ME 333: Introduction to Mechatronics

The Final Project

Electronic submission due before Thursday 11:00 a.m. on March 15th

In the final project, you will implement a DC motor controller with an inner current control loop and an
outer motion control loop, as seen in Figure 14.7 of the notes. The inner loop will execute at 5 kHz, and each
cycle you will measure the actual motor current using a current sensing resistor, the MAX9918 current-sense
amplifier and RC low-pass filter, and your ADC; compare the actual current to the desired current (set by
the motion controller); and update the duty cycle of the PWM signal to the TB6612 H-bridge, to try to get
the actual current to better match the desired current. The outer motion control loop will execute at 250 Hz,
and each cycle you will read the motor’s encoder count using a dsPIC which is specifically programmed to
count encoder counts and to send the count to your PIC32 via SPI communication. The motion controller
commands a current, which the current controller tries to provide. The goal of the motion controller is to
keep the motor position error close to zero.

You will communicate with your PIC32 using a Processing app. This will allow you to set controller
gains, load desired motion trajectories onto your PIC32, read back the results of executed trajectories for
plotting, etc. At the end of this document you will find a sample session that shows you how to use the
Processing app, as well as a list of commands that are available to you. We provide you with PIC32 C code
and the Processing app to give you basic initial functionality.

Your job is to modify and use this code to implement effective trajectory control of the DC motor. You
may also extend the code to achieve control of the stepper motor and RC servo, too.

Assignment

Answer the questions listed in blue.

Understanding the PIC32 Control Program The PIC32 Control Program is split across several files.
The structure of the program is as follows:

main.c This file is the entry point of the project where your main function resides. When the PIC restarts,
the main function will initialize any peripherals used in the project and then sit in an infinite while
loop processing your commands sent from your computer. This file is also where your motion control
loop and current control loop ISRs are. Depending on the command you send from your computer
these loops will either collect data and return or actively try to control your DC motor to track a
desired trajectory.

MyCommands.c and MyCommands.h These two files implement the simple text-based protocol that
you will be using to interact with the PIC. If you wanted to add new commands or edit the behavior of
existing commands, then you should make changes to these two files and the main function in main.c.
We recommend that if you want to change the values of your global variables, then you should modify
the functions SetCommand and GetCommand. If you want to add a new behavior to the system, then
you should modify ExecCommand. If you want to send back your own custom set of data to save on
your computer, then you should modify SaveCommand. When adding a new command, you should add
the command name to MyCommands.h.

MyData.h You should place all global variables in MyData.h. This way your C files can access all of your
global variables from one header file. In MyData.h, change AUTHOR to your name.

MyLibrary.c and MyLibrary.h These files contain useful functions for reading in data from the PIC
peripherals or manipulating global variables. Functions that perform useful services, but don’t naturally
fit in main.c or in MyCommands.c should be placed here. You should also feel free to use your library
files instead.

The most important global variable in the program is mode. The commands you send from your computer can
be grouped into two major categories —commands that read or write a set of global variables or commands
that change the PIC’s execution mode. A mode can execute a preprogrammed behavior, like current tuning,
or do nothing. There are three modes, defined in MyData.h, that the PIC can be in and the ISRs always
react to whatever value is stored in mode. The three implemented modes are:

DO_NOTHING The desired current is set to 0 A and the ISRs do not execute any control code. Both
ISRs return before reaching their respective control laws.

TUNE_CURRENT When the PIC enters this mode, the current control ISR is forced to track a square
wave. After collecting data on the control law’s performance, the PIC goes back to doing nothing
(i.e., mode = DO_NOTHING). The current reference and actual values are stored at 5 kHz in a “high
resolution” buffer located in the struct variable fast_current in MyData.h.

TRACK_POSITION When the PIC enters this mode, the motion control ISR tracks a reference trajectory
that has been loaded into the struct variable encoder. When the last point on the trajectory has been
tracked, the program forces the motor to hold its final position and the mode switches to HOLD_POSITION
until a command that changes the mode, like an exec command, is sent from your computer.

HOLD_POSITION At the end of a TRACK_POSITION motion, the PIC switches to this mode to hold the
motor at the final position. Additionally, this mode can be executed from your computer to tell the
PIC to hold the motor at its current position.

There are a few examples in our program of where we change the operating mode of the PIC, but we
recommend that you change and initialize any new modes in ExecCommand.

Another important part of the PIC program is data collection. Data is collected in both ISRs. In the
motion ISR routine, encoder counts and “low resolution” current data is collected at 250 Hz. These are
stored in the struct variables encoder and current. In the higher frequency current ISR, “high resolution”
current data is stored in fast_current. The data stored in all of these variables are overwritten every time
you issue a new exec command, so make sure to save any data from a previous run before executing a new
exec command.

Add a new command get mode to the PIC program that returns the current mode the PIC is
in. In your written response, only submit a copy of the conditional statement you wrote in
GetCommand. Here are a few hints of how you should go about this problem. You should first play around
with the built-in commands found in the User’s Manual section at the end of this document and read over
the PIC program starting with main.c. This will give you an idea of how commands sent from Processing
are executed on the PIC. When you are familiar with the program, modify GetCommand in MyCommands.c
by adding an extra conditional statement that prints the current mode if the command issued was “mode.”
Before modifying GetCommand, you should add a new macro in MyCommands.h, call it MODE, and assign
MODE the appropriate string sub-level command. You should place the new macro below the definition of
ITUNE. Compile your program and verify that get mode works.

Trapezoidal Motion Profiles In industrial motor control, a common type of rest-to-rest motor trajectory
is called a trapezoidal motion. These motions get their name from the fact that the velocity is trapezoidal:
it starts at zero, ramps up linearly (constant acceleration) until a coasting velocity is reached, then ramps
down linearly (constant deceleration) until the motor comes to a stop at the desired position.

We have provided you with the Matlab function move to generate trapezoidal motions as reference
trajectories for DC motor control. The form of the command is

motion = move(positionlist, timelist, ramptimelist, holdtime);

where positionlist is a list of positions to move to, timelist is the list of times each move should take,
ramptimelist is the list of times it takes to ramp up to coast velocity (and ramp down to zero velocity)
during each move, and holdtime is the amount of time the motor should hold its position at the beginning
and end. The function move returns a list of motor encoder counts, in floats, as a function of the sample
time index. You can plot this motion in Matlab or save it to a file so you can send it to your PIC32 as a
reference trajectory. The command

motion = move(396,500,150,100);
means that the motor should move from its initial configuration 396 encoder counts (or 1 revolution) in 500
sample time ticks, with 150 of those being for ramping up the velocity and 150 of those for ramping down.
The motor holds its position for 100 ticks before and after the move.

The command

motion = move([99 -99 0], [200 200 200],[75 50 25],100);
means that the motor should move to position 99, -99, and then back to 0, with each move taking 200 sample
ticks, and the ramp up/down times of 75, 50, and 25, respectively.

These sample trajectories are shown in Figure 1. Also included is a step function, for testing your
controller’s step response.

Give the Matlab command that creates a two-step motion trajectory that rotates the motor
half a revolution in the “positive” direction, followed by a full revolution in the “negative”
direction. Each move should take 250 samples (1 second). The hold time should be 200
samples, and the ramp-up/down times should be 50 and 100 samples for the two moves,
respectively. Turn in the position plot of the trajectory.

(a) Trapezoidal motion from 0 to 396 encoder counts (1 revolution), taking 500 sample ticks of time, with 150 ticks to
ramp up to full speed (and to ramp down to zero), and 100 ticks at rest at the beginning and end. Position
and velocity plots:

motion = move(396,500,150,100);

encoder counts

encoder counts/sample tick

sample ticks sample ticks
plot(motion) plot(diff(motion))

(b) Three concatenated trapezoidal moves, to 99 encoder counts (1/4 revolution), -99, and back to 0. Each move is performed
in 200 sample ticks, and the first move has 75 ticks to ramp up and down, the second has 50 ticks, and the third has 25 ticks.
Tack on 100 ticks at rest at beginning and end. Position and velocity plots:

motion = move([99 -99 0],[200 200 200],[75 50 25],100);

&

encoder counts
encoder counts/sample tick

sample ticks sample ticks

plot (motion) plot(diff (motion))

(c) A trapezoidal motion that is essentially a 1/4 revolution step function with 500 tick hold at beginning and end:

motion = move(99,0,0,500);

encoder counts

o 20 w00 500 500 000 T

sample ticks

plot (motion)

Figure 1: (a) A simple trapezoidal move from 0 to 396 encoder counts. (b) Three trapezoidal moves
concatenated. (¢) An approximate step function, for testing step responses.

Calibrating the Current Sensor We have suggested a circuit to measure the current through your DC
motor. Before you can use it properly, you have to calibrate it, so you know how ADC counts map to actual
current. To do this, you will use your battery pack and a resistor to get a constant, known current that you
can measure with both your multimeter and ADC.

For the case of no current across the current-sensing resistor, read the ADC counts. Now place a resistor
in series with the current-sensing resistor and use your 6 V battery pack to create a current through the
resistors. Measure the current with your multimeter. Now measure it with your ADC, to find the current
in ADC counts. Now reverse the current and do the same thing. At the end of this process, you have three
data points:

Actual current
(measured in amps by multimeter) | ADC counts

0 an
I1 a1
.[2 a2

Using these three data points, find the best linear fit I = ma + b, where m is the slope and b is the intercept.
You will use this slope and intercept in your PIC32 program, so you can interpret your ADC sensor counts
in terms of amps.

Best results are obtained if you use a resistor of low resistance, maybe 10 ohms or so. But your resistors
are only 1/4 W resistors, and if you tried to put 6 V across a 10 ohm 1/4 W resistor, it would need to
dissipate (6 V)2/(10 Q) = 3.6 W; it would burn up immediately! So you either need to use a power resistor
capable of dissipating lots of power, or use a higher resistance (like 330 ohms) and live with some inaccuracy
in your linear fit.

Turn in your table of three data points and your best fit to the slope and intercept of the
line I(a). Modify the macro function ADC_TO_AMPS() in MyData.h, so that it accurately reflects
the numbers used in your calibration, otherwise your current readings will not make sense.

Current Control As described in the class notes (and as you used in the phototransistor control home-
work), PI control is an effective strategy for current control. You will test your PI current control gains by
attempting to track a square wave current reference while the motor is attached to the H-bridge. (The PI
gains should be tuned in the presence of the motor’s resistance and inductance.) The current reference is
a 62.5 Hz 50% duty cycle square wave that swings from +0.1 A to —0.1 A. Your PI gains are chosen well
when the actual current (measured by the ADC and using your calibration from the previous step) closely
follows the desired current waveform.

Turn in your P and I control gains and a plot of the performance of your current controller
tracking the reference current waveform.

Motion Control With the current sensor calibration and the current control PI gains tuned, you have
completed the inner loop current controller. Now it’s on to the motion controller.

The class notes describe different options for motion control, particularly PID control for feedback control,
or feedforward plus feedback for even better control. Experiment with your gains for PID control, and if you
implement feedforward control, you can use the results of your previous motor characterization. Test your
control law on

e the motions indicated in Figure 1(a) and (c), and

e the motor bar starting in the vertical position, with two different configurations: no weights on the
bar (balanced load), and weights attached at the bottom end of the bar (unbalanced load).

You should choose a control law that gives good tracking response for (at least) the case of a balanced load.

Describe the control law you used and the gains you chose. Include plots of the motor
tracking the position reference trajectories of Figure 1(a) and (c), for both types of loads.
(This is a total of four plots.)

Extra Credit

Here are some things you can do to receive extra credit:

Moving average filter for velocity. A PID feedback controller uses a velocity estimate to implement the
D (derivative) term. You can estimate the velocity by (pos(k)-pos(k-1))/Ts. But this could give
you very jumpy (noisy) velocity estimates, since the encoder resolution is so low. You could implement
a MAF to smooth this velocity estimate. For example, perhaps you would average the velocity over
the last 10 samples to get a smoother estimate.

Feedforward control. When the load is unbalanced, a feedforward controller, as described in the class
notes, can give you much better performance by compensating for the unbalanced load. A simple
feedforward control could simply apply the current that balances the gravitational torque at any angle.
(Thus the feedforward controller would need to measure the motor angle.) Then feedback current is
added on top of the feedforward term.

RC servo position control. You can modify the RC servo code that will be put on the wiki at
http://hades.mech.northwestern.edu/index.php/NU32: _Driving RC_servo_motors

to work with your program. Give the user a new Processing app command set servo pos, where pos
sets the angle of the RC servo output shaft.

Stepper motor velocity control. You can modify the stepper motor code that will be put on the wiki at
http://hades.mech.northwestern.edu/index.php/NU32: _Driving_a_stepper_motor

Give the user a new Processing app command set stepper vel, where vel sets the angular velocity
of the stepper motor.

Knob input device. Give the user a new Processing app command track. This tells the PIC32 to drive
the RC servo output shaft angle to track the encoder count on the DC motor. Then the user can turn
the DC motor’s output shaft, and the RC servo output angle follows along, matching the angle of the
DC motor.

Other ideas! Feel free to come up with a different idea of a command you could provide to the user.

What to Turn In

For the final project turn in all of the C source code and header files associated with the project and your
typed responses. Your writeup must answer all of the questions in blue. If you did any of the extra credit,
please be sure to give a short description of the extra functionality that you added beyond what was expected
of the project. All of these files should be placed in a zip folder called lastname_firstname_final.zip.

Sample Session

You’ve written your control law on the PIC and now you want to test it on a trajectory. Figure 2 shows
a sample session of a typical run. In the Terminal app data folder we provide two position trajectories,
trajl.txt (which corresponds to Figure 1(a)) and step.txt (which corresponds to Figure 1(c)), which you
can load onto the PIC as test trajectories to follow. The following will show you how to create your own
trajectories in Matlab and load them onto your PIC. In Matlab, generate the curve in Figure 1(b) and save
the motion as the text file traj2.txt. The command in Matlab is

motion = move([99 -99 0], [200 200 200],[75 50 25],100);
fid = fopen(’traj2.txt’,’w’);

fprintf (fid, ’%1.2f\r\n’ ,motion);

fclose(fid);

http://hades.mech.northwestern.edu/index.php/NU32:_Driving_RC_servo_motors
http://hades.mech.northwestern.edu/index.php/NU32:_Driving_a_stepper_motor

»¢ list ports
[0] #deudttylSE]
[fdeustylSED
»» open port 1
SdewdHyUSBO opened.
¥+ fet domo O 20
»» get encoder
< OC Motor -- encoder: 93 (counts) 245343 (degrees)
»» get current
< Motor Current = 567 counts (DA21ZEE A)
»» get demo O 0
+» set cgains 1 2
¥ eHed ifune
<¢ Erecuting current tuning.
¢ done current funing
¥+ saue hifreq mygitune tt
saued zignal to File: myitunetat.
»» st mgains 3 4
+» get mgains
<¢ Motion controller gains: Kp = 3000000, Ki= 4000000
w» load fraj2.tut
<¢ loaded 803 zamples into reference signal.
¥ exec traj
<< Tracking trajectory.
<« dane tracking trajectory
¥+ saue lofreq mygtraj2 tet
saued zignal to file: mytraj2tat

Figure 2: A sample session.

Then move the resulting file, traj2.txt, into the Terminal/data folder. For convenience, it might be easier to
simply have move.m in the Terminal/data folder. If you wanted to plot how well you did, you can read the
name of the text file you saved into Matlab using Matlab’s load command, which you used in the previous
homework assignment. For example, at the end of the sample PIC session in Figure 2 we saved the trajectory
data to a text file named mydata.txt. We would read the data into Matlab with load(’mydata.txt’).

In the example sample session you may have noticed the use of angle brackets, >>. When you start com-
municating with the PIC, the direction of the angle brackets tell you the direction of data flow. Commands
prepended with right angle brackets, >>, denote a command sent to the PIC, while left angle brackets <<
represent the PIC’s response.

User’s Manual

list ports List the available ports on your computer. The index number n of the port is printed inside
brackets to the left of the port name.

open port n Opens the port associated with the index number n. You should open the serial port associated
with output from UART1 from the PIC. If you do not know the index number call list ports first.

close port Closes the current serial port.

set dcmo dir duty To manually set the H-bridge direction and duty cycle. dir is 0 or 1 to specify the
rotation direction. duty is an integer 0 to 100 to specify the duty cycle of PWM. These should be saved in
the global variables.

set cgains pgain igain To set the PI gains for the current controller. pgain and igain are used in the
current control law. These should be saved in global variables.

set mgains gainl gain2 ... To set the gains for your motion control law. It’s up to you which values to

send over. These should be saved in global variables.

set encoder val To set the current position as being val (usually zero).

get cgains Writes back the PIC32’s current gains (stored in globals).

get mgains Writes back the PIC32’s motion control gains (stored in globals).
get encoder Writes back the encoder value.

get current Writes back the measured current.

get dcmo Writes back the direction and duty cycle (stored in globals).

get version Writes back the software version information.

exec itune Executes current tuning. A 62.5 Hz 4/-0.1 amps amplitude square wave is the reference current.
The reference and actual current will be sent back, so that you can examine the performance of your current
controller using the save hifreq ... command. The first column will contain the reference trajectory and
the second column is the actual current read from the current sensor. Both columns are in amps stored on
the PIC at 5 kHz.

exec traj Executes the most recently stored trajectory. The data can be sent from the PIC and stored
on your computer with a save lofreq ... command. The file will have four columns worth of data. The
first column is the reference encoder value in encoder counts, the second column is the actual encoder value
in encoder counts, the third column is the reference current in amps, and the fourth column is the actual
current value in amps. All of these values were stored on the PIC at 250 Hz.

exec disable Turns off the DC motor by setting the two H-bridge pins to low, and setting the H-bridge
PWM duty cycle to zero.

exec hold Feedback controller holds the DC motor at its current position.

load file Loads a desired trajectory stored in file. The file must be located in the Processing app’s data
directory.

save data file Saves data stored on the PIC to your computer with name file. The file should save itself
in the same directory as the Processing app. The possible values for data are hifreq, which will send back
a hi-res version of the reference and actual current data stored at 5 kHz and lofreq, which will send back
encoder reference and actual data and current reference and actual data, in that order, taken at 250 Hz.

