
ME 333: Introduction to Mechatronics

Assignment 5: Simple real-time control with the PIC32

Electronic submission due before 11:00 a.m. on February 21st

1 Introduction

In this assignment, you will be writing a real-time controller for an electronic system. Your code will
involve multiple time-based interrupt service routines (ISRs), analog-to-digital conversion (ADC), pulse-
width modulation (PWM) using output compare, and a library for interfacing with an LCD. The task is
to build a closed-loop controller to set the voltage at the emitter of a phototransistor to a prescribed value
regardless of external disturbances, such as varying ambient light conditions. A reference voltage signal will
be generated that represents the desired voltage at the emitter using PWM and a low-pass filter (LPF).
The phototransistor will then be controlled by modulating a PWM signal that is powering an LED. The
ADC module will be used to sample both the reference signal and the actual signal. Using these samples,
you will implement a proportional-integral (PI) controller that will automatically adjust what the PIC is
doing to account for changes in the environment. So if, for example, you were to place a piece of tissue
paper between the LED and the phototransistor, the PIC would automatically increase the power it is
sending to the LED to adjust for this unexpected change. A range of useful sample code can be found at
http://hades.mech.northwestern.edu/index.php/ME333_Sample_Code.

Any statements marked in bold and blue should be answered and turned in!

(a) A typical response (b) An underdamped response

Figure 1: Above are two example plots showing the output signal on the top channel and the reference signal
on the bottom channel. The plot in (b) shows an example of a poorly tuned controller.

1

http://hades.mech.northwestern.edu/index.php/ME333_Sample_Code


2 Questions

For each question in this section, turn in a typed response.

1. You are setting up port B to receive analog input and digital input, and to write digital output. Here
is how you would like to configure the port. (Pin x corresponds to RBx.)

• Pin 0 is an analog input.

• Pin 1 is a “typical” buffered digital output.

• Pin 2 is an open-drain digital output.

• Pin 3 is a “typical” digital input.

• Pin 4 is a digital input with an internal pull-up resistor.

• Pins 5-15 are analog inputs.

• Pin 3 is monitored for change notification, and the change notification interrupt is enabled.

Questions:

(a) Which digital pin is most likely to have an external pull-up resistor? What would be a reasonable
resistance to use?

(b) To achieve the configuration described above, give the eight-digit hex values you should write to
AD1PCFG, TRISB, ODCB, CNPUE, CNCON, and CNEN. (Some of these SFRs have unimple-
mented bits 16-31; you can just write 0 for those bits.)

2. Our PBCLK is running at 80 MHz. Give the four-digit hex values for T3CON and PR3 so that Timer3
is enabled, accepts PBCLK as input, has a 1:64 prescaler, and rolls over (generates an interrupt) every
16 ms. (Keep in mind that if you put x in the period register, the cycle duration is actually x+1, since
counting starts at 0.)

3. Using a 32-bit timer (Timer23 or Timer45), what is the longest duration you can time, in seconds,
before the timer rolls over? (Use the prescaler that maximizes this time.)

4. You will use Timer2 and OC1 to generate a PWM signal at approximately 20 kHz. You use a 1:8
prescaler on the PBCLK as input to Timer2. What value should you place in PR2 (in base 10)? If
you want to create an approximately 25% duty cycle signal, what value should you place in OC1RS
(in base 10)?

3 The Program

3.1 Before you begin

Before you attempt the programming assignment, you should create two MPLAB X projects. The first
project will run the ME 333 sample code and the other project will have the code you end up submitting.
We will refer to these projects as SampleCode and MyProject, respectively. Download

• ADC Read2.c,

• ADC Read2 LCD.c,

• TMR 16bit.c,

• LCD.c, LCD.h, LCDtest.c,

• and OC square wave.c

from the ME333 Sample Code wiki page. Place them in the SampleCode project folder. Instead of creating
multiple projects, you will add and remove these files from the SampleCode project as instructed in the
homework.

2

http://hades.mech.northwestern.edu/index.php/ME333_Sample_Code


R1

R2 C

+ 3.3 V

controlled PWM duty cycle
OC2

Vsensor, AN12

Kp
AN15

+3.3 V

Ki
AN14

+3.3 V

OC1

AN13

100 kHz
PWM

10 Hz square wave
reference signal Vref

Σ LED +
phototransistor

PI
Controller+ _

Vref e
duty
cycle Vsensor

Figure 2: The circuit and control loop you will implement.

3.2 Analog Input

In this section, you will wire up two potentiometers that we will eventually use as inputs to the PIC32 to
modify the controller gain parameters, Kp and Ki. You do not have to turn anything in for this section.

1. Wire terminals 1 and 3 of a potentiometer to 3.3 V and ground. Connect terminal 2, the output from
the wiper, to pin AN15 on the PIC32. This will serve as our eventual input for Kp (see Figure 2).

2. Add ADC Read2.c to the SampleCode project and run it on your PIC. Make sure that only ADC Read2.c
and no other sample file in Section 3.1 appears in the SampleCode project under the MPLAB X Projects
window.1 Verify that the code is working and outputting values over serial with the NU32 utility or a
terminal program.

3. While the ADC code is a useful reference, it does seem like a waste to duplicate the same lines of code
just to change which pin is connected to CH0SA. In this step we are going to structure MyProject in
such a way that we increase code modularity and the possibility of code reuse in future assignments.
In MyProject, add a new C source file, called MyControllerMain.c. This C file will contain your main
program and your interrupt service routines (ISRs). Create two more files, one C source file called
MyLibrary.c and a header file called MyLibrary.h. Add both of these to MyProject.

4. For now, there will be three functions in the project: a main function, an ADC initialization function
(ADCInitManual), and an ADC read function (ADCManualRead). The main function will be in My-
ControllerMain.c, and the other two will go in MyLibrary.c. Take the ADC initialization code from
ADC Read2.c, three lines in this case, and place it in the function void ADCInitManual(void) in
MyLibrary.c. Now write the function int ADCManualRead(int pin), which takes in a desired ana-
log pin number between 0 and 15 and returns the ADC value on that pin, which will be between 0
and 1023. You should define the function prototypes for the two ADC functions in MyLibrary.h, and
include MyLibrary.h in MyLibrary.c and MyControllerMain.c.

1NU32.c and NU32.h should always be included in the SampleCode project, and procdefs.ld should be in both the SampleCode
and the MyProject directory.

3



When creating header files, it is common practice to write an “inclusion guard”.2 To help you with
the syntax, the following is a template for creating MyLibrary.h:

#ifndef __MYLIBRARY_H

#define __MYLIBRARY_H

void ADCInitManual(void);

#endif // __MYLIBRARY_H

Don’t forget to add the function prototype for ADCManualRead.

5. You can test your functions by calling ADCManualRead(15) in your main function and sending the
ADC value on AN15 to your PC so you can view the value in a terminal. You should be able to get
voltages from 0 to 3.3 volts.

6. Wire a second potentiometer and connect its wiper to AN14. Send the value of both pots to your PC
over serial. For now, just make sure you are reading both pots correctly by sending the readings to
your computer over UART1.

3.3 The LCD

Now that you have the potentiometers wired up and you are successfully reading the analog voltages, we are
going to get the LCD, included in your kit, set up to display the current values of the potentiometers. You
do not have to turn anything in for this section.

1. The first step is to wire up the LCD and test that you have it functioning correctly. Follow the wiring
directions at http://hades.mech.northwestern.edu/index.php/NU32:_16x2_LCD to get the LCD
wired up.

2. Did you wire everything correctly? In your SampleCode project, remove ADC Read2.c and add LCD.c,
LCD.h, and LCDtest.c to the project. LCDtest.c contains the main function, and LCD.c and LCD.h
contain useful utility functions for interfacing with the LCD. Build this project and load the code onto
your PIC32. If you wired everything successfully you should see output similar to that in NU32: 16x2
LCD page on the wiki.

3. In MyProject, print the values of the ADC to the LCD instead of sending the values over serial to your
PC. Be careful to send no more than 16 characters per line! Don’t forget to copy LCD.h and LCD.c
into the MyProject folder, and add them to MyProject.

3.4 Timer ISRs

You will now write two timer interrupt service routines in MyControllerMain.c. You should name the first
interrupt routine ControlLoopISR, which will handle your 1 kHz control loop logic. The second ISR should
be named OutputISR; it will be responsible for printing to the LCD. The ControlLoopISR should have
higher priority than the OutputISR.

1. TMR 16bit.c is a useful piece of code to understand for this section. In order to run the code, remove
the LCD files from the SampleCode project and replace them with TMR 16bit.c. Compile the program
and run it on the PIC. Notice how the ISR blinks an LED to communicate to the world that it’s running.
Toggling a pin or blinking an LED is a useful way to know that an ISR is being called.

2The role of the inclusion guard is to prevent functions and variables from getting defined more than once. For example, say
you have three files, s1.c, h1.h and h2.h. If s1.c includes h1.h and h2.h, and h1.h includes h2.h, then in effect, h2.h has been
included in s1.c twice. The inclusion guard prevents this from causing compilation errors.

4

http://hades.mech.northwestern.edu/index.php/NU32:_16x2_LCD
http://hades.mech.northwestern.edu/index.php/NU32:_16x2_LCD
http://hades.mech.northwestern.edu/index.php/NU32:_16x2_LCD


2. In MyLibrary.c, write a TMRInitFixedFreq() function that initializes TMR3 to run at 1 kHz and
TMR4 to run at 20 Hz. Don’t forget to add a prototype to MyLibrary.h. What value should
PR3 be if you know that T3CON<TCKPS> = 1 and that TMR3 is suppose to run at 1 kHz?
Similarly, what should PR4 be if you know that T4CON<TCKPS> = 7 and that it runs at
20 Hz? Don’t forget that we want to write timer ISRs, so remember to configure both timers to
interrupt when a rollover event is detected.

3. Now write your two ISRs, ControlLoopISR and OutputISR, in MyControllerMain.c. Test that they
work by toggling NU32LED1 in OutputISR and NU32LED2 in ControlLoopISR. Verify that you set
the frequency of each ISR correctly by connecting your NUScope to pins A4 and A5, which correspond
to the LEDs. If your ISR is running correctly the square wave generated by the pins toggling should
be half the frequency of your ISR.

4. Define Kp and Ki as two global ints in MyControllerMain.c. In ControlLoopISR read AN15 using
ADCManualRead and assign its value to Kp. Then read in AN14 and assign its value to Ki. In
OutputISR, print the values of Kp and Ki to the LCD. From now on, you should only print Kp and
Ki to the LCD in the OutputISR function. Remove any previous instances that print the values of Kp

and Ki to the LCD or serial UART in MyMainController.c. Test your ISRs again by verifying that
you can print the values of Kp and Ki to the LCD in ADC counts.

5. Now declare two local int variables inside of ControlLoopISR, call them actual signal and ref signal.
Read in AN12 and AN13 using ADCManualRead and assign their values to actual signal and ref signal,
respectively. You might have realized that there is nothing connected to AN12 and AN13. For now,
you can leave AN12 and AN13 floating. We’ll give them real inputs soon.

3.5 Generating a Reference Signal with a Low-pass Filter

In this section, we will write the code that generates the reference signal, Vref, using PWM. Specifically, we
will generate a 100 kHz PWM signal out of OC1 and change its duty cycle every 50 ms. We’ll then build
a low-pass filter on the OC1 pin to generate Vref at 10 Hz between 1 V and 2 V. Our strategy will be to
modify OC square wave.c, so that it meets the specs and then copy the changes into MyProject.

1. Remove TMR 16bit.c from the SampleProject and add OC square wave.c. This program fills an array
with duty cycles that produce a 1 Hz square wave with voltages between 1 and 2 V. It uses the array
to “playback” the square wave. You should be able to see that this code is general enough to modulate
the PWM signal to create arbitrary signals. Construct a low-pass filter on the OC1 PWM output pin
D0. We found a resistance value of 10 kΩ and fcutoff ≈ 723 Hz satisfactory. Using this information,
what value was our capacitor? You should recall from class that fcutoff = 1

2πRC . If you don’t have
these R and C values in your kit, then choose a resistor that will safely draw less than 18 mA, which
is the maximum amount of current an individual pin on the PIC can supply. After choosing a resistor,
use a capacitor that will produce a cutoff frequency of around 1 kHz.

2. Set WAVE PERIOD to 0.1 and WAVE SAMPS to 2. This will increase the frequency of Vref to 10 Hz. Run
the program with these modifications and verify with your NUScope that Vref is now a 10 Hz square
wave.

3. We want to eventually copy pieces of OC square wave.c into MyLibrary.c, but instead of copying
sections of OC square wave.c into our more complicated project, MyProject, let’s keep making the
modifications in OC square wave.c. If something isn’t working, we have less code to find mistakes in.
As is, the function startPWM() relies on two macros to set the PWM frequency of OC1. This doesn’t
make startPWM() as modular as it can be; if we copied it into our library, we would have to also
copy the definitions of TMR2 PS VAL and TMR2 PR2. Instead, modify startPWM so that the prescaler
and period match values are inputs to the function. This involves changing the function header so it’s
void startPWM(int prescaler, int period). In OC square wave.c, OC1RS and OC1R are set to

5



the first value in the global Signal array. In our modified function, set them both to zero. This means
the square reference wave won’t begin until our OutputISR begins modulating the output duty cycle,
but this causes no problems.

Test the program, making any necessary changes in the file to get it to compile, and make sure that you
can still generate the 10 Hz signal. You can still use the macros when calling the function. For example,
in main, you could replace the old call to startPWM with startPWM(TMR2 PS VAL, TMR2 PR2);.

4. The array Signal stores the signal we want to playback as a series of counts corresponding to the
PWM duty cycle. Our buildSignal function doesn’t need to know how voltages map to a par-
ticular duty cycle, just the final value in counts. Modify buildSignal so that its function header
is void buildSignal(unsigned *signal, unsigned samples, int duty1, int duty2). While
buildSignal does not have to worry about how voltages are converted to counts, you do, so make sure
you call buildSignal with the correct duty cycles that will create the desired voltage levels. After
making your changes, verify that you can still generate the same 10 Hz signal.

5. Copy your modified versions of buildSignal and startPWM from OC square wave.c into MyLibrary.c.
In order to generate the PWM signal from within MyProject, modify MyControllerMain.c so that your
main function calls buildSignal and startPWM and your OutputISR function correctly steps through
the signal. Use OC square wave.c as a guide to help you figure out what variables and macros you
should declare to get PWM working from within MyControllerMain.c. Don’t forget to add prototypes
for buildSignal and startPWM to MyLibrary.h. When you have everything working, connect Vref to
AN13.

3.6 The Phototransistor Circuit

In this section, you are going to build and test the circuit for the LED and phototransistor pair. The LED
is going to point at the base of the phototransistor, and the brightness of the LED will modulate how much
current flows through the transistor. The LED that we are using is the large clear one that shines red light,
the red “super bright” LED. The phototransistor that we are using is the SFH310 phototransistor. You can
find pictures of these parts and their datasheets on the What is in the NU32 Kit wiki page. In your circuit,
use R1 = 100 Ω, C = 0.1 µF, R2 = 10 kΩ (see Figure 2). There is nothing to hand in for this section.

1. Wire the circuit shown in Fig. 2 for the LED and phototransistor. For the LED, the cathode is the
shorter lead3. For the phototransistor, the shorter lead is the collector. From a practical wiring
perspective (Figure 3), the LED and the phototransistor should be placed about 1.5 to 2 inches apart
(we counted 16 holes separating the two in our breadboard). They should both be bent to point
“towards” each other.

2. In MyLibrary.c, expand startPWM so that it also initializes PWM on OC2. Initialize OC2 so that it
starts with a duty cycle of 50%. Because OC1 and OC2 have their own separate registers for changing
the duty cycle, they can both use TMR2 to generate the base frequency without interfering with each
other. You can use initialization code for OC1 as a guide for writing the initialization code for OC2.

3. Wire the output of the phototransistor circuit (Vsensor in Figure 2) to AN12.

4. If everything is wired correctly, you should see the LED glowing red. Plug your NUScope into Vsensor.
If you are able to see the voltage level toggle by blocking the light (with your finger) and allowing it
to pass, then your circuit is working.

3Remember that current flows from anode to cathode in an LED and from collector to emitter in an NPN transistor.

6

http://hades.mech.northwestern.edu/index.php/NU32:_What_is_in_the_NU32_Kit


Figure 3: A picture of the phototransistor (left) and LED (right). A sheet of paper was added to make the
pair more visible in the picture.

3.7 A brief recap

Let’s recap what we have working so that we can describe what we still need to do. We are reading in four
analog inputs. Two of these inputs are from our pots, which we will use as knobs to dynamically change
the values of our control gains. The other two analog inputs read in our desired signal, Vref, and the actual
signal, Vsensor, from our LED/phototransistor pair. For outputs, we are using two 100 kHz PWM signals
to generate our desired and actual signals. Because our desired signal is much lower frequency than the
100 kHz PWM, we change the duty cycle every 1

20 of a second to get a filtered 10 Hz signal. Because we
needed to perform this periodic task, we set up a 20 Hz ISR (OutputISR). This rate is appropriate for the
LCD as well because we don’t need a high refresh rate, so we update the LCD inside the same ISR. All we
have left to implement is the control, which we do at a speed of 1 kHz. Earlier we set up a 1 kHz timer ISR
(ControlISR), so all we have left to implement is the logic inside the routine for doing PI control.

3.8 The controls

In this section, we add the final piece to our program. Before we get into the coding aspect, we introduce a
few issues with implementing a control law and how to deal with them in practice.

1. In class, we showed you how to implement a PI controller in C. Ideally, you would only need to write

e = ref_signal - actual_signal; // calculate the amount of error.

eint += e; // calculate the accumulated error.

u = Kp * e + Ki * eint; // calculate the control law.

Of course, it’s a different story in practice. There are two major issues associated with saturation that
we have to address. First, our output, the PWM duty cycle, can only take on values between 0 and
799. Assume that Kp = 1 and Ki = 0, what are realistic signal values that will

(a) cause u to be negative?

(b) cause u to exceed 799?

Remember that the signals are read from the 10-bit ADC, so they have a fixed range of values too. A
simple way to deal with this problem is to cap the minimum and maximum values that u can take on.

The second problem is known as integrator windup and is unique to the integral term, eint. The
concept is simple enough, you can’t integrate forever, so cap eint at a minimum and maximum value.

7



2. In control systems, we typically want a wide range of gain values to tune our control with. For tracking
Vref, you should be able to find a pair of gains for Kp and Ki between 0.1 and 100. Naturally we’d
choose a float or a double data type to represent our gains. However, we know that multiplying
and dividing these data types takes over 50 cycles per operation, which potentially makes them too
slow in a high-speed control loop. Instead, we will perform all of our mathematical operations using
integer data types. One issue is how to perform integer calculations with precision that is less than
one. Consider the following two methods for calculating the control law u with only proportional gain

Method 1: u = (Kp / KDIV) * e; (1)

Method 2: u = (Kp * e) / KDIV;. (2)

Mathematically they are identical, but because of the subtleties of integer math we will see that
performing the division as the final operation (Method 2) has higher precision.

(a) Assume that e is fixed at 67 and KDIV is 10, fill in the missing entries in the table
below for Method 1 and Method 2 based on the integer math that your C program
would have performed. Compare these two methods with the first row, where the
mathematically equivalent operations were computed by “hand.” How accurate is
each method relative to the numbers in the first row, for example, are the results
within ±5 of the first row?

Kp pot reading 10 11 12 13 14 15
u rounded to nearest tenth 67 73.7 80.4 87.1 93.8 100.5
Method 1: u = (Kp / KDIV) * e; 67
Method 2: u = (Kp * e) / KDIV; 67

Table 1: Results of integer math when dividing too early (Method 1) and at the end (Method 2).

(b) We know that Kp can take on values between 0 and 1023 and that dividing by KDIV

at the end of our calculations preserves some precision in our result. For nonzero
values of Kp (i.e., 1 ≤ Kp ≤ 1023), what is the effective range of gains that we can
represent with the second method, i.e., Keff = Kp / KDIV? Compute Keff by “hand”,
that is 1023

10 = 102.3.

(c) Overflow can become an issue if the numbers we are multiplying are too large. What
is the maximum positive value that the product Kp * e can produce? Remember
that Kp is in ADC counts and e is the difference of two ADC counts. Can this value
safely be stored in a signed 32-bit integer? In practice, you should also consider the
maximum negative value, but for us the result doesn’t change.

3. Below is a template to help guide you with the control loop ISR, you should fill in the question marks
with actual code. The template gives good starting values for WINDUP and KDIV, but you may need to
tweak these values depending on your circuit and code.

#define WINDUP (800)

#define UMIN (???)

#define UMAX (???)

#define KDIV (10)

void __ISR(_TIMER_3_VECTOR, ???) ControlISR(void) {

static eint = 0;

int e;

// define any additional variables you need here

8



???

// read all four analog signals using ADCManualRead(...)

???

// calculate the error terms

???

// avoid wind-up issues

if (eint > WINDUP) {

eint = WINDUP;

} else if (eint <-WINDUP) {

eint = -WINDUP;

}

// calculate the control law

u = ((Kp * e) + (Ki * eint)) / KDIV;

// avoid saturation issues

if (u < UMIN) {

u = UMIN;

} else if (u > UMAX) {

u = UMAX;

}

// update the actual signal’s duty cycle

// don’t forget to cast to an unsigned data type!

???

NU32LED2 = !NU32LED2;

IFS0bits.T3IF = 0; // clear interrupt flag

}

4. Connect Vref to channel A of the NUScope and Vsensor to channel B. Make sure both gains are initially
set to zero. In order to get good tracking behavior, you should start by increasing Kp first. Once making
Kp higher doesn’t minimize the error, start to increase Ki until you are satisfied with the results. If
the actual signal appears to always be at the rails4 for all values of Kp or Ki, then you might have a
sign error. Try flipping the sign for Kp and/or Ki and try tuning your circuit again. If increasing the
integral term causes immediate saturation, consider decreasing the WINDUP constant.

5. When you are satisfied with your gains, take a screenshot showing the Vref and Vsensor

signals on your NUScope.

4 What to turn in

For the questions, you must submit typed responses. Place your typed responses, the required code (My-
ControllerMain.c, MyLibrary.h, and MyLibrary.c), and the NUScope screenshot in a zip file and submit the
zip file through Blackboard before class on the date the assignment is due. The name of the zip file you
submit will be of the form lastname firstname a5.zip.

In class you will connect your output signals (Vref and Vsensor) to the NUScope and demo your circuit to
the TAs.

4Stuck either high or low

9


	Introduction
	Questions
	The Program
	Before you begin
	Analog Input
	The LCD
	Timer ISRs
	Generating a Reference Signal with a Low-pass Filter
	The Phototransistor Circuit
	A brief recap
	The controls

	What to turn in

