1. Give a formula, in terms of \( n \), for the number of degrees of freedom of a rigid body in \( n \)-dimensional space for arbitrary \( n \). Indicate how many of those dof are translational and how many are rotational. Describe the topology of the C-space (e.g., for \( n = 2 \), the topology is \( \mathbb{R}^2 \times S^1 \)).

2. Refer to Figure 1.
   (i) The four-legged walking robot in Figure 1(a) consists of a body and four SUR legs (Spherical-Universal-Revolute, with the spherical joint at the connection between the body and the leg). The feet are points. What is the dimension of the robot’s C-space (the number of degrees of freedom) when no feet are on the ground? One foot on the ground? Two? Three? All four? (The feet are allowed to slip on the ground.)
   (ii) Answer the same questions as in (i) but with each leg a 3R mechanism.
   (iii) Now turn the robot upside down and call it a hand with four fingers as in Figure 1(b). Each finger is a 3R open chain. The palm of the hand is fixed in space, so it has zero degrees of freedom. Imagine the hand is grasping an object, with all fingertips in contact. If you assume the point fingertips don’t slip on the object, how many degrees of freedom does the system have?
   (iv) Now assume the fingertips of the hand are spheres, not points, as in Figure 1(c). The four fingertips can roll on the object, but cannot slip or break contact. How many degrees of freedom does the system have? Comment on the dimension of the space of feasible velocities of a single fingertip relative to the object vs. the number of numbers needed to represent the configuration of a single fingertip relative to the object (the number of degrees of freedom). (Hint: You may want to experiment by rolling a ball around on a tabletop to get some intuition.)

3. What are the C-spaces of the following systems?
   (i) The rigid chassis of a car-like mobile robot driving on a spherical asteroid.
   (ii) A free-flying spacecraft with a 6R arm mounted on it, no joint limits.

4. Assume each of your arms has seven degrees of freedom. You are driving a car, your torso is stationary, and both hands are firmly grasping the steering wheel. How many degrees of freedom does the arms-plus-steering wheel system have? Explain your answer.

5. A differential-drive mobile robot has two wheels which do not steer but whose speeds can be controlled independently. The robot goes forward and backward by spinning the wheels in the same direction at the
same speed, and it turns by spinning the wheels at different speeds. The configuration of the robot is given by five variables: the \((x, y)\) location of the point halfway between the wheels, the heading direction \(\theta\) of the robot’s chassis relative to the \(x\)-axis of the world frame, and the rotation angles \(\phi_1\) and \(\phi_2\) of the two wheels relative to the axis through the centers of the wheels. Assume that the radius of each wheel is \(r\) and the distance between the wheels is \(2d\).

(i) Let \(q = (x, y, \theta, \phi_1, \phi_2)\) be the configuration of the robot. If the two control inputs are the angular velocities of the wheels \(\omega_1\) and \(\omega_2\), write the vector differential equation \(\dot{q} = g_1(q)\omega_1 + g_2(q)\omega_2\). The vector fields \(g_1(q)\) and \(g_2(q)\) are called control vector fields, expressing how the system moves when the respective control is applied.

(ii) Write the corresponding Pfaffian constraints \(A(q)\dot{q} = 0\) for this system.

(iii) How many of the constraints are holonomic and how many nonholonomic?

6. While the C-space is a representation of all possible configurations of a system, the task space or workspace often refers to just the C-space of the end-effector of a robot, not the whole robot. Consider your arm, from the shoulder to the palm. If we call your palm the end-effector, what is the task space? What is its dimension?

7. In terms of the \(\hat{x}\)-\(\hat{y}\)-\(\hat{z}\) coordinates of a fixed space frame \(\{s\}\), the frame \(\{a\}\) has an \(\hat{x}_a\)-axis pointing in the direction \((0, 0, 1)\) and a \(\hat{y}_a\)-axis pointing in the direction \((-1, 0, 0)\), and the frame \(\{b\}\) has an \(\hat{x}_b\)-axis pointing in the direction \((1, 0, 0)\) and a \(\hat{y}_b\)-axis pointing in the direction \((0, 0, -1)\).

(i) Give your best hand drawing of the three frames. Draw them at different locations so they are easy to see.

(ii) Write the rotation matrices \(R_{sa}\) and \(R_{sb}\).

(iii) Given \(R_{sb}\), how do you calculate \(R_{sb}^{-1}\) without using a matrix inverse? Write \(R_{sb}^{-1}\) and verify its correctness with your drawing.

(iv) Given \(R_{sa}\) and \(R_{sb}\), how do you calculate \(R_{ab}\) (again no matrix inverses)? Compute the answer and verify its correctness with your drawing.
(v) $R_{ab}$ is obtained by rotating the frame \{s\} about its $\hat{x}_s$-axis by $-90^\circ$. Let $R = R_{ab}$. Calculate $R_1 = R_{sa}R$, and think of $R_{sa}$ as a representation of an orientation, $R$ as a rotation of $R_{sa}$, and $R_1$ as the new orientation after performing the rotation. Does the new orientation $R_1$ correspond to rotating $R_{sa}$ by $-90^\circ$ about the world-fixed $\hat{x}_s$-axis or the body-fixed $\hat{x}_a$-axis? Now calculate $R_2 = RR_{sa}$. Does the new orientation $R_2$ correspond to rotating $R_{sa}$ by $-90^\circ$ about the world-fixed $\hat{x}_s$-axis or the body-fixed $\hat{x}_a$-axis?

(vi) Use $R_{ab}$ to change the representation of the point $p_b = (3, 2, 1)$ (in \{b\} coordinates) to \{s\} coordinates.

(vii) Choose a point $p$ represented by $p_s = (3, 2, 1)$ in \{s\} coordinates. Calculate $p' = R_{ab}p_s$ and $p'' = R_{ab}^TP_a$. For each operation, did we change coordinates (from the \{s\} frame to \{b\}) or transform of the location of the point without changing the reference frame of the representation?

8. (This exercise is similar to the previous one, but now using transformation matrices instead of rotation matrices.) In terms of the $\hat{x}-\hat{y}-\hat{z}$ coordinates of a fixed space frame \{s\}, the frame \{a\} has an $\hat{x}_a$-axis pointing in the direction $(0, 0, 1)$ and a $\hat{y}_a$-axis pointing in the direction $(-1, 0, 0)$, and the frame \{b\} has an $\hat{x}_b$-axis pointing in the direction $(1, 0, 0)$ and a $\hat{y}_b$-axis pointing in the direction $(0, 0, -1)$. The origin of \{a\} is at $(0,3,0)$ in \{s\} and the origin of \{b\} is at $(2,0,0)$.

This exercise deals with some of the major uses of a rotation matrix: to represent the orientation of a frame relative to another, to change coordinate frames of the representation of a frame or point, and to rotate a frame or point.

(i) Give your best hand drawing of the three frames.

(ii) Write the rotation matrices $R_{sa}$ and $R_{ab}$.

(iii) Given $T_{ab}$, how do you calculate $T_{ab}^{-1}$ without using a matrix inverse? Write $T_{ab}^{-1}$ and verify its correctness with your drawing.

(iv) Given $T_{sa}$ and $T_{ab}$, how do you calculate $T_{ab}$ (again no matrix inverses)? Compute the answer and verify its correctness with your drawing.

(v) Let $T = T_{ab}$. Calculate $T_1 = T_{sa}T$. Does $T_1$ correspond to a body-fixed or world-fixed transformation of $T_{sa}$, or neither? Now calculate $T_2 = TT_{sa}$. Does $T_2$ correspond to a body-fixed or world-fixed transformation of $T_{sa}$, or neither?

(vi) Use $T_{ab}$ to change the representation of the point $p_b = (1, 2, 3)$ (in \{b\} coordinates) to \{s\} coordinates.

(vii) Choose a point $p$ represented by $p_s = (1, 2, 3)$ in \{s\} coordinates. Calculate $p' = T_{ab}p_s$ and $p'' = T_{ab}^{-1}p_s$. For each operation, did we change coordinates (from the \{s\} frame to \{b\}) or transform of the location of the point without changing the reference frame of the representation?

9. Find the exponential coordinates $\hat{\omega} \theta \in \mathbb{R}^3$ corresponding to the $SO(3)$ matrix

$$
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
10. Assume that the space frame angular velocity is $\omega_s = (1, 2, 3)$ for a moving body with frame \{b\} at

$$R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

in the world frame \{s\}. Calculate the angular velocity $\omega_b$ in \{b\}.