
Chapter 3

Looking Under The Hood: Software

In the last chapter, we learned about the PIC32 physical and virtual memory maps. Of these, the physical
memory map is easier to understand: the CPU can access any SFR, or any location in data RAM, program
flash, and boot flash, by a 32-bit address that it puts on the bus matrix. Since we don’t really have 232

bytes, or 4 GB, to access, many choices of the 32 bits don’t address anything. In fact, we found that all
RAM is located at addresses of the form 0x000*****, all flash is located at addresses 0x1D0*****, all SFRs
are located at addresses 0x1F8*****, and all boot flash is located at addresses 0x1FC*****. The five least
significant hex digits ***** in the address can refer to 165 different locations, or 1 MB, more than we need
for any of the memory regions.

In this chapter we will be focusing on the virtual memory map. This is because all software refers only
to the virtual memory map. Virtual memory addresses are translated to physical memory addresses by the
fixed mapping translation (FMT) unit in the CPU, which, as mentioned in the last chapter, is simply

Physical Address = Virtual Address & 0x1FFFFFFF

This bitwise AND operation simply clears the first three bits, the three most significant bits of the most
significant hex digit.

If we’re just throwing away those three bits, what’s the point of them? Well, those first three bits are used
by the CPU and the prefetch module we learned about in the previous chapter. (Remember, the prefetch
module’s main job is to grab instructions from flash before the CPU needs them, so the CPU doesn’t have to
wait around because of slow flash access.) If the first three bits of the virtual address of a program instruction
are 100 (so the corresponding most significant hex digit of the VA is an 8 or 9), then that instruction can
be cached. If the first three bits are 101 (corresponding to an A or B in the leftmost hex digit of the VA),
then it cannot. Thus the segment of virtual memory 0x80000000 to 0x9FFFFFFF is cacheable, while the
segment 0xA0000000 to 0xBFFFFFFF is noncacheable. The cacheable segment is called KSEG0 and the
noncacheable segment is called KSEG1.1

We will set aside the mysteries of which instructions should be cacheable or noncacheable for now. Suffice
to say that you won’t have to worry about it; all of your program instructions will be in KSEG0 program
flash, and all of your data will be in KSEG1 data RAM. After all, you want to be able to use the cache to
speed up your program execution (hence your program instructions will be cacheable), and there is no need
to cache data in RAM, since RAM can be accessed in one cycle, unlike flash.

For the rest of this chapter we will deal only with virtual addresses like 0x9D000000 and 0xBD000000, and
you should know that these refer to the same physical address. Since virtual addresses start at 0x80000000,
and all physical addresses are below that, there is no possibility of confusion about whether we are talking
about a VA or a PA.

1The virtual memory segment 0x00000000 to 0x7FFFFFFF is a cacheable segment called USEG, indicating “user segment,”
as opposed to KSEG, indicating “kernel segment.” We will never use this virtual memory segment. Instructions in this virtual
segment cannot access the SFRs or boot flash.

1

3.1 A Simple Program

Create a project for your NU32 board called simple with the following source code. Make sure procdefs.ld
is in the same directory.

Code Sample 3.1. simple.c. Blinking lights, unless the USER button is pressed.

#include <plib.h>

void delay(void);

void main(void) {
// Port A dig I/O pins 4 and 5 are connected to LEDs 1 and 1. Make them outputs.
TRISA = 0xFFCF; // Pins 4 and 5 are cleared to 0, for output; other pins of Port A are inputs.

// Turn LED1 on and LED2 off. These pins sink current on NU32, so "high" = "off."
LATAbits.LATA4 = 0; LATAbits.LATA5 = 1;

while(1) {
delay();
LATAINV = 0x0030; // toggle the two lights

}
}

void delay(void) {
int j = 0;
for (j=0;j<1000000;j++) {
while(!PORTCbits.RC13); // Pin C13 is the USER switch, low if pressed.

}
}

When you have the program loaded and running, the NU32’s two LEDs should alternate on and off, and
stop while you press the USER button. This program refers to SFRs named TRISA, LATAINV, etc. These
names align with the SFR names in the Data Sheet and Reference Manual sections on I/O Ports. You will
be consulting these two sources often when you program the PIC32. We will come back to understanding
the use of these SFRs shortly.

3.2 What Happens When You Reset the PIC32?

You’ve got your program running. Now you hit the RESET button. What happens next?
The first thing your PIC32 does is jump to the first address in boot flash, 0xBFC00000, and begin

executing instructions there.2 For the NU32, we have pre-loaded a “bootloader” program starting at that
location in memory. The bootloader first checks to see if you are pressing the USER button. If so, it
knows that you want to reprogram your PIC32, so the bootloader attempts to establish communication
with a utility program on your computer. When communication is established, the bootloader receives your
executable .hex file and writes it to your PIC32’s program flash. The bootloader program is written to install
your new program starting at 0xBD006100.

Note: The PIC32’s reset address 0xBFC00000 is fixed in hardware and cannot be changed. On the other
hand, there is nothing too special about the choice of the program flash address 0xBD006100 where the
bootloader writes our program.

The main purpose of using a bootloader on the PIC32 is to allow you to program the PIC32 directly from
your computer’s USB port. Otherwise, the more traditional way to program the PIC32 is to use another

2If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks synchronize,
etc., before jumping to 0xBFC00000.

2

C Source Files (*.c)C Source Files (*.c)assembly source
files (*.S)

C Source Files (*.c)C Source Files (*.c)object file
libraries (*.a)

linker script (*.ld)

Preprocessor

Assembler

Compiler

Linker

Archiver

C Source Files (*.c)C Source Files (*.c)C source files (*.c),
header files (*.h)

C Source Files (*.c)C Source Files (*.c)preprocessed C files

C Source Files (*.c)C Source Files (*.c)assembly files (*.s)

C Source Files (*.c)C Source Files (*.c)relocatable object
files (*.o)

pic32-objcopy

executable linkable
format (*.elf)

executable (*.hex)

Figure 3.1: The “compilation” process.

device between your USB port and the PIC32 called a “programmer.” An example is the Microchip PICkit
3 programmer, which is what we used to put the bootloader program on your PIC32 in the first place.

Anyway, let’s say you weren’t pressing the USER button. Then the bootloader jumps to 0xBD006100,
where your application is sitting, and begins executing. Notice that our program is an infinite loop, so it
never stops executing. That is the desired behavior in embedded control. If your program ever does exit,
the PIC32 will just sit in a tight loop, doing nothing.

3.3 What Happens When You Compile?

Now let’s begin to understand how you created the .hex file in the first place. Figure 3.1 gives a schematic
of what happens when you press “Build” in your MPLAB X IDE.

First the preprocessor strips out comments and inserts include files. You can have multiple C source
files, but only one is allowed to have a main function. The other files may contain helper functions, for

3

Figure 3.2: Port A registers, taken from Section 4 of the PIC32 Data Sheet.

example.
Then the compiler turns these C files into MIPS32 assembly language files, machine commands that are

directly understood by the PIC32’s CPU. So while some of your C code may be easily “portable” to another
microcomputer, your assembly code will not be. These assembly files are readable by a text editor, and it is
possible to program the PIC32 directly in assembly language.

The assembler then turns the assembly files into machine-level relocatable object code. This code cannot
be inspected with a text editor. The code is called relocatable because the final memory addresses of the
program instructions and data used in the code is not yet specified. The archiver is a utility that allows
you to package several related .o object files into a single .a library file. We will not be making our own
libraries, but we will certainly be using .a libraries that have already been made for us!

Finally, the linker takes multiple object files and produces a single executable file, with all data and
program instructions assigned to specific memory locations. The result is an executable and linkable format
(.elf) file, a standard format. One more step turns the .elf file into a .hex file that is suitable for placing
directly into the memory of your PIC32.

Although the entire process consists of several steps, it is often referred to as “compiling” for short.
“Build” is perhaps more accurate, and that is the term the MPLAB X IDE uses.

3.4 Understanding simple.c

OK, let’s get back to understanding simple.c. The main function is very simple. It initializes values of
TRISA and LATAbits, then enters an infinite while loop. Each time through the loop it calls delay() and
then assigns a value to LATAINV. The delay function simply goes through a for loop a million times.
Each time through the for loop we enter a while loop, which checks the value of (!PORTCbits.RC13). If
PORTCbits.RC13 is 0 (FALSE), then the expression (!PORTCbits.RC13) evaluates to TRUE, and the pro-
gram stays stuck here, doing nothing but checking the expression (!PORTCbits.RC13). When this evaluates
to FALSE, the while loop is exited, and we continue with the for loop. After a million times through the
for loop, control returns to main.

Special Function Registers (SFRs) The only reason this program is even a little interesting is that
TRISA, LATA, and PORTC all refer to peripherals that interact with the outside world. Specifically,
TRISA and LATA correspond to port A, an input/output port, and PORTC corresponds to port C, another
input/output port. We can start our exploration by consulting the table in Section 1 of the Data Sheet (DS)
which lists the pinout I/O descriptions. We see that port A, with pins named RA0 to RA15, consists of 12
different pins, and port C, with pins named RC1 to RC15, has 8 pins. These are in contrast to port B, which
has a full 16 pins, labeled RB0 to RB15.

Now turn to Section 12 of the DS on I/O Ports to get some more information. We find that TRISA,
short for “tri-state A,” is used to control the direction, input or output, of the pins on port A. For each pin,
there is a corresponding bit in TRISA. If the bit is a 0, the pin is an output. If the bit is a 1, the pin is an
input. (0 = Output and 1 = Input. Get it?) We can make some pins inputs and some outputs, or we can
make them all have the same direction.

If you’re curious what direction the pins are by default, you can consult Section 4 of the DS. Tables there
list the VA of many of the SFRs, as well as the value it defaults to upon reset. There are a lot of SFRs!

4

But after a bit of searching, you find that TRISA sits at 0xBF886000, and its default value upon reset is
0x0000C6FF. (We’ve reproduced part of this table for you in Figure 3.2.) In binary, this would be

0x0000C6FF = 0000 0000 0000 0000 1100 0110 1111 1111.

The leftmost four hex digits (two bytes, or 16 bits) are all 0. This is because those bits don’t exist, technically.
Microchip calls them “unimplemented.” No I/O port has more than 16 pins, so we don’t need those bits,
which are numbered 16–31. (The 32 bits are numbered 0–31.) Of the remaining bits, since the 0’th bit (least
significant bit) is the rightmost bit, we see that bits 0–7, 9–10, and 14–15 have a value 1, while the rest have
value 0. The bits with value 1 correspond precisely to the pins we have available. So all of our pins are
configured as inputs, by default. This is for safety reasons; when we power on the PIC32, each pin will take
its default direction before the program has a chance to change it. If an output pin were connected to an
external circuit that is also trying to control the voltage on the pin, the two devices would be fighting each
other, with damage to one or the other a possibility. No such problems arise if the pin is configured as an
input by default.

As a standard, every SFR has 32 bits. Not every SFR uses all of the bits, however, as we see for TRISA.
So now we understand that the instruction

TRISA = 0xFFCF;

clears bit 4 and 5 to 0, implicitly clears bits 16–31 to 0 (which is ignored, since the bits are not implemented),
and sets the rest of the bits to 1. It doesn’t matter that we try to set some unimplemented bits to 1; those
bits are simply ignored. The result is that port A pins 4 and 5, or RA4 and RA5 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers using 0b at
the beginning of the number, so if you don’t get lost counting bits, you could have equally written

TRISA = 0b1111111111001111;

Another option would have been to use the instructions

TRISAbits.TRISA4 = 0; TRISAbits.TRISA5 = 0;

This allows us to change individual bits without worrying about specifying the other bits. We see this kind
of notation later in the program, with LATAbits.LATA4 and PORTCbits.RC13, for example.

The two other basic SFRs in this program are LATA and PORTC. Again consulting Section 12 of the
DS, we see that LATA, short for “latch A,” is used to write values to the output pins. Thus

LATAbits.LATA5 = 1;

sets pin RA5 high. Finally, PORTC contains the digital inputs on the port C pins. (Notice we didn’t
configure port C as input; we relied on the fact that it’s the default.) PORTCbits.RC13 is 0 if 0 V is present
on pin RC13 and 1 if approximately 3.3 V is present.

Pins RA4, RA5, and RC13 on the NU32 Figure 3.3 shows how pins RA4, RA5, and RC13 are wired
on the NU32 board. LED1 (LED2) is on if RA4 (RA5) is 0 and off if it is 1. When the USER button is
pressed, RC13 registers a 0, and otherwise it registers a 1.

The result of these electronics and the simple.c program is that the LEDs flash alternately, but remain
unchanging while you press the USER button.

CLR, SET, and INV SFRs So far we have ignored the instruction

LATAINV = 0x0030;

Again consulting Section 12, we see that associated with the SFR LATA are three more SFRs, called
LATACLR, LATASET, and LATAINV. (Indeed, all of our port SFRs have corresponding CLR, SET, and
INV SFRs.) These are used to easily change some of the bits of LATA without worrying about others. A
write to these registers causes a one-time change to LATA’s bits, but only in the bits corresponding to bits
on the right-hand side that have a value of 1. For example,

5

RC13

+3.3 V

USER
button,

normally
open

+3.3 V

RA5

LED2

+3.3 V

RA4

LED1

Figure 3.3: The NU32 connection of pins RA4, RA5, and RC13 to LED1, LED2, and a button, respectively.

LATAINV = 0x0030; // flips the values of bits 4 and 5 of LATA; all others are unchanged
LATAINV = 0x30; // same as above
LATAINV = 0b110000; // same as above
LATASET = 0x0005; // sets bits 0 and 2 of LATA to 1; all others are unchanged
LATACLR = 0x0002; // clears bit 1 of LATA to 0; all others are unchanged

A less efficient way to toggle bits 4 and 5 of LATA is

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATA5 = !LATAbits.LATA5;

We’ll look at efficiency later.
You can go back to the table in Section 4 to see the VA addresses of the CLR, SET, and INV registers.

They are always offset from their base register by 4, 8, and 12 bytes, respectively; they are consecutive in the
memory map. Since LATA is at 0xBF886020, LATACLR, LATASET, and LATAINV are at 0xBF886024,
0xBF886028, and 0xBF88602C, respectively.

OK, we should now have a pretty good understanding of how simple.c works. But we have been ignoring
the fact that we never declared TRISA, etc., before we started using them. We know you can’t do that in C;
they must be declared somewhere. The only place they could be declared is in plib.h. We’ve been ignoring
that #include <plib.h> statement until now. Time to take a look.

3.4.1 Down the Rabbit Hole

The plib in plib.h stands for peripheral library, a library of C functions, macros, constants, data types,
and variable definitions that Microchip has created for our convenience. But where do we find it? If your
program had the preprocessor command #include "plib.h", the preprocessor would start by looking for
plib.h in the same directory as the C file including it. But we had #include <plib.h>, and the <...>
notation means that the preprocessor will look in directories specified in your include path. This include
path was generated for you automatically. For me, the default include path means that the compiler finds
plib.h sitting in the directory path

microchip/mplabc32/v2.02/pic32mx/include/plib.h

Before we open up plib.h, let’s look at the directory structure that was created when we installed the C32
compiler. There’s a lot here! We certainly don’t need to understand all of it at this point, but let’s try to
get a sense what’s going on. Let’s start at the level microchip/mplabc32/v2.02 and summarize what’s in
the nested set of directories, without being exhaustive.

1. bin: This contains the actual executable programs that do the compiling, assembling, linking, etc. For
example, pic32-gcc is the C compiler.

2. doc: Some manuals and other documentation.

3. examples: Some sample code.

4. lib: Contains some .h header files and .a library archives containing general C object code.

6

5. pic32-libs: This directory is notable because it contain the .c C files and the .h header files needed
to create the object code for the PIC32 peripheral library functions. Later on we might want to look at
these more closely, as they are some of the best documentation on how the peripheral library functions
work. A few notable subdirectories:

(a) peripheral: The subdirectories under this directory contain the C code for peripheral library
functions.

(b) include/peripheral: This directory contains header files for peripheral library functions. Though
there is a plib.h here, it is not the one the compiler finds when building simple.c.

(c) libc/startup/crt0.S: This “C run-time startup” assembly code gets inserted at the beginning
of every program we create. This code takes care of a number of initialization tasks. For example,
if your program uses global variables, crt0 initializes them by writing zeros into their data RAM
locations. If your global variables are initialized at the time of declaration, e.g., int k=3, then
crt0 copies the initialized values from program flash to data RAM.

6. pic32-mx: This directory has a number of files we are interested in.

(a) bin: This directory contains copies of some of the executable programs. We can ignore it.

(b) lib: Important files in this directory include:

i. crt0.o: This is the compiled object code of crt0.S, above. The linker combines this code
with our program’s object code and makes sure that it is executed first.

ii. ldscripts/elf32pic32mx.x: This is a linker script that gives the linker rules on where it
is allowed to finally place the relocatable object codes in memory. It uses procdefs.ld,
which is sitting in your simple.c directory. For example, your procdefs.ld includes the
processor.o file with its definitions of the SFR VAs, sets the reset address at 0xBD006100
(which agrees with the bootloader), and allocates segments of data RAM and program flash
where the linker is allowed to place the data and instructions.

iii. libmchp peripheral 32MX795F512L.a: This library contains the .o object code versions of
the .c peripheral library functions in the top-level pic32-libs library. There are versions of
this file for every type of PIC32. There are also subdirectories with versions of this library
with the same functionality, but optimized for speed and code size.

iv. proc/32MX795F512L/processor.o: This object file defines the SFR virtual memory addresses
for our PIC32. We can’t look at it directly with a text editor, but there are utilities that allow
us to examine it. For example, if you are comfortable executing from the command line, you
could use the pic32-nm program in the top level bin directory to see all the SFR VAs:
> pic32-nm processor.o
bf809040 A AD1CHS
...
bf886000 A TRISA
bf886004 A TRISACLR
bf88600c A TRISAINV
bf886008 A TRISASET
...

All of the SFRs are printed out, in alphabetical order, with their corresponding VA. The
spacing between SFRs is four, since there are four bytes (32 bits) in an SFR. The “A” means
that these are absolute addresses. This tells the linker that it must use these addresses when
making final address assignments. This makes sense; the SFR’s are implemented in hardware
and can’t be moved! The listing above indicates that TRISA is located at VA 0xBF886000,
agreeing with Section 1 of the Data Sheet.

v. proc/32MX795F512L/configuration.data: This file describes some constants used in setting
the configuration bits in DEVCFG0 to DEVCFG3 (Chapter 2.1.4). Our bootloader program
chooses the values of these bits. The bootloader program contains the following lines, for
example:

7

#pragma config UPLLEN = ON // USB PLL Enabled
#pragma config UPLLIDIV = DIV_2 // USB PLL Input Divider
#pragma config FPLLMUL = MUL_20, FPLLIDIV = DIV_2, FPLLODIV = DIV_1, FWDTEN = OFF
#pragma config POSCMOD = HS, FNOSC = PRIPLL, FPBDIV = DIV_1
#pragma config FSOSCEN = OFF

These #pragmas are nonstandard C code, and for our particular compiler, they are used
to write to the DEVCFGx bits the values defined by constants like MUL 20. Most of these
#pragmas are used to set up our timing generation circuit that turn our 8 MHz resonator into
an 80 MHz SYSCLK, an 80 MHZ PBCLK, and a 48 MHz USBCLK. You can learn more
about the DEVCFGx configuration bits in Section 28 Special Features of the Data Sheet.

(c) include: Here we finally find what we were looking for:

i. plib.h: This is the file that was found in our compiler’s include path. If we open it up, we
find that it includes a bunch of other files! One of them is peripheral/ports.h, so let’s open
that one up.

ii. peripherals/ports.h: This file provides constants, macros, and function prototypes for
library functions that work with the I/O ports. More importantly, for now, is that it includes
p32xxxx.h. This file is found one directory up in the directory tree. Let’s open that next.

iii. p32xxxx.h: This file does a few different things, but the most important for the moment is
that it includes proc/p32mx795f512l.h because of the lines
#elif defined(__32MX795F512L__)
#include <proc/p32mx795f512l.h>

Why? When you were setting up your simple project in the first place, you had to specify the
processor being used. The MPLAB X IDE passed your answer to the compiler by “defining”
the constant 32MX795F512L . This allows the compiler to find the right information about
your particular PIC32. Let’s open proc/p32mx795f512l.h.

iv. proc/p32mx795f512l.h: Whoa! This file is over 40,000 lines long. It also includes one other
file in the same directory, ppic32mx.h, which is over 1000 lines long. With this we have
reached the bottom of our include chain. Let’s pop out of this big directory tree we are
sitting in and look at those two files in a little more detail.

3.4.2 The Include Files p32mx795f512l.h and ppic32mx.h

The first 30% of p32mx795f512l.h, about 14,000 lines, consists of code like this:

extern volatile unsigned int TRISA __attribute__((section("sfrs")));
typedef union {
struct {
unsigned TRISA0:1; // TRISA0 is an unsigned int constructed from bit 0 of this data type
unsigned TRISA1:1; // bits are in order, so the next bit, bit 1, is called TRISA1
unsigned TRISA2:1; // ...
unsigned TRISA3:1;
unsigned TRISA4:1;
unsigned TRISA5:1;
unsigned TRISA6:1;
unsigned TRISA7:1;
unsigned :1; // don’t give a name to bit 8; it’s ‘‘unimplemented’’
unsigned TRISA9:1; // bit 9 is called TRISA9
unsigned TRISA10:1;
unsigned :3; // skip bits 11-13
unsigned TRISA14:1;
unsigned TRISA15:1; // later bits are not given names

};
struct {
unsigned w:32; // w is a field referring to all 32 bits; the 16 above, and 16 more

};

8

} __TRISAbits_t;
extern volatile __TRISAbits_t TRISAbits __asm__ ("TRISA") __attribute__((section("sfrs")));
extern volatile unsigned int TRISACLR __attribute__((section("sfrs")));
extern volatile unsigned int TRISASET __attribute__((section("sfrs")));
extern volatile unsigned int TRISAINV __attribute__((section("sfrs")));

The first line, beginning extern, indicates that TRISA is an unsigned int variable that has been declared
elsewhere; the compiler does not have to allocate space for it. The processor.o file is the one that actually
defines the VA of TRISA, as mentioned earlier. (The attribute syntax tells the linker that TRISA is
in the sfrs section of memory.)

The next section of code defines a data type called TRISAbits t. The purpose of this is to provide a
struct that gives easy access to the bits of the SFR. After defining this type, a variable named TRISAbits
is defined of this type. Again, since it is an extern variable, no memory is allocated, and, in fact, the
asm ("TRISA") syntax means that TRISAbits is at the same VA as TRISA. The definition of the bit field

TRISAbits allows us to use TRISAbits.TRISA0 to refer to bit 0 of TRISA. The fields do not have to be one
bit long; for example, TRISA.w is the unsigned int created from all 32 bits, and the type RTCALRMbits t

typedef union {
struct {
unsigned ARPT:8;
unsigned AMASK:4;

...
} __RTCALRMbits_t;

has a first field ARPT that is 8 bits long and a second field AMASK that is 4 bits long.
After the definition of TRISA and TRISAbits, we see declarations of TRISACLR, TRISASET, and

TRISAINV. They all inherit the VA’s specified by processor.o.
With these definitions in p32mx795f512l.h, the simple.c statements

TRISA = 0xFFCF;
LATAINV = 0x0030;
while(!PORTCbits.RC13) { }

finally make sense. You can see that p32mx795f512l.h defines a lot of variables, but no memory has to be
allocated for them.

The next 9% of p32mx795f512l.h is the extern variable declaration of the same SFRs, without the bit
field types, for assembly language. These are not useful for us, but the VAs of each of the SFRs is given,
making this a handy reference.

Starting at about 17,500 lines into the file, we see constant definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001
#define _T1CON_TCS_MASK 0x00000002
#define _T1CON_TCS_LENGTH 0x00000001

#define _T1CON_TCKPS_POSITION 0x00000004
#define _T1CON_TCKPS_MASK 0x00000030
#define _T1CON_TCKPS_LENGTH 0x00000002

These refer to the Timer 1 SFR T1CON. Consulting the information about T1CON in Section 14 of the
Reference Manual, we see that bit 1, called TCS, controls whether Timer 1’s clock input comes from the
T1CK input pin or from PBCLK. Bits 4 and 5, called TCKPS for “timer clock prescaler,” control how many
times the input clock has to “tick” before Timer 1 is incremented (e.g., TCKPS = 0b10 means there is one
clock increment per 64 input ticks). The constants defined above are for convenience in accessing these bits.
The POSITION constants indicate the least significant bit location in TCS or TCKPS—one for TCS and four
for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of two bits.
Finally, the MASK constants can be used to determine the values of the bits we care about. For example:

9

unsigned int tckpsval = T1CON & _T1CON_TCKPS_MASK
// MASKing clears all bits, except bits 4 and 5, which are unchanged

Another example usage is in pic32mx/include/peripheral/timer.h, where we find the constant definition

#define T1_PS_1_64 (2 << _T1CON_TCKPS_POSITION) /* 1:64 */

T1 PS 1 64 is set to the value of 2, or binary 0b10, left-shifted by T1CON TCKPS POSITION positions, yielding
0b100000. If this is bitwise OR’ed with other constants, you can specify the properties of Timer 1 using
code that is readable without consulting the Reference Manual. For example, you could use the statement

T1CON = T1_ON | T1_PS_1_64 | T1_SOURCE_INT

to turn the timer on, set the prescaler to 1:64, and set the source of the timer to be the internal PBCLK,
while leaving all other bits of the SFR at their default values. Of course you have to read the file timer.h
to know what the available constants are! You might find it easier to consult the Reference Manual.

The definitions of the POSITTION, LENGTH, and MASK constants take up most of the rest of the file. At
the end, some more constants are defined, like below:

#define _ADC10
#define _ADC10_BASE_ADDRESS 0xBF809000
#define _ADC_IRQ 33
#define _ADC_VECTOR 27

The first is merely a flag indicating to other .h and .c files that the 10-bit ADC is present on this PIC32.
The second indicates the first address of 22 consecutive SFRs related to the ADC (see Section 4 of the Data
Sheet). The third and fourth relate to interrupts. The PIC32’s MIPS CPU is capable of being interrupted
by up to 96 different events, such as a change of voltage on an input line or a timer rollover event. Upon
receiving these interrupts, it can call up to 64 different interrupt service routines, each identified by a “vector”
corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33 (out of 0 to
95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63).

Finally, p32mx795f512l.h concludes by including ppic32mx.h, which defines a number of other constants,
again with the intent to make your code more readable.

3.5 Summary

OK, that’s a lot to digest. Don’t worry, you can view the previous few pages as reference material; you don’t
have to memorize them to program the PIC32!

The main point is that the power of your microcontroller comes from its peripherals, and you interact
with your peripherals by reading from and writing to their SFRs. The SFRs are at fixed locations in the
virtual memory map, and the linker knows these locations because of the processor.o file. And you have
access to these locations through conveniently-named variables like TRISA defined in p32mx795f512l.h.
These variable names correspond to the SFR names in the Data Sheet and Reference Manual, which will
always be your definitive sources for information about using the peripherals.

To summarize some of what you’ve learned:

• Your PIC32 is preloaded with a bootloader. The bootloader has set the configuration bits in DEVCFG0
to DEVCFG3 to turn the 8 MHz resonator input into an 80 MHz SYSCLK and PBCLK and a 48 MHz
USBCLK, among other things. The bootloader begins at the PIC32’s hardware reset VA 0xBFC00000,
so it is the first thing to execute after every reset. If you are not requesting to bootload a new program,
the bootloader jumps to the program that you have already installed at 0xBD006100. Otherwise, the
bootloader receives the new .hex file over its serial port and writes the new program to flash at
0xBD006100.

• All programs are linked with pic32mx/lib/crt0.o in producing the final .hex file. This C run-time
startup code executes first, doing things like initializing global variables in RAM, before jumping to
the main function.

10

• The included file pic32mx/include/proc/p32mx795f512l.h contains variable definitions that allow
us to read from and write to the SFRs. The VAs of these SFR variable names are set by
pic32mx/lib/proc/32MX795F512L/processor.o.

• We haven’t made use of any of the peripheral library functions yet, but when we do, all of the functions
are available for use by linking with the function object codes in the library
pic32mx/lib/libmchp peripheral 32MX795F512L.a. These functions are compiled from the source
code in pic32-libs/peripheral. Header files with function prototypes, constants, and macros for the
peripheral library are available in pic32mx/include.

• The linker script pic32mx/lib/ldscripts/elfpic32mx.x combines with the procdefs.ld file sitting
in your project’s main directory to give rules to the linker as to the VA memory segments where it is
allowed to place your program instructions and data RAM.

11

Chapter 5

Space and Time

5.1 Timing

The PIC32 has 6 timers: a 32-bit core timer, associated with the MIPS CPU, and five 16-bit peripheral
timers. We can use the core timer for pure timing operations, leaving the much-more-flexible peripheral
timers available for other tasks. The core timer increments for every two ticks of SYSCLK, meaning that
the 32-bit counter is incrementing 40 million times per second. Here are some commands you can use:

unsigned int elapsed;

WriteCoreTimer(0); // set the counter value to 0
... // some code you want to time

elapsed = ReadCoreTimer(); // read the core timer

You can use the core timer to check how long it takes certain operations to execute, particularly interrupt
service routines.

5.2 Space

The linker allocates VA memory to hold all your program instructions and global variables. The rest of the
memory is allocated to the heap and the stack. The heap is memory set aside to hold dynamic memory
allocation, as used by malloc and calloc, for example. These functions allow you to declare a variable size
of memory for an array, for example, while the program is running. By default, MPLAB X assumes you will
not use dynamic memory allocation and sets the heap size to zero, so a call to malloc would generate an
error.

The stack holds local variables used by functions. When a function is called, space in the stack is
allocated for its variables. When the function exits, the local variables are thrown away, and the space is
made available again.1

Here are things you can try to better understand the size of the hex code you are generating:

• Right-click your project name, select Properties, choose the pic32-gcc category, and add --verbose
to the “Additional options” textbox. Now when you build, you’ll see some information on where the
compiler is looking for include files, etc.

• Right-click your project name, select Properties, choose the pic32-ld>Diagnostics, and type -verbose
in the “Additional options” textbox to see information on the linking process.

• Right-click your project name, select Properties, choose the pic32-ld>Diagnostics, and type program.map
in the “Generate map file” text box. Then open up the program.map file in MPLAB X, or any text
editor, to see information on the memory used by your program.

1Assuming the variable has not been declared with the static keyword.

1

• Choose Window>Output>Disassembly Listing File to see the assembly code version of your program.
If you used library functions, you will see a lot of lines of code that you didn’t write!

• If you like to dynamically allocate memory using calloc or malloc, you have to allocate memory to
the heap, which is allocated zero memory by default. Right-click your project name, select Properties,
choose pic32-ld, and set the heap size in bytes.

5.3 Navigating

In your program, if you want to see where certain constants, functions, or variable names are defined in
the Microchip library, you can right-click on the symbol in your program, select Navigate, and go to the
declaration of the symbol. This may be easier than rooting around in the Microchip directories manually.

5.4 Other Utilities

In the top level bin directory of the mplabc32 installation, there are a number of utilities you can run from
the command line to inspect various files that are not readable by a text editor. Examples are

• pic32-ar: Make library archives and examine them. For example, if you want to see what files are in
the math library libm.a, you can do pic32-ar -t libm.a to see the listing of .o object files, then
extract one of them using pic32-ar -x libm.a sqrt32.o, for example. Now you have that .o file,
which you can examine using pic32-objdump.

• pic32-objdump: Try pic32-objdump -D sqrt32.o to see the assembly language listing. Or do it on
processor.o to see all the VAs for the SFRs.

• pic32-nm: Another way to see symbols from an object file is pic32-nm processor.o.

• pic32-readelf: Use pic32-readelf -a yourprogram.X.production.elf to see variable and func-
tion names and the virtual addresses they were assigned.

2

Chapter 6

Interrupts

Say your PIC32 is attending to some mundane task when an important event occurs. For example, the user
has pressed a button. We want the PIC32 to respond immediately. To do so, we have this event generate
an interrupt, or interrupt request (IRQ), which interrupts the program and sends the CPU to execute some
other code, called the interrupt service routine (or ISR). Once this code has completed, the CPU returns to
its original task.

Interrupts are a key concept in real-time control, and they can arise from many different events. This
page provides a summary of PIC32 interrupt handling.

6.1 Overview

Interrupts can be generated by the processor core, peripherals, and external inputs. Example events include

• a digital input changing its value,

• information arriving on a communication port,

• the completion of some task a PIC32 peripheral was executing in parallel with the CPU, and

• the elapsing of a specified amount of time.

As an example, to guarantee performance in real-time control applications, we must read the sensors and
calculate new control signals at a known fixed rate. For a robot arm, a common control loop frequency is 1
kHz. So we would configure one of the PIC32’s counter/timers to use the peripheral bus clock as input, and
choose prescaler and period register values so that the counter rolls over every 1 ms. This roll-over “event”
generates the interrupt that calls our feedback control ISR, which reads sensors and produces output. In
this case, we would have to make sure that our control ISR is efficient code that always executes in less than
1 ms. (For example, you could use the core timer to measure the time between entering and exiting the
ISR.)

Say the PIC32 is currently controlling the robot arm to hold steady in a particular position. It then
receives new information from the user, who asks the arm to move to a new location. This new information
also generates an interrupt, and the corresponding ISR reads in the information and stores it in global
variables representing the desired state. These desired states are used in the feedback control ISR.

So what happens if we are in the middle of executing the control ISR and a communication interrupt is
generated? Or if we are in the middle of the communication ISR and a control interrupt is generated? We
must make a choice about which has higher priority. If a high priority interrupt occurs while a low priority
ISR is executing, the CPU will jump to the high priority ISR, complete it, and then return to finish the low
priority ISR. If a low priority interrupt occurs while a high priority ISR is executing, the low priority ISR
will wait patiently until the high priority ISR is finished executing. When it is finished, the CPU jumps to
the low priority ISR.

1

In our example, communication could be slow, taking several milliseconds to complete, and we might not
have a guarantee as to the duration. To ensure the stability of the robot arm, we would probably choose the
control interrupt to have higher priority than the communication interrupt.

Every time an interrupt is generated, the CPU must save the contents of the internal CPU registers,
called the “context,” to data RAM. It then uses its registers in the execution of the ISR. After the ISR
completes, it copies the context from RAM back to its registers, so that it can start where it left off before
the interrupt. The copying of register data back and forth is called “context save and restore.” If interrupts
are piling up (one ISR interrupts another which has interrupted another, etc., before any of them finish),
then the PIC32 could potentially run out of RAM, causing a “stack overflow” and the program to crash.
These errors can be very difficult to debug, so it is a good idea to ensure that your ISRs execute quickly if
you are using several different interrupt sources.

The address of the ISR in virtual memory is derived from the interrupt vector, and the PIC32 can support
up to 64 unique interrupt vectors (and therefore 64 ISRs) arising from up to 96 different interrupt request
sources (IRQs). If all interrupts jump to the same ISR, the PIC32 is in “single vector mode.” This is the
default on reset. If each interrupt has its own ISR, the PIC32 is in “multi-vector mode.” This is the way we
will typically use it.

6.2 Details

Before doing anything else, the SFR INTCON (Interrupt Control) should be set to multi-vector mode, since
we want the flexibility to call different ISRs depending on the interrupt condition. This is done by setting
bit 12 of INTCON to 1, as we will see below. We refer to this bit as INTCON�12�.

The CPU jumps to an ISR when three conditions are satisfied: (1) the interrupt has been enabled by
setting a bit in the SFR IECx (Interrupt Enable Control) to 1; (2) an interrupt has been requested by
setting the same bit in the SFR IFSx (Interrupt Flag Status) to 1; and (3) the priority of the interrupt, as
represented in the SFR IPCy (Interrupt Priority Register), is greater than the current priority of the CPU.
If the first two conditions are satisfied, but not the third, the interrupt remains pending until the CPU’s
priority drops lower.

The “x” in the IECx and IFSx SFRs above can be 0, 1, or 2, allowing up to (3 registers) × (32 bits) =
96 interrupt sources. The “y” in IPCy takes values 0. . . 15, and each of the IPCy registers can contain the
priority level for four different interrupt vectors, i.e., up to (16 registers) × (four vectors per register) = 64
vectors. Each of the 64 priority levels is represented by five bits, three indicating the priority (taking values
0 to 7) and two indicating the subpriority (taking values 0 to 3). Thus each IPCy has 20 relevant bits: five
for each of the four vectors.

As an example, an input change notification (CN) pin can generate an interrupt when its voltage changes.
The change notification’s interrupt has x=1 and y=6, so information about this interrupt is stored in IFS1,
IEC1, and IPC6. Specifically, IFS1�0� is its interrupt flag status bit, IEC1�0� is its interrupt enable bit,
IPC6�20:18� are the three priority bits for its interrupt vector, and IPC0�17:16� are its two subpriority bits.

The list of interrupt sources and their corresponding bit locations are given in the table below, reproduced
from Section 7 of the Data Sheet.

2

3

4

Since there are more IRQs than interrupt vectors, some IRQs share the same vector. For example, IRQs
26, 27, and 28, each corresponding to UART1 events, all share the same vector.

When the CPU has multiple interrupts pending, it first processes the one whose vector has the highest
priority level. (Note priorities are associated with the vectors, not the IRQs.) If there is more than one at the
same highest priority level, the CPU first processes the one with the higher subpriority. If interrupts have
the same priority and subpriority, then their priority is resolved using the “natural order priority” table given
above. (In this case, however, lower IRQ numbers have higher priority!) Finally, if the CPU is currently
processing an IRQ at a particular priority level, and it receives an IRQ request at the same priority, it will
complete its current ISR before servicing the other IRQ, regardless of its subpriority.

If the priority of a vector is zero, then the interrupt is disabled. We have seven enabled priority levels.
The last thing any ISR should do is clear the interrupt flag (clear the appropriate bit of IFSx to zero),

indicating that the interrupt has been serviced and the CPU is free to return to the the program state when
the ISR was called.

When setting up an interrupt, you will set a bit in IECx to 1 indicating the interrupt is enabled (all
bits are set to zero upon reset) and assign values to the associated IPCy priority bits. (These priority bits
default to zero upon reset, which will keep the interrupt disabled.) As mentioned above, you will also clear
the IFSx bit at the end of the ISR. You will generally never write code setting the IFSx bit to 1. Instead,
when you set up the device that generates the interrupt (e.g., a UART or counter/timer), you will indicate
that it should set the interrupt flag upon the appropriate event.

The Shadow Register Set The PIC32’s CPU provides an internal shadow register set, which is a full
extra set of registers. You can take advantage of this extra register set to avoid the time needed for context
save and restore. When processing an ISR using the SRS, the CPU simply switches to this extra set of
internal registers. When it finishes the ISR, it switches back to its original register set, without needing to
save and restore them. We will see an example of this in Section 6.3. ISRs using the SRS obviously should
not be interrupted by other ISRs wishing to use the SRS! Typically there is no need to use the SRS unless
you care about timing down to the microsecond or so.

In single vector mode, you can choose the value of INTCON�16� to either use or not use the SRS. I don’t
know why you wouldn’t always use it.

5

Special Function Registers

Apart from the SFRs INTCON, IECx, IFSx, and IPCy, described above, two other SFRs are relevant
to interrupts: INTSTAT (Interrupt Status) and TPTMR (Temporal Proximity Timer). The SFRs are
summarized below.

INTCON (Interrupt Control) Determines whether the interrupt controller operates in single vector or
multi-vector mode. Also determines whether the five external interrupt pins INT0 . . . INT4 generate
an interrupt on a rising edge or a falling edge.

INTSTAT (Interrupt Status) Read-only: information on the address and priority level of the latest IRQ
given to the CPU when in single vector mode. We will not need it.

IPTMR (Interrupt Proximity Timer Register) A timer can be used to implement a delay to queue
up interrupt requests before presenting them to the CPU. For example, upon receiving an interrupt
request, the timer starts counting clock cycles, queuing up any subsequent interrupt requests, until
IPTMR cycles have passed. By default, this timer is turned off by INTCON, and you will typically
leave it that way.

IFSx (Interrupt Flag Status) Three 32-bit SFRs for up to 96 interrupt sources (x = 0, 1, or 2). A 1
indicates an interrupt has been requested, a 0 indicates no interrupt is requested.

IECx (Interrupt Enable Control) Three 32-bit SFRs for up to 96 interrupt sources (x = 0, 1, or 2). A
1 enables the interrupt, a 0 disables it.

IPCy (Interrupt Priority Control) Sixteen registers, each with 5 bit priority values for 4 different in-
terrupt vectors (64 vectors total).

In this chapter only, we reproduce some register information from the PIC32 Reference Manual. You
should always consult the appropriate sections from the Reference Manual and the Data Sheet for more
information.

• INTCON�16�, known as SS0: 1 = use the shadow register set when in single vector mode, 0 = do not
use

• INTCON�12�, known as MVEC: 1 = interrupt controller in multi-vector mode, 0 = single vector mode

• INTCON�10:8�, known as TPC�2:0�: control bits for the IPTMR (we leave it at the default of 000 =
IPTMR off)

• INTCON�x�, for x = 0 to 4, known as INTxEP: 1 = external interrupt pin x triggers on a rising edge,
0 = triggers on a falling edge

6

1 = interrupt has been requested, 0 = no interrupt has been requested. See Section 7 of the Data Sheet, or
the table reproduced earlier, for the the register number x in IFSx, and the bit number, for a particular IRQ
source. For example, the change notification interrupt request bit is IFS1�0�.

1 = interrupt has been enabled so that requests are allowed, 0 = interrupt is disabled. See Section 7 of the
Data Sheet, or the table reproduced earlier, for the the register number x in IECx, and the bit number, for
a particular IRQ source. For example, the change notification interrupt enable bit is IEC1�0�.

7

Each IPCy, y = 0 to 15, contains five priority and subpriority bits for each of four different interrupt
vectors. For example, consulting the table, we see that IPC6�20:18� are the three priority bits for the change
notification interrupt vector, and IPC6�17:16� are its two subpriority bits.

6.3 Sample Code

You need to do three things to use an interrupt:

1. Write an ISR, with an assigned priority level, that ends by clearing the appropriate interrupt flag
IFSx�bit�.

2. Configure the device that you want to generate interrupts, so that it will generate an interrupt on the
appropriate event. The priority that you set in this configuration must match the priority in the ISR.

3. Configure the CPU to receive interrupts in multi-vector mode and enable the CPU to process interrupts.

The last of these involves commands to the CPU, so we will use the peripheral library commands; there is
no version based on manipulating SFRs.

Sometimes it is necessary to disable interrupts. You can achieve this by

INTDisableInterrupts();

You might do this when you are reconfiguring interrupt behavior, for example, so you don’t get a spurious
interrupt while you are making the change.

6.3.1 Core Timer Interrupt

Let’s toggle a digital output once a second based on an interrupt from the CPU’s core timer. To do this, we
place a value in the CPU’s CP0 COMPARE register, and whenever the core timer counter value is equal to
CP0 COMPARE, an interrupt is generated. Since the core timer runs at half the frequency of the system
clock, we set CP0 COMPARE to 40,000,000 to toggle the digital output once per second.

To make the effect visible, we will toggle pin RA5, which corresponds to LED2 on the NU32 board. Let’s
go ahead and use priority level 7 to use the shadow register set.

Code Sample 6.1. A core timer interrupt using the shadow register set.

8

// toggle a digital out at a fixed interval using a core timer interrupt

#include <plib.h>

#define CORE_TICKS 40000000 // 40 M ticks per second

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) {
LATAINV = 0x20; // invert pin RA5 only
WriteCoreTimer(0); // set core timer counter to 0
_CP0_SET_COMPARE(CORE_TICKS); // must set CP0_COMPARE again after interrupt
INTClearFlag(_CORE_TIMER_IRQ); // clear the interrupt flag

}

void main(void) {
TRISACLR = 0x30; // pins RA4 and RA5 are outputs

mConfigIntCoreTimer(CT_INT_ON | CT_INT_PRIOR_7); // enable CT interrupts with IPL7
_CP0_SET_COMPARE(CORE_TICKS); // CP0_COMPARE register set to 40 M

INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); // set CPU for multi-vector interrupts
INTEnableInterrupts(); // set CPU to be able to receive interrupts

WriteCoreTimer(0); // set core timer counter to 0

while(1); // infinite loop
}

Following our three major steps in using an interrupt, we have

Step 1. The ISR.

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) {
// ...
INTClearFlag(_CORE_TIMER_IRQ); // clear the interrupt flag

}

We are allowed to call our ISR whatever we want, and in this example we call it CoreTimerISR. The ISR
syntax is Microchip-specific (not a C standard) and tells the compiler and linker that this function should
be treated as an interrupt handler. The two arguments to this syntax are the interrupt vector for the core
timer CORE TIMER VECTOR (defined as 0 in p32mx795f512l.h, which agrees with the table) and the interrupt
priority level. The interrupt priority level is specified using the syntax IPLnSRS or IPLnSOFT, where n is 1 to
7, SRS indicates that the shadow register set should be used, and SOFT indicates that software context save
and restore should be used. Use IPL7SRS if you’d like to use the shadow register set, as in this example1,
and IPLnSOFT otherwise, where you would typically choose n to be 1 to 6. You don’t specify subpriority in
defining the ISR; that’s for the setting up of the device that generates the interrupt, next.

Note that the last task in the ISR is to clear the interrupt flag, CORE TIMER IRQ, again defined in
p32mx795f512l.h.

Step 2. Configuring the core timer to interrupt.

mConfigIntCoreTimer(CT_INT_ON | CT_INT_PRIOR_7); // enable CT interrupts with IPL7
_CP0_SET_COMPARE(CORE_TICKS); // CP0_COMPARE register set to 40 M

1The interrupt priority level that uses the shadow register set is actually defined by DEVCFG3, but this defaults to 7 for us.

9

The “m” in mConfigIntCoreTimer indicates that it is a macro, not a function, and it is defined in
pic32mx/include/peripheral/timer.h. It clears the interrupt flag IFS0�0�, writes the priority and subpri-
ority to IPC0�4:2� and IPC0�1:0�, and enables the core timer interrupt at IEC0�0�. In this example, we did
not specify a subpriority (the default is OK for us). The second line sets the core timer’s CP0 COMPARE
value so that an interrupt is generated when the core timer counter reaches CORE TICKS.

Step 3. Configure the CPU to receive multi-vector interrupts and tell the CPU to accept

interrupt requests.

INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); // set CPU for multiple ISRs
INTEnableInterrupts(); // set CPU to be able to receive interrupts

The first line tells the CPU to enter multi-vector interrupt mode and sets INTCON�12�. (The other argument
option is INT SYSTEM CONFIG SINGLE VECTOR.) The second line sets the appropriate bit in a CPU register
so that the CPU begins to accept interrupts.

6.3.2 External Interrupt

What does the following program do?

Code Sample 6.2.

#include <plib.h>

void __ISR(_EXTERNAL_0_VECTOR, IPL2SOFT) CoreTimerISR(void) {
LATA = 0x00;
WriteCoreTimer(0);
while(ReadCoreTimer()<10000000);
LATA = 0x30;
IFS0CLR = 1<<3;

}

void main(void) {
TRISACLR = 0x30;
INTCONSET = 1;
IEC0SET = 1<<3;
IPC0 = 9<<24;
IFS0bits.INT0IF = 0;
INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);
INTEnableInterrupts();
while(1);

}

10

