–98, March
1986.

[52] O. Khatib. A unified approach for motion and force control of robot ma-
nipulators: the operational space formulation. IEEE Journal of Robotics
and Automation, 3(1):43–53, 1987.

BIBLIOGRAPHY 525

[53] D. E. Koditschek. The control of natural motion in mechanical systems.
Journal of Dynamic Systems, Measurement, and Control, 113:547–551,
December 1991.

[54] D. E. Koditschek. Some applications of natural motion control. Journal
of Dynamic Systems, Measurement, and Control, 113:552–557, December
1991.

[55] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds
with boundary. Advances in Applied Mathematics, 11:412–442, 1990.

[56] K. Lakshminarayana. Mechanics of form closure. ASME Rep. 78-DET-32,
1978.

[57] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[58] J.-P. Laumond, P. E. Jacobs, M. Täıx, and R. M. Murray. A motion
planner for nonholonomic mobile robots. IEEE Transactions on Robotics
and Automation, 10(5):577–593, October 1994.

[59] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[60] S. M. LaValle and J. J. Ku↵ner. Randomized kinodynamic planning. In
IEEE International Conference on Robotics and Automation, 1999.

[61] S. M. LaValle and J. J. Ku↵ner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[62] S. M. LaValle and J. J. Ku↵ner. Rapidly-exploring random trees: Progress
and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Directions. A. K. Peters,
Natick, MA, 2001.

[63] H. Y. Lee and C. G. Liang. A new vector theory for the analysis of spatial
mechanisms. Mechanism and Machine Theory, 23(3):209–217, 1988.

[64] S.-H. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow. Newton-
type algorithms for dynamics-based robot movement optimization. IEEE
Transactions on Robotics, 21(4):657–667, August 2005.

[65] J. W. Li, H. Liu, and H. G. Cai. On computing three-finger force-closure
grasps of 2-D and 3-D objects. IEEE Transactions on Robotics and Au-
tomation, 19(1):155–161, 2003.

[66] M. Likhachev, G. Gordon, and S. Thrun. ARA⇤: Anytime A⇤ with prov-
able bounds on sub-optimality. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2003.

526 BIBLIOGRAPHY

[67] G. Liu and Z. Li. A unified geometric approach to modeling and control
of constrained mechanical systems. IEEE Transactions on Robotics and
Automation, 18(4):574–587, August 2002.

[68] J. Lončarić. Normal forms of sti↵ness and compliance matrices. IEEE
Journal of Robotics and Automation, 3(6):567–572, December 1987.

[69] P. Lötstedt. Coulomb friction in two-dimensional rigid body systems.
Zeitschrift für Angewandte Mathematik und Mechanik, 61:605–615, 1981.

[70] T. Lozano-Perez. Automatic planning of manipulator transfer movements.
IEEE Transactions on Systems, Man, and Cybernetics, 11(10):681–698,
October 2001.

[71] T. Lozano-Pérez and Michael A. Wesley. An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the
ACM, 22(10):560–570, October 1979.

[72] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul. Resolved-acceleration
control of mechanical manipulators. IEEE Transactions on Automatic
Control, 25(3):468–474, June 1980.

[73] K. M. Lynch. Underactuated robots. In J. Baillieul and T. Samad, editors,
Encyclopedia of Systems and Control, pages 1503–1510. Springer-Verlag,
2015.

[74] K. M. Lynch, A. M. Bloch, S. V. Drakunov, M. Reyhanoglu, and
D. Zenkov. Control of nonholonomic and underactuated systems. In
W. Levine, editor, The Control Handbook. Taylor and Francis, 2011.

[75] K. M. Lynch and M. T. Mason. Pulling by pushing, slip with infinite
friction, and perfectly rough surfaces. International Journal of Robotics
Research, 14(2):174–183, 1995.

[76] K. M. Lynch and M. T. Mason. Dynamic nonprehensile manipula-
tion: Controllability, planning, and experiments. International Journal
of Robotics Research, 18(1):64–92, January 1999.

[77] D. Manocha and J. Canny. Real time inverse kinematics for general manip-
ulators. In IEEE International Conference on Robotics and Automation,
volume 1, pages 383–389, 1989.

[78] X. Markensco↵, L. Ni, and C. H. Papadimitriou. The geometry of grasp-
ing. International Journal of Robotics Research, 9(1):61–74, February
1990.

[79] B. R. Markiewicz. Analysis of the computed torque drive method and
comparison with conventional position servo for a computer-controlled
manipulator. Technical memo 33-601, Jet Propulsion Lab, March 1973.

BIBLIOGRAPHY 527

[80] M. T. Mason. Compliance and force control for computer controlled
manipulators. IEEE Transactions on Systems, Man, and Cybernetics,
11:418–432, June 1981.

[81] M. T. Mason. Two graphical methods for planar contact problems. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 443–448, Osaka, Japan, November 1991.

[82] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.

[83] M. T. Mason and K. M. Lynch. Dynamic manipulation. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 152–
159, Yokohama, Japan, 1993.

[84] M. T. Mason and J. K. Salisbury. Robot Hands and the Mechanics of
Manipulation. The MIT Press, 1985.

[85] M. T. Mason and Y. Wang. On the inconsistency of rigid-body frictional
planar mechanics. In IEEE International Conference on Robotics and
Automation, 1988.

[86] J. M. McCarthy. Introduction to Theoretical Kinematics. MIT Press,
Cambridge, MA, 1990.

[87] C. D. Meyer. Matrix analysis and applied linear algebra. SIAM, 2000.

[88] R. S. Millman and G. D. Parker. Elements of Di↵erential Geometry.
Prentice-Hall, Upper Saddle River, NJ, 1977.

[89] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis
of multifinger positive grips. Algorithmica, 2(4):541–558, 1987.

[90] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, Boca Raton, FL, 1994.

[91] J. L. Nevins and D. E. Whitney. Computer-controlled assembly. Scientific
American, 238(2):62–74, 1978.

[92] V.-D. Nguyen. Constructing force-closure grasps. International Journal
of Robotics Research, 7(3), 1988.

[93] M. S. Ohwovoriole and B. Roth. An extension of screw theory. Journal
of Mechanical Design, 103(4):725–735, 1981.

[94] J. S. Pang and J. C. Trinkle. Complementarity formulations and existence
of solutions of dynamic multi-rigid-body contact problems with Coulomb
friction. Mathematical Programming, 73(2):199–226, 1996.

[95] F. C. Park. Computational aspects of the product of exponentials for-
mula for robot kinematics. IEEE Transactions on Automatic Control,
39(3):643–647, 1994.

528 BIBLIOGRAPHY

[96] F. C. Park and I. G. Kang. Cubic spline algorithms for orientation in-
terpolation. International Journal of Numerical Methods in Engineering,
46:46–54, 1999.

[97] F. C. Park and J. Kim. Manipulability of closed kinematic chains. ASME
Journal of Mechanical Design, 120(4):542–548, 1998.

[98] R. C. Paul. Modeling trajectory calculation and servoing of a computer
controlled arm. AI memo 177, Stanford University Artificial Intelligence
Lab, 1972.

[99] F. Pfei↵er and R. Johanni. A concept for manipulator trajectory planning.
IEEE Journal of Robotics and Automation, RA-3(2):115–123, 1987.

[100] D. Prattichizzo and J. C. Trinkle. Grasping. In B. Siciliano and O. Khatib,
editors, Handbook of Robotics, Second Edition, pages 955–988. Springer-
Verlag, 2016.

[101] M. Raghavan and B. Roth. Kinematic analysis of the 6R manipulator
of general geometry. In International Symposium on Robotics Research,
1990.

[102] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipu-
lators. ASME Journal of Dyanmic Systems, Measurement, and Control,
102:126–133, June 1981.

[103] M. H. Raibert and B. K. P. Horn. Manipulator control using the config-
uration space method. Industrial Robot, 5:69–73, June 1978.

[104] F. Reuleaux. The Kinematics of Machinery. MacMillan, 1876. Reprinted
by Dover, 1963.

[105] E. Rimon and J. Burdick. On force and form closure for multiple finger
grasps. In IEEE International Conference on Robotics and Automation,
pages 1795–1800, 1996.

[106] E. Rimon and J. W. Burdick. A configuration space analysis of bod-
ies in contact—II. 2nd order mobility. Mechanism and Machine Theory,
30(6):913–928, 1995.

[107] E. Rimon and J. W. Burdick. Mobility of bodies in contact—Part I. A
2nd-order mobility index for multiple-finger grasps. IEEE Transactions
on Robotics and Automation, 14(5):696–708, October 1998.

[108] E. Rimon and J. W. Burdick. Mobility of bodies in contact—Part II. How
forces are generated by curvature e↵ects. IEEE Transactions on Robotics
and Automation, 14(5):709–717, October 1998.

[109] E. Rimon and D. E. Koditschek. The construction of analytic di↵eomor-
phisms for exact robot navigation on star worlds. Transactions of the
American Mathematical Society, 327:71–116, 1991.

BIBLIOGRAPHY 529

[110] E. Rimon and D. E. Koditschek. Exact robot navigation using artifi-
cial potential functions. IEEE Transactions on Robotics and Automation,
8(5):501–518, October 1992.

[111] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach
(Third Edition). Pearson, 2009.

[112] H. Samet. The quadtree and related hierarchical data structures. Com-
puting Surveys, 16(2):187–260, June 1984.

[113] J. T. Schwartz and M. Sharir. On the “piano movers’” problem. I. The
case of a two-dimensional rigid polygonal body moving amidst polygonal
barriers. Communications on Pure and Applied Mathematics, 36(3):345–
398, May 1983.

[114] J. T. Schwartz and M. Sharir. On the “piano movers’” problem. II. Gen-
eral techniques for computing topological properties of real algebraic man-
ifolds. Advances in Applied Mathematics, 4(3):298–351, September 1983.

[115] J. T. Schwartz and M. Sharir. On the piano movers’ problem: III. Co-
ordinating the motion of several independent bodies: the special case of
circular bodies moving amidst polygonal barriers. International Journal
of Robotics Research, 2(3):46–75, 1983.

[116] T. Shamir and Y. Yomdin. Repeatability of redundant manipulators:
mathematical solution to the problem. IEEE Transactions on Automatic
Control, 33(11):1004–1009, 1988.

[117] Z. Shiller and S. Dubowsky. On the optimal control of robotic manipu-
lators with actuator and end-e↵ector constraints. In IEEE International
Conference on Robotics and Automation, pages 614–620, St. Louis, MO,
1985.

[118] Z. Shiller and S. Dubowsky. Global time optimal motions of robotic ma-
nipulators in the presence of obstacles. In IEEE International Conference
on Robotics and Automation, pages 370–375, 1988.

[119] Z. Shiller and S. Dubowsky. Robot path planning with obstacles, actua-
tor, gripper, and payload constraints. International Journal of Robotics
Research, 8(6):3–18, December 1989.

[120] Z. Shiller and S. Dubowsky. On computing the global time-optimal mo-
tions of robotic manipulators in the presence of obstacles. IEEE Transac-
tions on Robotics and Automation, 7(6):785–797, December 1991.

[121] Z. Shiller and H.-H. Lu. Computation of path constrained time optimal
motions with dynamic singularities. ASME Journal of Dynamic Systems,
Measurement, and Control, 114:34–40, March 1992.

530 BIBLIOGRAPHY

[122] K. G. Shin and N. D. McKay. Minimum-time control of robotic manipu-
lators with geometric path constraints. IEEE Transactions on Automatic
Control, 30(6):531–541, June 1985.

[123] B. Siciliano and O. Khatib. Handbook of Robotics, Second Edition.
Springer, 2016.

[124] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling,
Planning and Control. Springer, 2009.

[125] S. N. Simunovic. Force information in assembly processes. In Fifth Inter-
national Symposium on Industrial Robots, September 1975.

[126] J.-J. E. Slotine and H. S. Yang. Improving the e�ciency of time-optimal
path-following algorithms. IEEE Transactions on Robotics and Automa-
tion, 5(1):118–124, February 1989.

[127] P. Somo↵. Uber gebiete von schraubengeschwindigkeiten eines starren
korpers bie verschiedner zahl von stutzflachen. Z. Math. Phys., 45:245–
306, 1900.

[128] M. W. Spong. Robot motion control. In J. Baillieul and T. Samad, editors,
Encyclopedia of Systems and Control, pages 1168–1176. Springer-Verlag,
2015.

[129] M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, 2005.

[130] D. E. Stewart and J. C. Trinkle. An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and Coulomb friction. Interna-
tional Journal for Numerical Methods in Engineering, 39(15):2673–2691,
1996.

[131] G. Strang. Introduction to Linear Algebra, Fourth Edition. Wellesley-
Cambridge Press, 2009.

[132] I. A. Sucan and S. Chitta. MoveIt! Online at http://moveit.ros.org.

[133] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December
2012. http://ompl.kavrakilab.org.

[134] M. Takegaki and S. Arimoto. A new feedback method for dynamic control
of manipulators. ASME Journal of Dyanmic Systems, Measurement, and
Control, 112:119–125, June 1981.

[135] J. C. Trinkle. Formulation of multibody dynamics as complementarity
problems. In ASME International Design Engineering Technical Confer-
ences, January 2003.

BIBLIOGRAPHY 531

[136] E. Tzorakoleftherakis, A. Ansari, A. Wilson, J. Schultz, and T. D. Mur-
phey. Model-based reactive control for hybrid and high-dimensional
robotic systems. IEEE Robotics and Automation Letters, 1(1):431–438,
2016.

[137] L. Villani and J. De Schutter. Force control. In B. Siciliano and O. Khatib,
editors, Handbook of Robotics, Second Edition, pages 195–219. Springer-
Verlag, 2016.

[138] M. Vukobratović and M. Kirćanski. A method for optimal synthesis of
manipulation robot trajectories. ASME Journal of Dynamic Systems,
Measurement, and Control, 104:188–193, June 1982.

[139] D. E. Whitney. Quasi-static assembly of compliantly supported rigid parts.
ASME Journal of Dynamic Systems, Measurement, and Control, 104:65–
77, March 1982.

[140] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics,
22(4):159–168, 1988.

532 BIBLIOGRAPHY

Index

ambiguity, 30

center of rotation, 10
constraint

active, 4
impenetrability, 4
rolling, 4

contact
roll-slide, 4
rolling, 4
sliding, 4

contact kinematics, 2
contact label, 4
contact mode, 7
contact normal, 2
convex span, 15
CoR, 10
Coulomb friction, 21

dynamic grasp, 31

exceptional objects, 16

force closure, 25
form closure, 7, 14
form-closure grasp, 14
friction angle, 22
friction coe�cient, 21
friction cone, 22
frictionless point contact, 10

grasp metric, 19

hard-finger contact, 10
homogeneous constraint, 7

inconsistent, 30

jammed, 35

linear span, 14

moment labeling, 24

nonnegative linear combinations, 14

polyhedral convex cone, 7
polyhedral convex set, 6
polyhedron, 6
positive span, 14

quasistatic, 31

reciprocal force and velocity, 4
repelling force and velocity, 4
roll-slide motion, 3, 4

soft-finger contact, 10

wedged, 35

533

534 INDEX

