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1 Introduction

Although planar rigid-body impact has been studied for
centuries, and is discussed in almost all dynamics texts, there
are still unresolved difficulties:

® There are two competing laws governing the coefficients
of restitution: Newton’s law and Poisson’s hypothesis. When
do they give the same system behavior? Is one law preferable
to the other?

s Some methods, for instance in Whittaker (1944), can result
in an increase in total energy, violating basic energy conser-
vation principles (Keller 1986; Brach 1984). How can we avoid
such anomalies?

This paper resolves these difficulties by adopting Poisson’s
hypothesis of restitution and by using Routh’s method (Routh
1860) to determine the resultant impulsive forces. The Routh—
Poisson analysis gives an impulse consistent with Coulomb’s
law, without an increase in total energy. An interesting divi-
dend is that the Routh-Poisson analysis admits a new class of
impact, called tangential impact, defined as an impact with
zero initial approach velocity.

Routh’s method is a simple graphical technique for analyzing
frictional impact in the plane. Using Coulomb’s law of dry
friction, and either Newton or Poisson restitution, Routh’s
method readily predicts the total impulse. We can also use
Routh’s method to distinguish several different types of con-
tact, to identify cases where relative sliding either ceases or
reverses, and to identify the cases where Newton and Poisson
restitution differ in their predictions. Although this geometrical
approach is restricted to planar problems, Keller (1986) de-
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This paper presents an analysis of a two-dimensional rigid-body collision with dry
friction. We use Routh’s graphical method to describe an impact process and to
determine the frictional impulse. We classify the possible modes of impact, and
derive analytical expressions for impulse, using both Poisson’s and Newton’s models
of restitution. We also address a new class of impacts, tangential impact, with zero
initial approach velocity. Some methods for rigid-body impact violate energy con-
servation principles, yielding solutions that increase system energy during an impact.
To avoid such anomalies, we show that Poisson’s hypothesis should be used, rather
than Newton’s law of restitution. In addition, correct identification of the contact
mode of impact is essential.

velops an analytical method that extends the fundamental con-
cepts to three-dimensional problems. Han and Gilmore (1989)
apply the same approach to multiple-contact impact.

The choice between Newton’s law of restitution, and Pois-
son’s hypothesis, is particularly important. Newton prescribes
the final normal velocity, while Poisson prescribes the normal
forces applied during restitution, a difference which leads Kil-
mister and Reeve (1966) to argue that Poisson’s hypothesis is
philosophically superior to Newton’s law. In the simplest cases,
the two methods give identical results, but generally they do
not. Although Newton’s law of restitution is the more com-
monly applied method, we show that the violations of energy
principles can be attributed to Newton’s law of restitution.

Section 2 reviews the classical impact model of collision and
the definitions of restitution and friction. Section 3 describes
the equations of motion and introduces Routh’s graphical tech-
nique. Sections 3.4 and 3.5 identify the different classes of
impact and derive solutions for each class. Sections 4 and 5
derive expressions for system energy change and compare New-
ton’s law of restitution and Poisson’s hypothesis. Section 6
presents some examples using both Routh-Poisson and Routh-
Newton. Finally, Section 7 contains a few concluding remarks.
Some of results were previously presented in (Wang, 1986;
Wang and Mason, 1987; Mason and Wang, 1988).

2 Rigid-Body Model of Collision

The sudden, short-term encounter between two colliding
bodies is a very complicated event. The major characteristics
are the very brief duration and the large magnitudes of the
forces generated. Other phenomena include vibration waves
propagating through the bodies, local deformations produced
in the vicinity of the contact area, and frictional and plastic
dissipation of mechanical energy. The complexity of the proc-
ess leads to serious difficulties in the mathematical analysis of
the problem. By introducing the rigid-body assumption and
Coulomb’s law, we simplify the analysis while retaining a fair
approximation of a significant class of real systems.
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Fig. 1 Two coliiding rigid bodies in a plane. The normal impulse and
tangential impulse acting on the body 1 are shown as P, and P,.

For the collision of two rigid bodies (Fig. 1), the primary
simplifying assumption is a postulated deformation history.
This deformation history is assumed to consist of two pe-
riods: the period of compression and the period of restitu-
tion. The compression period extends from the instant of
contact to the point of maximum compression, when the ap-
proach velocity becomes zero. The period of restitution then
begins, lasting to the instant of separation. The time interval
of the contact is assumed to be very small and the interaction
forces are high. These postulates permit some further as-
sumptions. (1) The collision process is instantaneous, and lin-
ear and angular velocities of the bodies have discontinuous
changes. (2) Interactive forces are impulsive, and all other finite
forces are negligible. (3) No displacements occur during the
collision.

2.1 Coefficient of Restitution. During the brief period
of contact, a normal force F acts along the common normal
between the two bodies.! Since the contact duration is suffi-
ciently small, the contact force may be represented by Dirac’s
delta function.

P=lim SF(t)dt. 1)
Al—-0
It is called impulse and is defined to be finite.

The magnitude of the normal impulse consists of two parts,
P, and P,, corresponding to the periods of compression and
restitution, respectively. The total impulse is the sum of the
two parts

P,=P.+P, @)

If we adopt Poisson’s hypothesis (Beer and Johnston, 1984),
it is further postulated that the ratio of P, to P, is determined,
P,

e P 3)
This constant e is called the coefficient of restitution, and is
assumed to depend solely on the materials of the bodies (Gold-
smith, 1960). The coefficient describes the degree of plasticity
of the collision, and its value is always between zero and one.
When e = 0, the impact is said to be perfectly plastic; when
e = 1, it is said to be perfectly elastic.

Poisson’s hypothesis immediately suggests a model based
on a hysteretic spring or other passive elements. The coefficient
of restitution may, however, be put in another form, known
as Newton’s law of restitution, which cannot be modeled in
this way. Newton’s law of restitution states

e=~—— )
'If one of the contact points is a vertex, the common normal is defined as

the normal of the other body’s surface. We do not consider the case of two
vertices in contact.
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where C™ and C* are the normal components of relative ve-
locity at the contact point before and after the collision, re-
spectively.

Both Poisson’s hypothesis and Newton’s law have been
adopted by the scientific community to describe the energy
dissipation. However, they do not in general produce consistent
solutions. In this paper, we discuss both definitions and their
solutions of impact. Section 5 shows that Newton’s law can
lead to violation of energy conservation.

3 The Two-Dimensional Collision Problem

This section analyzes the process of two planar rigid bodies
with friction. First, we present Routh’s method. Then, we use
Routh’s method to classify the different kinds of impact and
derive solutions for each class.

3.1 Equations of Motion. When two bodies collide, im-
pulses in the normal direction P, and in the tangential direction
P, at the contact point are produced. These impulses will change
the object’s motions. In the coordinate system shown in Fig.
1, the initial translational and rotational velocity components
of the first object are Xxi,, V1o, and 8,,. The origin of the
coordinates is chosen at the point of contact. The coordinate
axes x and y are in the directions tangential and normal to the
contact surfaces. At any instant during the impact, the motion
of the object is governed by the linear and angular impulse-
momentum laws, which provide the following relations:

my(x,—Xx1,) =Py (5)
ml()}l")}lo)zpy (6)
mlp%(gl_elo)=PxYI_Pyxl @)

where m,; is the mass, p; is the radius of gyration of inertia,
and x; and y, are the coordinates of the center of mass for the
first object.

The velocity of the point of contact on the first object con-
sists of two components, x. and y,.. These two components
are given by

Xie=X1+ 0y, ®

Yie=y1—01xy. ®

Similarly, we obtain the dynamic equations for the second
object

My Xy~ X30) = — Py (10)
My(Y2= Y2) = — P, (11)
Map3 (85— 050) = —Py,+ P, (12)
X20= X2+ 02, (13)
Yae=Y2— 0%, (14)

where m, is the mass, p, is the radius of gyration of inertia,
and x; and y, are the coordinates of the center of mass for the
second object.

From Egs. (8), (9), (13), and (14), the tangential component
of relative velocity of the points in contact is called sliding
velocity and is given as

S=-’.Clc").“20
=().51+91)’1)—(552+é2)’2) (15)

and the normal component of relative velocity is called
compression velocity and is given as

C:)}l(‘_yZC
=(¥1=0x1) — (2- 6:3). (16)

Substituting the dynamic Egs. (5)-(7) and (10)-(12) into these
kinematic equations, we find that

S=SO+B1PX—B3P},
C=C,~BP,+B,P,

amn
(18)
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where

1 1 2 2
+)’1+)’2

B =—+— 19
Ymy my mipt maps a9
[ x3
By=—+4—+— 425 (20)
my  my; nypy Mo
XY Xo)o
B;= - 21
el mand @b
and
So:)‘flco“x?.co
= (Xio+ 01091) = (X20+ 02072) (22)
Co_':}.’lco").)zco
= (J1o= 010X1) = (P20— 020%2). (23)

Note that S, and C, are the initial values of sliding and compres-
sion velocities. B;, B,, and B; are constants, dependent on the
geometry and mass properties of the system, with B; and B,
always positive. In all cases, BB, > B2, which will be useful
in later sections.

3.2 Restitution and Friction. The algebraic Egs. (17) and
(18) give the relative velocity (S, C) as a function of total
accumulated impulse (P, P,). Routh’s method also requires
that we express the laws governing restitution and friction in
terms of the total accumulated impulse (P, P,).

3.2.1 Coefficient of Restitution. By assumption, object
deformation consists of two phases: compression and resti-
tution. At the end of the compression phase, the normal com-
ponent of the relative velocity of the points in contact is zero
(C = 0). Substituting Eq. (18), we obtain a linear relationship
between the impulse components at maximum compression:

Co~ B3P+ ByP,=0. (24)

In the (P, P,) space, this equation defines a straight line
called the line of maximum compression.

After the point of maximum compression, the restitution
phase begins, lasting to the end of the collision. Under New-
ton’s law, the collision ends when the normal velocity Cis —e
times the initial normal velocity Cop. That is

C(1p)
_ =N
C(t,)

where ¢, is the initial collision time and ¢ is the termination
time. Substituting this into Eq. (24), we obtain

(1+e)C,—BsP,+B,Py=0 (t=1). (26)

Again, we obtain a line in the (P,, P,) space, called the line
of termination. When using Newton’s law of restitution, the
total impulse will always fall on the line of termination.

But under Poisson’s hypothesis, the collision ends when the
total normal impulse P, is (1 +e) times that value of P, at
maximum compression. That is

P y(tf) -
Py(t)
where 7, denotes the instant of maximum compression. Unlike

Newtonian restitution, Poisson’s hypothesis does not yield a
line of termination.

3.2.2 Coefficient of Friction. Friction causes an impul-
sive force in the tangential direction at the contact point. We
adopt Coulomb’s law to determine the force of dry friction.
The law states that the magnitude of the (tangential) frictional
force F, depends only on the magnitude of the normal force
F, and the materials in contact, and its direction is always
opposite that of relative tangential motion. This law is com-
monly expressed as

e= 25)

l+e @n
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Fig.2 Impact process diagram. The lines of sticking, lines of maximum

compression, and lines of termination are labeled, respectively, with S,
C, and T. The lines of limiting friction and the line of reversed limiting
friction are labeled with L and RF, respectively. The point P is the rep-
resentative point.

|F,| <uF, (28)

where p is the coefficient of friction and is an empirical con-
stant. In this paper, we do not distinguish between static and
dynamic friction and we take the values for corresponding
noncollision processes.

Coulomb’s law includes two different cases: sticking and
sliding. Since differential impulse is force, these cases are ex-
pressed as

tdP,! < udP, for sticking
ldP,\ = udP, for sliding.

In the sticking case, the tangential component of relative
velocity vanishes (S = 0). Again we can substitute Eq. (17},
obtaining a linear relation between the components of impulse
(P, Py,

S,+ B.P,— B3P, =0. (29)

This gives a straight line in the (P, Py) space, called the /ine
of sticking.

3.3 Impact Process Diagram. To solve an impact prob-
lem, we employ Routh’s graphical technique to determine the
total impulse. Figure 2 shows an example. We construct im-
pulse space with coordinate axes Py and P,, and plot the ac-
cumulating impulse P. When the impact begins, P is at the
origin. During the impact, the normal impulse P, increases
monotonically until the restitution law, which could be either
Poisson or Newton, says that the impact is finished.

P, also accumulates, in accordance with Coulomb’s law.
Assuming initial sliding, the impulse increases along a line of

limiting friction (Fig. 2(b)) satisfying Coulomb’s law:
P,= —usP, (30)

where s is the sign of the initial sliding velocity S,,

S, .
= f 0.
s IS, if §,#
If the point reaches the line of sticking, the sliding will end
and the frictional impulse will exhibit a change. There are two
possibilities:

1 If the friction necessary to prevent sliding is less than the
limiting friction, the point P will follow the line of sticking
until the process terminates (Fig. 2(c¢)).

2 If the limiting friction is too small to prevent sliding, then
P will cross the line of sticking, and the tangential force will
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Fig. 3 All possible cases of meeting impact in the (P,, P,) space. The
lines of sticking and maximum compression are labeled S and C.

change sign, so that P now travels along the line of reversed
limiting friction given by (Fig. 2 (d))

dPX:ﬁSuPy.

Eventually, point P will cross the line of maximum compres-
sion. A perfectly plastic collision terminates at that point. By
Poisson’s hypothesis, a perfectly elastic collision continues
until the normal impulse P, is doubled. Intermediate cases,
with coefficients of restitution between 0 and 1, terminate when
the normal impulse is (1 + e) times the value of P, obtained
at maximum compression. By Newton’s law of restitution, the
collision terminates when the point P reaches the line of ter-
mination.

The entire process can be summarized in a few lines. To
recapitulate:

t P moves initially along the line of limiting friction.
2 If P reaches the line of sticking, S = 0, then P switches
to either the line of sticking, or the line of reversed limiting
friction, whichever is steeper.
3 Termination occurs when:

(@) Newton: P reaches the line of termination.

(b) Poisson: P, reaches a value (1 + e) times its value

at the line of maximum compression.

This procedure solves the impact problem by constructing the
total impulse, from which we can immediately determine the
resulting body motions.

3.4 Classes of Impact and Contact Modes. Routh’s pro-
cedure, described above, is a graphical solution of impact
problems. It can also be used to derive an analytic solution of
impact problems. In this section we identify the different cases
that must be considered. In the following section we derive
analytic solutions of impact for each case using both Poisson’s
and Newton’s methods.

3.4.1 Direct and Oblique, Central and Eccentric, Tangen-
tial and Meeting Impacts. Collision problems are classified
first by the locations of the line of sticking and the line of
maximum compression, which depend primarily on the signs
of B;, Sy, and Cy. Figures 3 and 4 show all possible combi-
nations of the linear relationships, and thereby classifies all
possible impacts. Figure 3 takes the case Cy < 0, and plots all

638 / Vol. 59, SEPTEMBER 1992

S, >0 t . 51 c\

Fig. 4 There are two possible cases of tangential impact in the (P,, P)
space, which are labeled “yes.” The lines of sticking and maximum
compression are labeled S and C.

nine combinations for the signs of B, and Sy. The rows indicate
the direction of the sliding velocity while the columns indicate
the impact configuration. There are two special classes. If the
initial sliding velocity is zero (Sy; = 0), the impact is called a
direct impact, represented by the middle row in the figure. If
By = 0, the impact is called a generalized central impact,
represented by the middle column. (Central impact, where the
body centers of mass lie on the contact normal, is subsumed
by generalized central impact.) Impacts which are neither di-
rect, nor generalized central impacts, are called eccentric
oblique impacts.

Figure 4 shows a new class of impacts, which we will call
tangential impacts, which can occur when C, = 0. Previous
work has only considered collisions with finite approach ve-
locities, Cy < 0, which we might term meeting impacts. Perhaps
this reflects a bias towards finite force solutions. Indeed, Kil-
mister and Reeve (1966) even adopt a principle of constraints
stating:

constraints shall be maintained by forces, so long as this is

possible; otherwise, and only otherwise, by impulses.
However, there are problems with zero initial compression
velocity for which only impulsive forces will maintain the kin-
ematic constraints. An example is presented in Section 6. So,
even if we adopt the principle of constraints, tangential col-
lisions are sometimes the only solution available.

Only two of the cases shown in Fig. 4 yield feasible tangential
impacts: So < 0 and B; > 0; or Sy > 0 and B; < 0. In these
two cases, and with a large enough coefficient of friction, the
line of limiting friction passes immediately below the line of
maximum compression, yielding a compressive phase followed
by a restitution phase as in ordinary meeting impacts.

Itis also natural to consider admitting collisions with positive
compression velocities Cy > 0, which we might term parting
impacts. It is possible to view the restitution phase of a meeting
impact as a parting impact, but otherwise we see no necessity
for admitting parting impacts.

3.4.2 Contact Modes. The contact mode can be deter-
mined by a few simple comparisons. We consider the case with
S, < 0 and B; < 0 (Fig. 5). Other cases are similar. In Fig.
S, the line of sticking intersects the line of maximum compres-
sion at point Q and the line of termination at point D. The
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Fig. 5 Three regions in impulse space. In region 1, sticking never oc-
curs; in region 2 and region 3, either a sticking or a reversed sliding
contact occurs.

(P,, P,) space is divided into three regions by the lines OD
and OQ. If the limiting friction line lies in region 1, the impact
will be terminated before the representative point P reaches
the line of sticking. The friction continues the limiting value
throughout the process, so that the objects slide continuously.
In this case Poisson and Newton give identical results, so the
impact terminates at the line of termination.

If the limiting friction line lies in region 2, it reaches the line
. of maximum compression first, then reaches the line of stick-
ing. If the limiting friction line lies in region 3, it reaches the
line of sticking first. In either of regions 2 or 3, after intersecting
with the line of sticking, it either continues sticking until ter-
mination or changes to reversal sliding.

These regions can be used to classify contact modes of im-
pact. For an oblique impact, there are five contact modes: (1)
sliding, (2) sticking in compression phase (C-sticking), (3) stick-
ing in restitution phase (R-sticking), (4) reversed sliding in
compression phase (C-reversed sliding), and (5) reversed sliding
in restitution phase (R-reversed sliding). The classification de-
pends on the values of u, fig, pgs s Pa» and P, given by

p = tana 3H
(1+e)B;C,+ B,S,
Ha=tan Ga= T R O Bss, @2
B;C,+ B,S,
—tan &, 33
ug=tan ¢, B.C.1 B, (33)
B
ps=tan Bs= '—E”j 34)
P,= (B, +suB3)sS, (35)
Py= (pB; +5B3) (— Cp). (36)

The contact modes are summarized in Table 1. Note that the
reversed sliding contact modes require that S,B; > 0.

For a direct impact (S, = 0), the line of sticking passes
through the origin (Fig. 3). Region 2 vanishes and pg and pu,
have the same value as p;. Only two contact modes are possible,
sticking (in compression phase) or sliding. Reversed sliding will
never occur. As discussed by Routh, the representative point
will follow either the line of limiting friction or the line of
sticking throughout the entire process, depending on the fol-
lowing conditions: '

u<lu! for sliding 37
p> lug!l for sticking. (38)

Wang and Mason (1987) and Han and Gilmore (1989) present
similar results.

3.5 Analytical Solutions of Impulse. Once the contact
mode is determined, we can solve for the impulses and object
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Table 1 Contact modes of impact, where p is the friction coefficent
and s is the sign function of S, if S, = 0

p>lugl | g <l
Py> (14 €)P, Sliding
P, < Py < (1+¢€)P, | R-Sticking | R-Reversed Sliding
Py < P, C-Sticking | C-Reversed Sliding

motions. If we define the sign function of initial sliding velocity
S, to be of value one when S, = 0, the resulting impulses for
both direct impact and oblique impact can be expressed in a
unified form.

For Poisson’s method, the impulses are given by contact
mode:

e sliding:
P,=—suP, 39)
&)
P=—(1+e) —— 4
’ (1+e) B, +spBs (40)
e (C-sticking:
ByP,— S,
P =
' B (41)
B,C,+BsS,
P,=—(l+e) — 42
y= = (1+e) s (42)
e R-sticking:
B:P,—S
P =20 43
== (43)
G,
P,=—(l4+e) ——— 44
’ ( e) By +suB; ( )
e C-reversed sliding:
28,
Pe=sp| Py———— 4
X Sﬂ[ y B3+S[.LBl] (45)
1+e 25#3350—\
P,=— S+ 4
’T By—suBs [ °" By+suB, | (46)
¢ R-reversed-sliding:
[ 28
P, = l P [t
sk P g Bl} @7)
G,
P,=—(1 —_—
Y ( +e) B2+S[LB3 (48)
where
So .
f
IS, ] if S,#0
s= 49)
1 if S,=0.

If we use Newton’s law of restitution, the conditions for
contact modes remain the same. However, whether sticking
occurs in the restitution phase or in the compression phase
does not affect the resulting impulses. The impulses are:

e sliding:

Py= —suPy (50)
P,=—(l+e) —— 51
7 ( e) Bz +S‘LLB3 ( )
e sticking (C-sticking or R-sticking):
_ ByS,+ (1+€)CoBs 2

* B\B,— B}
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_ByS,+ (1+e)CoBy
BB, — Bj
e reversed sliding (C-reversed sliding or R-reversed sliding):

P,=

(53)

28,
= P —-— 54
Py Sﬂ[ y B3+S/-‘«Blj| 54
25#3380
P=——1(1 C,+———
’ By —suB; li( +e) O+Bg+S,uBl G3)

where s is defined by Eq. (49).

Note that for sticking (in compression or in restitution) con-
tact, the solutions are independent of the value of the coef-
ficient of friction. Aslong as the friction is sufficient to prevent
sliding, further increases do not matter. These expressions also
appear in Wang (1989). Han and Gilmore (1989) present a
similar analysis.

4 Energy Loss

Since some methods for rigid-body impact violate energy
conservation principles, we develop expressions for the total
energy loss during the impact. Due to the existence of friction
and inelasticity, the system must lose some mechanical energy
during the collision. The change in kinetic energy equals work
done by the impulse. If T, and T, are the kinetic energies of
body 1 and body 2, respectively, then the system energy change
is (Routh 1860),

AT = (T (1) + To(T) ) — (T1 (1) + T2(4))

T,
[PVt Vel (56)

N | =

where, P = [P,, PJ", V. = [S C]7, and V,, = [S, C,}".
Substituting Eqgs. (17) and (18) the energy change is

1
AT=2 (P Bp +2V.P) 57
where
-| BB

-B; B,

Conservation of energy requires that
) AT=0. (58)
This gives a geometrical constraint in the impulse space: The

total impulse must remain within an ellipse.

S Poisson’s Hypothesis Versus Newton’s Law

By comparing the solutions of impulse presented in Section
3.5, we can identify the conditions under which Poisson’s
hypothesis and Newton’s law give the same solution;

1 The collision is a direct impact, where the initial velocities

of the contact points are directly along the common normal

(S, = 0) (Kilmister and Reeve (1966).

2 The collision is a generalized central impact (B; = 0).

3 The surfaces of the bodies are perfectly smooth and fric-
tionless (Beer and Johnston, 1984).

4 The surfaces of the bodies are perfectly plastic (e = 0)

(Wang, 1989).

5 The impact is of sliding contact, if friction between the

bodies exists (Keller, 1986).

Now let us check energy conservation for the two models.
We need examine only the perfect elastic case (e = 1), since
any degree of plasticity will result in more energy loss. Under
Poisson’s hypothesis, an energy gain is impossible, which is
verified by substituting the solutions of Section 3.5 into Eq.
(56) (see Appendix). However, Newton’s law of restitution
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Fig. 6 A rigid rod colliding a frictional surface. In all cases, m = 1,
length d = 1/2, mp® = 1/12, ¢ = 45 deg, and initial angular velocity
= 0.

04 e

-0.66

Fig. 7 Impact process diagram of the falling rod for case 1. Initial
compression velocity C, = —1 and initial sliding velocity S, = 0. L and
L’ denote the lines of limiting friction for p < 0.6 and p > 0.6, respec-
tively.

sometimes produces energy gains. An example is given in the
next section.

From both philosophical and practical points of view, Pois-
son’s hypothesis is preferable to Newton’s law of restitution.
The philosophical reason, as argued by Kilmister and Reeve
(1966), is that Poisson’s hypothesis is expressed as a dynamic
law, rather than as a kinematic constraint. The practical reason
is that Poisson’s hypothesis is consistent with energy conser-
vation. This seems also to be consistent with Routh’s original
work where only Poisson’s method is used.

6 KExamples
This section illustrates our results with the example of a rod

colliding with an immobile object (Fig. 6). This example has
been used on many occasions to illustrate paradoxes in the
mechanics of friction and impact (Goldsmith, 1960; Lotstedt,
1981; Brach, 1989; Erdmann, 1984). We assume point contact
with Coulomb friction. The rod’s initial orientation is § = 45
deg, and the initial angular velocity is zero w(#,) = 0. The
rod has unit mass and unit length (m; = 1, p? = 1/12). Note
that m, — o and mys — wand B; = 2.5, B, = 2.5, By =
1.5, and g, = —0.6.

By varying the initial velocity, we obtain four cases that
illustrate the results of the paper.

Case 1: Direct Impact (C, = —1and S, = 0). Since S,
= 0, this is a direct impact. The impact process diagram is
shown in Fig. 7. From Eqgs. (37) and (38), we find that if p <
0.6, sliding contact occurs and the rod’s tip has a negative
final tangential velocity; otherwise (u > 0.6), sticking contact
occurs and the final tangential tip velocity is zero. These results
agree with those in (Brach, 1989).

Case 2: Reversed Sliding (C, = —1.0and S, = 0.6). If
the initial tangential velocity is 0.6 (Fig. 8), then we will have
reversed sliding for ¢ < 0.6 and sticking for 4 > 0.6. Assuming
the sticking contact, x > 0.6, with Newton’s law of restitution,
thereis a net gain in energy. The impulses and resultant motions
are

P,=0375e¢
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Fig. 8 Impact process diagram of the falling rod for case 2. Initial
compression velocity C, = — 1.0 and initial sliding velocity S, = 0.6.
The ellipse denotes the boundary of the region of energy loss. The line

b toreminadion T

of termination Tis tangent to the ellipse.

P,=0.4+0.0625 e
S=0
C=e
and the energy gain of the system is

1
AT=E 0.625 ¢*—0.4).

Therefore, for all values e > 0.8, the rod gains energy instead
of losing energy. In order to lose energy, the final impulse
must lie within the ellipse plotted in Fig. 8. For e = 1, the rod
gains energy for any p > 0.

The difficulty does not occur if we use Poisson’s hypothesis
instead, giving

P,=0.24¢
P,=0.4(1+e)
S=0
C=0.64 ¢
with a corresponding energy increase

1
AT=5 (0.256 ¢*—0.4)

which is always negative for 0 = e < 1. Poisson’s model
results in both kinematically and dynamically valid solutions.

Brach (1989) uses the same example, with Newton’s law of
restitution, and resolves the increase in energy in a very dif-
ferent manner. He does not treat u (or e) as predetermined
parameters. For this example, he disallows nonzero y, because
it would lead to energy gains.

Case 3: Forward Sliding; Sticking (C, = —1.0and §, =
—1.0). For initial conditions of S, = C, = —1.0, Fig. 9
shows the impact process diagram. The critical values of u are
pa = (31 +e)+5)/(5(1+e)+3)and pu; = 1.0. If p < py, the
tip keeps forward sliding in the collision; if uy < u < 1.0,
sticking in restitution occurs; and if u > 1.0, sticking in
compression occurs.

Case 4: Tangential Impact (C, = 0and S, = —0.2). The
final example involves tangential impact, which was defined
and discussed in Section 3.4. Initially the rod is sliding along
the surface with zero normal velocity. We begin by considering
a finite-force approach to the problem. We also modify the
problem slightly: We introduce a gravitational field. The sur-
prising result is that no solution exists: Every contact force
consistent with Coulomb’s law will violate the kinematic con-
straint. If the contact force were zero, the gravitational force
would accelerate the tip downward. For positive contact forces,
and with p > 1.666, the rod’s physical parameters have been
chosen so that the angular acceleration, accelerating the tip
downward, dominates the linear acceleration, which would
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Fig. 9 Impact process diagram of the falling rod for case 3. Initial
compression velocity C, = ~ 1.0 and initial sliding velocity S, = —-1.0.

L and L’ denote the lines of limiting friction for p < pyand p > pg,
respectively.

Py

0.08

-0.133

Fig. 10 Impact process diagram of the falling rod for case 4. Initial
compression velocity C, = 0 and initial sliding velocity S, = ~0.2

accelerate the tip upward. Mason and Wang (1988) and Wang
(1989) present a more detailed analysis of the problem. Pre-
vious work, neglecting the possibility of an impact solution,
present this example and variations to demonstrate the incon-
sistency of rigid-body mechanics (Lotstedt, 1981; Erdmann,
1984; Beghin, 1923-1924; Klein, 1909; Painleve, 1895; Hamel,
1949).

Now we apply the Routh-Poisson method to derive impulsive
forces. In the impact process diagram (Fig. 10), the line of
maximum compression C passes the origin with an angle S,
= tan"' 1.666. For . > 1.666, an impact solution with sticking
contact exists, and both nonzero tangential and normal im-
pulses are obtained. If u < 1.666, then compression cannot
occur, so impulsive forces will be zero. An impact solution
exists in exactly those cases where the finite solution does not
exist.

How does Newton’s law of restitution relate to tangential
impact? Since the normal velocity is zero, the final velocity
would also be zero, no matter what value for the coefficient
of restitution. Hence, any difference between plastic and elastic
behavior cannot be expressed using Newton’s law.

7 Summary and Conclusion

This paper derives solutions for frictional planar rigid-body
collisions, using Routh’s impact process diagrams, for both
Newtonian and Poisson restitution. We apply the graphical
method of Routh to describe an analytical solution to the
collision problem. The contact mode determines how the body
velocities change during the course of impact. If the contact
mode of impact is not properly identified, solutions sometimes
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violate energy conservation. Using Routh’s method, we char-
acterize all possible contact modes of impact, and then derive
analytical solutions for impulses and motions of the bodies.

An important observation regards the definition of the coef-
ficient of restitution. We have presented solutions using both
Poisson’s hypothesis and Newton’s law of restitution. Pois-
son’s hypothesis, relating the normal impulses during two pos-
tulated phases of compression and restitution, guarantees
energy conservation principles, but Newton’s law of restitu-
tion, the initial and final normal velocities, cannot.
As adynamic law, Poisson’s hypothesis is superior to Newton’s
law of restitution which is an artificial kinematic relationship
and is not always applicable.

There are aiternative methods to resolve the violation of
energy conservation. Rather than blaming the definition of
restitution, it is possible to blame the definition of friction.
Brach (1989) takes this approach, and adopts a coefficient of
friction that is lowered to prevent energy gains, and also to
prevent reversal of tangential tip velocity. In the most extreme
cases, the only value of u that satisfies these constraints is zero.
We view Poisson restitution as preferable to a law that deter-
mines p after the fact. In addition, Poisson’s hypothesis works
nicely with tangential impact. Stronge (1990) proposes an al-
ternative law of restitution which also appears to resolve the
energy conservation problem.

As Routh indicated, the extension of his approach to the
general three-dimensional rigid-body impact problem is not by
any means straightforward. Keller (1986) provides an analytical
extension to three dimensions, and also gives a fundamental
development of the method. However, the simplicity of Routh’s
graphical approach does not extend to three dimensions. No
algebraic relationships in impulse space can be found to de-
scribe limiting friction. Differential descriptions are necessary,
and an analytical solution would be difficult at best.
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APPENDIX

We verify energy conservation for Poisson’s hypothesis for
the perfect elastic case (e = 1). It is useful to note that P, =
0, B, > 0, B, > 0, and BB, — B} > 0. The energy losses are
given by contact mode:

e sliding:
20T = —spP,(S+S,).

Note that S remains the same sign with S, and s(S + S,)
= 0. Therefore, AT < 0.

For the remaining contact modes, if we solve for S, and C,
from the solutions of impulse given in Section 3.5 and sub-
stitute them in Eq. (57), then the energy change is a quadratic
form of variables of impulses (P, P,) can be examined to
determine its sign.

e (C-sticking:

1
20T = —— (B\Py~ B3P,)*<0.
1
e R-sticking:

2AT= — (B\Pi+suByP3).

There are two cases, sB; = 0 (therefore, AT < 0) and sB;
< 0. In the second case, the quadratic form is hyperbolic and
AT =< 0 requires that | P} = ~plpsl P, where u,= — B3/B,
(Table 1). The conditions of the contact mode (Table 1) can
be written as

1
’“SPXZE (u+ lpsDPy and —sPy<uP,.

Since u = Ipgl and p = 1/2(u+ psl) = Vplpsl, itis evident
that within these constraints the energy change AT < 0is true.
¢ C-reversed sliding:

sB
2AT = — [-—3 P— (B3+suBl)PxPy+s;LB3Pi].
u
The conditions for the contact mode are sB; > 0 and p <

lust, where ug = —B3y/B;.
The determinant of the quadratic form is found to be

A=B§[l—i(l+u/lusl)2] =0.

Therefore, AT < 0.
e R-reversed sliding:

B
2AT= — [f-é P+ (B3~S;LBI)PXPy+suB3P§].
s

Considering the conditions sBy > 0and 0 < u < lul, we
found the determinant of the quadratic form to be

1
A:B%[I—Z (1-,;/%!)2] =0

yielding AT < 0.
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