
Chapter 2

Looking Under the Hood: Hardware

Now that we’ve got our first programs running, it’s time to take a look under the hood. We begin with the
PIC32 hardware, then move to the NU32 development board it sits on.

2.1 The PIC32

2.1.1 Pin Functions and Special Function Registers (SFRs)

The PIC32MX795F512L is powered by a supply voltage in the range 2.3 to 3.6 V and features a max clock
frequency of 80 MHz, 512 KB program memory (flash), and 128 KB data memory (RAM). It also features 16
10-bit analog-to-digital input lines (multiplexed to a single analog-to-digital converter, or ADC), many digital
I/O channels, USB 2.0, Ethernet, two CAN modules, five I2C and four SPI synchronous serial communication
modules, six UARTs for RS-232 or RS-485 asynchronous serial communication, five 16-bit counter/timers
(configurable to give two 32-bit timers and one 16-bit timer), five pulse-width modulation outputs, and a
number of pins that can generate interrupts based on external signals, among other features.

To cram so much functionality into 100 pins, many of the pins serve multiple functions. See the pinout
diagram for the PIC32MX795F512L (Figure 2.1). As an example, pin 21 can serve as an analog input, a
comparator input, a change notification input (which can generate an interrupt when an input changes state),
or a digital input or output.

Table 2.1 briefly summarizes some of the pin functions. Some of the most important functions for
embedded control are indicated in bold.

Which function a particular pin actually serves is determined by Special Function Registers (SFRs). Each
SFR is a 32-bit word that sits at some memory address. The values of the SFR bits, 0 or 1, control the
functions of the pins as well as other functions of the PIC32.

Pin 78 in Figure 2.1 can serve as OC4 (output compare 4) or RD3 (digital I/O number 3 on port D).
Let’s say we want to use it as a digital output. We can set the SFRs that control this pin to disable the
OC4 function and to choose the RD3 function as digital output instead of digital input. Looking at the
PIC32MX5xx/6xx/7xx Data Sheet section on Output Compare, we see that the 32-bit SFR named “OC4CON”
determines whether OC4 is enabled or not. Specifically, for bits numbered 0 . . . 31, we see that bit 15 is
responsible for enabling or disabling OC4. We refer to this bit as OC4CONh15i. If it is a 0, OC4 is disabled,
and if it is a 1, OC4 is enabled. So we clear this bit to 0. (Bits can be “cleared to 0,” or simply “cleared” for
short, or “set to 1,” or simply “set” for short.) Now, referring to the I/O Ports section of the Data Sheet, we
see that the input/output direction of Port D is controlled by the SFR TRISD, and bits 0-15 correspond to
RD0-15. Bit 3 of the SFR TRISD, i.e., TRISDh3i, should be cleared to 0 to make RD3 (pin 78) a digital
output.

In fact, according to the Memory Organization section of the Data Sheet, OC4CONh15i is cleared to 0 by
default on reset of the PIC32, so this step was not necessary. On the other hand, TRISDh3i is set to 1 on
reset, making pin 78 a digital input by default. (This is for safety, to make sure the PIC32 does not impose
an unwanted voltage on anything it is connected to on startup.)

We will see SFRs again and again as we learn how to work with the PIC32.

21

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

AERXERR/RG15

VDD

PMD5/RE5

PMD6/RE6

PMD7/RE7

T2CK/RC1

T3CK/AC2TX/RC2

T4CK/AC2RX/RC3

T5CK/SDI1/RC4

ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6

ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG7

ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8

MCLR

ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/RG9

VSS

VDD

TMS/RA0

AERXD0/INT1/RE8

AERXD1/INT2/RE9

AN5/C1IN+/VBUSON/CN7/RB5

AN4/C1IN-/CN6/RB4

AN3/C2IN+/CN5/RB3

AN2/C2IN-/CN4/RB2

PGEC1/AN1/CN3/RB1

PGED1/AN0/CN2/RB0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

P
G

E
C

2
/
A

N
6

/
O

C
F

A
/
R

B
6

P
G

E
D

2
/
A

N
7

/
R

B
7

V
R

E
F

-
/
C

V
R

E
F

-
/
A

E
R

X
D

2
/
P

M
A

7
/
R

A
9

V
R

E
F

+
/
C

V
R

E
F

+
/
A

E
R

X
D

3
/
P

M
A

6
/
R

A
1

0

A
V

D
D

A
V

S
S

A
N

8
/
C

1
O

U
T

/
R

B
8

A
N

9
/
C

2
O

U
T

/
R

B
9

A
N

1
0

/
C

V
R

E
F

O
U

T
/
P

M
A

1
3

/
R

B
1

0

A
N

1
1

/
E

R
X

E
R

R
/
A

E
T

X
E

R
R

/
P

M
A

1
2

/
R

B
1
1

V
S

S

V
D

D

T
C

K
/
R

A
1

A
C

1
T

X
/
S

C
K

4
/
U

5
T

X
/
U

2
R

T
S

/
R

F
1

3

A
C

1
R

X
/
S

S
4

/
U

5
R

X
/
U

2
C

T
S

/
R

F
1

2

A
N

1
2

/
E

R
X

D
0

/
A

E
C

R
S

/
P

M
A

1
1

/
R

B
1

2

A
N

1
3

/
E

R
X

D
1

/
A

E
C

O
L

/
P

M
A

1
0

/
R

B
1

3

A
N

1
4

/
E

R
X

D
2

/
A

E
T

X
D

3
/
P

M
A

L
H

/
P

M
A

1
/
R

B
1

4

A
N

1
5

/
E

R
X

D
3

/
A

E
T

X
D

2
/
O

C
F

B
/
P

M
A

L
L

/
P

M
A

0
/
C

N
1

2
/
R

B
1

5

V
S

S

V
D

D

A
E

T
X

D
0

/
S

S
3

/
U

4
R

X
/
U

1
C

T
S

/
C

N
2

0
/
R

D
1

4

A
E

T
X

D
1

/
S

C
K

3
/
U

4
T

X
/
U

1
R

T
S

/
C

N
2

1
/
R

D
1

5

S
D

A
5

/
S

D
1

4
/
U

2
R

X
/
P

M
A

9
/
C

N
1

7
/
R

F
4

S
C

L
5

/
S

D
O

4
/
U

2
T

X
/
P

M
A

8
/
C

N
1

8
/
R

F
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

VSS

SOSCO/T1CK/CN0/RC14

SOSCI/CN1/RC13

SDO1/OC1/INT0/RD0

EMDC/AEMDC/IC4/PMCS1/PMA14/RD11

SCK1/IC3/PMCS2/PMA15/RD10

SS1/IC2/RD9

RTCC/EMDIO/AEMDIO/IC1/RD8

AETXEN/SDA1/INT4/RA15

AETXCLK/SCL1/INT3/RA14

VSS

OSC2/CLKO/RC15

OSC1/CLKI/RC12

VDD

TDO/RA5

TDI/RA4

SDA2/RA3

SCL2/RA2

D+/RG2

D-/RG3

VUSB

VBUS

SCL3/SDO3/U1TX/RF8

SDA3/SDI3/U1RX/RF2

USBID/RF3

1
0

0

9
9

9
8

9
7

9
6

9
5

9
4

9
3

9
2

9
1

9
0

8
9

8
8

8
7

8
6

8
5

8
4

8
3

8
2

8
1

8
0

7
9

7
8

7
7

7
6

P
M

D
4

/
R

E
4

P
M

D
3

/
R

E
3

P
M

D
2

/
R

E
2

T
R

D
0

/
R

G
1

3

T
R

D
1

/
R

G
1

2

T
R

D
2

/
R

G
1

4

P
M

D
1

/
R

E
1

P
M

D
0

/
R

E
0

T
R

D
3

/
R

A
7

T
R

C
L

K
/
R

A
6

C
2

R
X

/
P

M
D

8
/
R

G
0

C
2

T
X

/
E

T
X

E
R

R
/
P

M
D

9
/
R

G
1

C
1

T
X

/
E

T
X

D
0

/
P

M
D

1
0

/
R

F
1

C
1

R
X

/
E

T
X

D
/
P

M
D

1
1

/
R

F
0

V
D

D

V
C

A
P
/
V

D
D

C
O

R
E

E
T

X
C

L
K

/
P

M
D

1
5

/
C

N
1

6
/
R

D
7

E
T

X
E

N
/
P

M
D

1
4

/
C

N
1

5
/
R

D
6

P
M

R
D

/
C

N
1

4
/
R

D
5

O
C

5
/
P

M
W

R
/
C

N
1

3
/
R

D
4

E
T

X
D

3
/
P

M
D

1
3

/
C

N
1

9
/
R

D
1

3

E
T

X
D

2
/
I
C

5
/
P

M
D

1
2

/
R

D
1

2

O
C

4
/
R

D
3

O
C

3
/
R

D
2

O
C

2
/
R

D
1

PIC32MX775F256L
PIC32MX775F512L
PIC32MX795F512L

Shaded pins are 5 V tolerant

Figure 2.1: The pinout of the PIC32MX795F512L used on the NU32.

2.1.2 PIC32 Architecture

Figure 2.2 is a block diagram of the architecture of the PIC32. Of course there is a CPU, program memory,
and data memory. Perhaps most interesting to us, though, is the plethora of peripherals, which are what
make microcontrollers useful for embedded control. From left to right, top to bottom, these peripherals
consist of PORTA . . . PORTG, which are digital I/O ports; 22 change notification (CN) pins that generate
interrupts when input signals change; five 16-bit counters (which can be used as one 16-bit counter and two
32-bit counters by chaining) that can be used for a variety of counting operations, and timing operations by
counting clock ticks; five pins for output pulse-width modulation (PWM) pulse trains (or “output compare”
OC); five pins for “input capture” (IC) which are used to capture timer values or trigger interrupts on rising
or falling inputs; four SPI and five I2C synchronous serial communication modules; a “parallel master port”
(PMP) for parallel communication; an analog-to-digital converter (ADC) multiplexed to 16 input pins; six
UARTs for asynchronous serial communication (e.g., RS-232, RS-485); a real-time clock and calendar (RTCC)
that can maintain accurate year-month-day-time; and two comparators, each of which determines which of
two analog inputs has a higher voltage.

Note that the peripherals are on two di↵erent buses: one is clocked by the system clock SYSCLK,
and the other is clocked by the peripheral bus clock PBCLK. A third clock, USBCLK, is used for USB

22 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Pin Label Function

ANx (x=0-15) analog-to-digital (ADC) inputs
AVDD, AVSS positive supply and ground reference for ADC
CxIN-, CxIN+, CxOUT
(x=1,2)

comparator negative and positive input and output

CxRX, CxTx (x=1,2) CAN receive and transmit pins
CLKI, CLKO clock input and output (for particular clock modes)
CNx (x=0-21) change notification; voltage changes on these pins can generate interrupts
CVREF-, CVREF+,
CVREFOUT

comparator reference voltage low and high inputs, output

D+, D- USB communication lines
EMUCx, EMUDx (x=1,2) used by an in-circuit emulator (ICE)

ENVREG
enable for on-chip voltage regulator that provides 1.8 V to internal core (on the
NU32 board it is set to VDD to enable the regulator)

ICx (x=1-5) input capture pins for measuring frequencies and pulse widths
INTx (x=0-4) voltage changes on these pins can generate interrupts

MCLR master clear reset pin, resets PIC when low

OCx (x=1-5)
output compare pins, usually used to generate pulse trains (pulse-width modula-
tion) or individual pulses

OCFA, OCFB
fault protection for output compare pins; if a fault occurs, they can be used to
make OC outputs be high impedance (neither high nor low)

OSC1, OSC2 crystal or resonator connections for di↵erent clock modes
PGCx, PGDx (x=1,2) used with in-circuit debugger (ICD)
PMALL, PMALH latch enable for parallel master port
PMAx (x=0-15) parallel master port address
PMDx (x=0-15) parallel master port data
PMENB, PMRD, PMWR enable and read/write strobes for parallel master port
Rxy (x=A-G, y=0-15) digital I/O pins
RTCC real-time clock alarm output

SCLx, SDAx (x=1-5)
I2C serial clock and data input/output for I2C synchronous serial communication
modules

SCKx, SDIx, SDOx
(x=1-4)

serial clock, serial data in, out for SPI synchronous serial communication modules

SS1,SS2 slave select (active low) for SPI communication

TxCK (x=1-5) input pins for counters when counting external pulses
TCK, TDI, TDO, TMS used for JTAG debugging
TRCLK, TRDx (x=0-3) used for instruction trace controller

UxCTS, UxRTS,
UxRX, UxTX (x=1-6)

UART clear to send, request to send, receive input, and transmit output for UART
modules

VDD positive voltage supply for peripheral digital logic and I/O pins (3.3 V on NU32)
VDDCAP capacitor filter for internal 1.8 V regulator when ENVREG enabled
VDDCORE external 1.8 V supply when ENVREG disabled
VREF-, VREF+ can be used as negative and positive limit for ADC
VSS ground for logic and I/O
VBUS monitors USB bus power
VUSB power for USB transceiver
VBUSON output to control supply for VBUS
USBID USB on-the-go (OTG) detect

Table 2.1: Some of the pin functions on the PIC32. Commonly used functions for embedded control are in
bold. See Section 1 of the Data Sheet for more information.

communication. The timing generation block that creates these clock signals and other elements of the
architecture in Figure 2.2 are briefly described below.

23 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

© 2009-2011 Microchip Technology Inc. DS61156G-page 31

PIC32MX5XX/6XX/7XX

1.0 DEVICE OVERVIEW This document contains device-specific information for

PIC32MX5XX/6XX/7XX devices.

Figure 1-1 illustrates a general block diagram of the

core and peripheral modules in the

PIC32MX5XX/6XX/7XX family of devices.

Table 1-1 lists the functions of the various pins shown

in the pinout diagrams.

FIGURE 1-1: BLOCK DIAGRAM(1,2)

Note 1: This data sheet summarizes the features

of the PIC32MX5XX/6XX/7XX family of

devices. It is not intended to be a

comprehensive reference source. To

complement the information in this data

sheet, refer to the related section of the

“PIC32 Family Reference Manual”, which

is available from the Microchip web site

(www.microchip.com/PIC32).

2: Some registers and associated bits

described in this section may not be

available on all devices. Refer to

Section 4.0 “Memory Organization” in

this data sheet for device-specific register

and bit information.

Note 1: Some features are not available on all device variants.

2: BOR functionality is provided when the on-board voltage regulator is enabled.

UART1-6

Comparators

PORTA

PORTD

PORTE

PORTF

PORTG

PORTB

CN1-22

JTAG
Priority

D
M

A
C

IC
D

MIPS32® M4K®

IS DS

EJTAG INT

Bus Matrix

Prefetch

Data RAM
Peripheral Bridge

128

128-bit Wide

F
la

s
h

 32

 32 32

 32 32

P
e

ri
p
h

e
ra

l
B

u
s
 C

lo
c
k
e

d
 b

y
 P

B
C

L
K

Program Flash Memory

C
o
n

tr
o

lle
r

 32

 Module

 32 32

Interrupt
ControllerBSCAN

PORTC

PMP

I2C1-5

SPI1-4

IC1-5

PWM
OC1-5

OSC1/CLKI
OSC2/CLKO

VDD, VSS

Timing
Generation

MCLR

Power-up
Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

Brown-out
Reset

Precision

Reference
Band Gap

FRC/LPRC
Oscillators

Regulator
Voltage

VCAP/VCORE

OSC/SOSC
Oscillators

PLL

Dividers

SYSCLK

PBCLK

Peripheral Bus Clocked by SYSCLK

U
S

B

PLL-USB
USBCLK

 32

RTCC

10-bit ADC

Timer1-5

 32

 32

C
A

N
1

,
C

A
N

2

E
T

H
E

R
N

E
T

 32 32

CPU Core

Figure 2.2: The PIC32MX5XX/6XX/7XX architecture.

CPU The central processing unit runs the whole show. It fetches program instructions over its “instruction
side” (IS) bus, reads in data over its “data side” (DS) bus, executes the instructions, and writes out the
results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz, meaning it can execute one
instruction every 12.5 nanoseconds. The CPU is capable of multiplying a 32-bit integer by a 16-bit integer
in one cycle, or a 32-bit integer by a 32-bit integer in two cycles. There is no floating point unit (FPU), so
floating point math is carried out in a series of steps in software, meaning floating point operations are much
slower than integer math.

The CPU also communicates with the interrupt controller, described below.

The CPU is based on the MIPS32 R� M4K R� microprocessor core licensed from Imagination Technologies.
The CPU operates at 1.8 V (provided by a voltage regulator internal to the PIC32, as it’s used on the NU32
board).

24 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Bus Matrix The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program memory
(flash), data memory (RAM), or SFRs. The memory map is discussed in Section 2.1.3.

Interrupt Controller The job of the interrupt controller is to present “interrupt requests” to the CPU.
An interrupt request (IRQ) may be generated by a variety of sources, such as a changing input on a change
notification pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request, it
will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function defined in the
program. After completing the ISR, program control returns to where it was suspended. Interrupts are an
extremely important concept in embedded control.

Memory: Program Flash and Data RAM The PIC32 has two types of memory: flash and RAM.
Flash is generally more plentiful on PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512L),
nonvolatile (meaning that its contents are preserved when powered o↵, unlike RAM), but slower to read and
write than RAM. Your program is stored in flash memory and your temporary data is stored in RAM. When
you power cycle your PIC32, your program is still there but your data in RAM is lost.1

Because flash is slow, with a max speed of 30 MHz for the PIC32MX795F512L, reading a program
instruction from flash may take three CPU cycles when operating at 80 MHz (see Electrical Characteristics
in the Data Sheet). One job of the prefetch cache module (below) is to minimize or eliminate the need for
the CPU to wait around for program instructions to load.

Prefetch Cache Module You might be familiar with the term cache from your web browser. Your
browser’s cache stores recent documents or pages you have accessed over the web, so the next time you
request them, your browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program instructions, which are
likely to be executed again soon (as in a program loop), and, in linear code with no branches, it can even run
ahead of the current instruction and predictively prefetch future instructions into the cache. In both cases,
the goal is to have the next instruction requested by the CPU already in the cache. When the CPU requests
an instruction, the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss, the slower load
from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding the delays
due to slow flash access. The module can cache all instructions in small program loops, so that flash memory
does not have to be accessed while executing the loop. For linear code, the 128-bit wide data path between
the prefetch module and flash memory allows the prefetch module to run ahead of execution despite the slow
flash load times.

The prefetch cache module can also store constant data.

Clocks and Timing Generation There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK.
USBCLK is a 48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum frequency
of 80 MHz, adjustable all the way down to 0 Hz. Higher frequency means more calculations per second but
higher power usage, approximately proportional to frequency. PBCLK is used by a number of the peripherals,
and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8. You might want to set PBCLK’s
frequency lower than SYSCLK’s if you want to save power. If PBCLK’s frequency is less than SYSCLK’s,
then programs with back-to-back peripheral operations will cause the CPU to wait cycles before issuing the
second peripheral command to ensure that the first one has completed.

All clocks are derived either from an oscillator internal to the PIC32 or an external resonator or oscillator
provided by the user. High-speed operation requires an external circuit, so the NU32 provides an external
8 MHz resonator as a clock source. The NU32 software sets the PIC32’s configuration bits (see Section 2.1.4)
to use a phase-locked loop (PLL) on the PIC32 to multiply this frequency by a factor of 10, generating a
SYSCLK of 80 MHz. The PBCLK is set to the same frequency. The USBCLK is also derived from the
8 MHz resonator by a PLL multiplying the frequency by 6.

1It is also possible to store program instructions in RAM, and to store data in flash, but we set that aside for now.

25 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Digital Input and Output A digital I/O pin configured as an input can be used to detect whether the
input voltage is low or high. On the NU32, the PIC32 is powered by 3.3 V, so voltages close to 0 V are
considered low and those close to 3.3 V are considered high. Some input pins can tolerate up to 5.5 V, while
voltages over 3.3 V on other pins could damage the PIC32 (see Figure 2.1 for the pins that can tolerate
5.5 V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin can also
be configured as open drain. In this configuration, the pin is connected by an external pull-up resistor to a
voltage of up to 5.5 V. This allows the pin’s output transistor to either sink current (to pull the voltage down
to 0 V) or turn o↵ (allowing the voltage to be pulled up as high as 5.5 V). This increases the range of output
voltages the pin can produce.

Counter/Timers The PIC32 has five 16-bit counters. Each can count from 0 up to 216 � 1, or any preset
value less than 216 � 1 that we choose, before rolling over. Counters can be configured to count external
events, such as pulses on a TxCK pin, or internal events, like PBCLK ticks. In the latter case, we refer to the
counter as a timer. The counter can be configured to generate an interrupt when it rolls over. This allows
the execution of an ISR on exact timing intervals.

Two 16-bit counters can be configured to make a single 32-bit counter. This can be done with two di↵erent
pairs of counters, giving one 16-bit counter and two 32-bit counters.

Analog Input The PIC32 has a single analog-to-digital converter (ADC), but 16 di↵erent pins can be
connected to it, one at a time. This allows up to 16 analog voltage values (typically sensor inputs) to be
monitored. The ADC can be programmed to continuously read in data from a sequence of input pins, or to
read in a single value when requested. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of
resolution, allowing it to distinguish 1024 di↵erent voltage levels. Conversions are theoretically possible at a
maximum rate of 1 million samples per second on the PIC32MX795F512L.

Output Compare Output compare pins are used to generate a single pulse of specified duration, or a
continuous pulse train of specified duty cycle and frequency. They work with timers to generate the precise
timing. A common use of output compare pins is to generate PWM (pulse-width modulated) signals as
control signals for motors. Pulse trains can also be low-pass filtered to generate approximate analog outputs.
(There are no analog outputs on the PIC32.)

Input Capture A changing input on an input capture pin can be used to store the current time measured
by a timer. This allows precise measurements of input pulse widths and signal frequencies. Optionally, the
input capture pin can generate an interrupt.

Change Notification A change notification pin can be used to generate an interrupt when the input
voltage changes from low to high or vice-versa.

Comparators A comparator is used to compare which of two analog input voltages is larger. A comparator
can generate an interrupt when one of the inputs exceeds the other.

Real-Time Clock and Calendar The RTCC module is used to maintain accurate time, day, month, and
year over extended periods of time while using little power and requiring no attention from the CPU. It uses
a separate clock, allowing it to run even when the PIC32 is in sleep mode.

Parallel Master Port The PMP module is used to read data from and write data to external parallel
devices with 8-bit and 16-bit data buses.

DMA Controller The Direct Memory Access controller is useful for data transfer without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly into PIC32
RAM.

26 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

SPI Serial Communication The Serial Peripheral Interface bus provides a simple method for serial
communication between a master device (typically a microcontroller) and one or more slave devices. Each
slave device has four communication pins: a Clock (set by the master), Data In (from the master), Data Out
(to the master), and Select. The slave is selected for communication if the master holds its Select pin low.
The master device controls the Clock, has a Data In and a Data Out line, and one Select line for each slave it
can talk to. Communication rates can be up to tens of megabits per second.

I2C Serial Communication The Inter-Integrated Circuit protocol I2C (pronounced “I squared C”) is a
somewhat more complicated serial communication standard that allows several devices to communicate over
only two shared lines. Any of the devices can be the master at any given time. The maximum data rate is
less than for SPI.

UART Serial Communication The Universal Asynchronous Receiver Transmitter module provides
another method for serial communication between two devices. There is no clock line, hence “asynchronous,”
but the two devices communicating must be set to the same communication rate. Each of the two devices
has a Receive Data line and a Transmit Data line, and typically a Request to Send line (to ask for permission
to send data) and a Clear to Send line (to indicate that the device is ready to receive data). Typical data
rates are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second.

USB The Universal Serial Bus is a popular asynchronous communication protocol. One master commu-
nicates with one or more slaves over a four-line bus: +5 V, ground, D+ and D- (di↵erential data signals).
The PIC32MX795F512L implements USB 2.0 full-speed and low-speed options, and can communicate at
theoretical data rates of up to several megabits per second.

CAN Controller Area Networks are heavily used in electrically noisy environments (particularly industrial
and automotive environments) to allow many devices to communicate over a single two-wire bus. Data rates
of up to 1 megabit per second are possible.

Ethernet The ethernet module uses an external PHY chip (physical layer protocol transceiver chip)
and direct memory access (DMA) to o✏oad from the CPU the heavy processing requirements of ethernet
communication. The NU32 board does not include a PHY chip.

Watchdog Timer If the Watchdog Timer is used by your program, your program must periodically reset
the timer counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. This is a way
to have the PIC32 restart if your program has entered an unexpected state where it doesn’t pet the watchdog.

2.1.3 The Physical Memory Map

The CPU accesses the peripherals, data, and program instructions in the same way: by writing a memory
address to the bus. The PIC32’s memory addresses are 32-bits long, and each address refers to a byte in the
memory map. This means that the memory map of the PIC32 consists of 4 GB (four gigabytes, or 232 bytes).
Of course most of these addresses are meaningless; there are not nearly that many things to address.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs that we write
to (to control the peripherals or send outputs) or read from (to get sensor input, for example), and boot flash.
Of these, we have not yet seen “boot flash.” This is extra flash memory, 12 KB on the PIC32MX795F512L,
that contains program instructions that are executed immediately upon reset of the PIC32.2 The boot flash
instructions typically perform PIC32 initialization and then call the program installed in program flash.

The following table illustrates the PIC32’s physical memory map. It consists of a block of “RAMsize” bytes
of RAM (128 KB for the PIC32MX795F512L), “flashsize” bytes of flash (512 KB for the PIC32MX795F512L),
1 MB for the peripheral SFRs, and “bootsize” for the boot flash (12 KB for the PIC32MX795F512L):

2The last four 32-bit words of the boot flash memory region are Device Configuration Registers. See Section 2.1.4.

27 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Physical Memory
Start Address

Size (bytes) Region

0x00000000 RAMsize (128 KB) Data RAM
0x1D000000 flashsize (512 KB) Program Flash
0x1F800000 1 MB Peripheral SFRs
0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is 480 MB after
the first address of data RAM. An attempt to access an address between the data RAM segment and the
program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.
In Chapter 3, when we discuss programming the PIC32, we will introduce the virtual memory map and

its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers, DEVCFG0 to DEVCFG3,
containing the configuration bits. These configuration bits set a number of important properties of how
the PIC32 will function. You can learn more about configuration bits in the Special Features section of
the Data Sheet. For example, DEVCFG1 and DEVCFG2 contain configuration bits that determine the
frequency multiplier converting the external resonator frequency to the SYSCLK frequency, as well as bits
that determine the ratio between the SYSCLK and PBCLK frequencies.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 2.3, and the pinout is given in Table 2.2. The main purpose
of the NU32 board is to provide easy breadboard access to 82 of the 100 PIC32MX795F512L pins. The NU32
acts like a big 84-pin DIP chip and plugs into two standard prototyping breadboards, straddling the long
rails used for power, as shown in Figure 2.3.

Beyond simply breaking out the pins, the NU32 provides a few other things that make it easy to get
started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack that accepts a
2.1 mm inner diameter, 5.5 mm outer diameter “center positive” power plug. The plug should provide DC
6 V or more; the NU32 comes with a 6 V wall wart capable of providing 1 amp. The PIC32 requires a supply
voltage VDD between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to have a 5 V supply
available, the NU32 also has a 5 V regulator. The power plug’s raw input voltage and ground, as well as the
regulated 3.3 V and 5 V supplies, are made available to the user on the power rails running down the center
of the NU32, as illustrated in Figure 2.3. Since the power jack is directly connected to the 6 V and GND
rails, you could power the NU32 by putting 6 V and GND on these rails directly and not connecting to the
power jack.

The 3.3 V regulator is capable of providing up to 800 mA and the 5 V regulator is capable of providing
up to 1 amp. However, the wall wart can only provide 1 amp total, and in practice you should stay well
under each of these limits. For example, you should not plan to draw more than 200-300 mA or so from any
of the power rails. Even if you use a higher current power supply, such as a battery, you should respect these
limits, as the current has to flow through the relatively thin traces of the PCB. It is also not recommended to
use high voltage supplies greater than 9 V or so, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of mA up to several
amps), do not try to power them using power from the NU32 rails. Use a separate battery or power supply
instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of the PIC32’s
80 MHz clock signal. It also has a mini B USB jack to connect to your computer’s USB port to a dual
USB-to-RS-232 FTDI chip that allows your PIC32 to speak RS-232 to your computer’s USB port. Two
RS-232 channels share the single USB cable—one dedicated to programming the PIC32 and the other allowing
communication with the host computer while a program is running on your PIC32.

28 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

6 V input

mini USB
to PC power switch

USB to
dual RS232

PIC32

5 V reg
3.3 V reg USER

RESET

LED2
LED1

GND rail
3.3 V rail

5 V rail
6 V input

USB to
external
device

Figure 2.3: The NU32 development board: photo and PCB silkscreen.

RD13

+3.3 V

USER
button,

normally
open

+3.3 V

RA5

LED2

+3.3 V

RA4

LED1

Figure 2.4: The NU32 connection of pins RA4, RA5, and RD13 to LED1, LED2, and the USER button,
respectively.

A standard A USB jack is provided to allow the PIC32 to talk to another external device, like a smartphone.

The NU32 board also has a power switch which connects or disconnects the input power supply to the
voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing very simple input
and output. The two LEDs, LED1 and LED2, are connected at one end by a resistor to 3.3 V and the other
end to digital outputs RA4 and RA5, respectively, so that they are o↵ when those outputs are high and on
when they are low. The USER and RESET buttons are attached to the digital input RD13 and MCLR pins,
respectively, and both buttons are configured to give 0 V to these inputs when pressed and 3.3 V otherwise.
See Figure 2.4.

While the NU32 comes with a bootloader installed in its flash memory, you have the option to use a
programmer to install a standalone program. The five plated through-holes near the USB jack align with the
pins of devices such as the PICkit 3 programmer (Figure 1.4).

29 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

Function PIC32 PIC32 Function

GND GND C4 9
p

T5CK/SDI1/C4
3.3 V 3.3 V C3 8

p
T4CK/C3

SCK2/U6TX/U3RTS/CN8/G6
p

10 G6/RTS3 C2 7
p

T3CK/C2
SDA4/SDI2/U3RX/CN9/G7

p
11 G7/RX3 C1 6

p
T2CK/C1

SCL4/SDO2/U3TX/CN10/G8
p

12 G8/TX3 E7 5
p

PMD7/E7
MCLR

p
13 MCLR E6 4

p
PMD6/E6

SS2/U6RX/U3CTS/CN11/G9
p

14 G9/CTS3 E5 3
p

PMD5/E5
A0

p
17 A0 E4 100

p
PMD4/E4

INT1/E8
p

18 E8 E3 99
p

PMD3/E3
INT2/E9

p
19 E9 E2 98

p
PMD2/E2

VREF-/CVREF-/A9 28 A9 E1 94
p

PMD1/E1
VREF+/CVREF+/A10 29 A10 E0 93

p
PMD0/E0

A1
p

38 A1 G15 1
p

G15
SCK4/U5TX/U2RTS/F13

p
39 F13 G13 97

p
G13

SS4/U5RX/U2CTS/F12
p

40 F12 G12 96
p

G12
SDA5/SDI4/U2RX/CN17/F4

p
49 F4 G14 95

p
G14

SCL5/SDO4/U2TX/CN18/F5
p

50 F5 A7 92
p

A7
USBID/F3

p
51 F3 A6 91

p
A6

SDA3/SDI3/U1RX/F2
p

52 F2/RX1 G0 90
p

C2RX/PMD8/G0
SCL3/SD03/U1TX/F8

p
53 F8/TX1 G1 89

p
C2TX/PMD9/G1

D-/G3 56 G3 F1 88
p

C1TX/PMD10/F1
D+/G2 57 G2 F0 87

p
C1RX/PMD11/F0

SCL2/A2
p

58 A2 C14 74 T1CK/CN0/C14
SDA2/A3

p
59 A3 C13 73 CN1/C13

A4
p

60 A4/L1 A15 67
p

SDA1/INT4/A15
A5

p
61 A5/L2 A14 66

p
SCL1/INT3/A14

PGED1/AN0/CN2/B0 25 B0 D15/RTS1 48
p

SCK3/U4TX/U1RTS/CN21/D15
PGEC1/AN1/CN3/B1 24 B1 D14/CTS1 47

p
SS3/U4RX/U1CTS/CN20/D14

AN2/C2IN-/CN4/B2 23 B2 D13/USER 80
p

PMD13/CN19/D13
AN3/C2IN+/CN5/B3 22 B3 D12 79

p
IC5/PMD12/D12

AN4/C1IN-/CN6/B4 21 B4 D11 71
p

IC4/D11
AN5/C1IN+/CN7/B5 20 B5 D10 70

p
SCK1/IC3/D10

PGEC2/AN6/OCFA/B6 26 B6/PGC D9 69
p

SS1/IC2/D9
PGED2/AN7/B7 27 B7/PGD D8 68

p
RTCC/IC1/D8

AN8/C1OUT/B8 32 B8 D7 84
p

PMD15/CN16/D7
AN9/C2OUT/B9 33 B9 D6 83

p
PMD14/CN15/D6

AN10/CVREFOUT/B10 34 B10 D5 82
p

CN14/D5
AN11/B11 35 B11 D4 81

p
OC5/CN13/D4

AN12/B12 41 B12 D3 78
p

OC4/D3
AN13/B13 42 B13 D2 77

p
OC3/D2

AN14/B14 43 B14 D1 76
p

OC2/D1
AN15/OCFB/CN12/B15 44 B15 D0 72

p
SDO1/OC1/INT0/D0

Table 2.2: The NU32 pinout (in green, with power jack at top) with PIC32MX795F512L pin numbers. Board
pins in bold should only be used with care, as they are used for other functions by the NU32. Pins marked
with a

p
are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet.

2.3 Chapter Summary

• The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit operations in a
single clock cycle.

• In addition to nonvolatile flash program memory and RAM data memory, the PIC32 provides periph-
erals particularly useful for embedded control, including analog inputs, digital I/O, PWM outputs,
counter/timers, inputs that generate interrupts or measure pulse widths or frequencies, and pins for a
variety of communication protocols, including RS-232, USB, ethernet, CAN, I2C, and SPI.

• The functions performed by the pins and peripherals are determined by Special Function Registers.
SFR settings also determine other aspects of the behavior of the PIC32.

• The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that clocks peripherals,
and the USBCLK that clocks USB communication.

• Physical memory addresses are specified by 32 bits. The physical memory map contains four regions:
data RAM, program flash, SFRs, and boot flash. RAM can be accessed in one clock cycle, while flash

30 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

access may be slower. The prefetch cache module can be used to minimize delays in accessing program
instructions.

• Four 32-bit configuration words, DEVCFG0 to DEVCFG3, set behavior of the PIC32 that should not
be changed during execution. For example, these configuration bits determine how an external clock
frequency is multiplied or divided to create the PIC32 clocks.

• The NU32 development board provides voltage regulators for power, includes a resonator for clocking,
breaks out the PIC32 pins to a solderless breadboard, provides a couple of LEDs and buttons for simple
input and output, and makes USB/RS-232 communication and programming simple.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX/7XX Data Sheet and PIC32 Reference Manual to answer
some questions.

1. Search for the “Microchip flash products parametric chart” or navigate to it from the Microchip
homepage. You should see a listing of all the PICs made by Microchip. Set the page to show all specs
and limit the display to 32-bit PICs.

(a) Find PIC32s that meets the following specs: at least 128 KB of flash, at least 32 KB of RAM, and
at least 80 MHz max CPU speed. (You can choose a range of settings within a single parameter by
shift-clicking or ctrl-clicking.) What is the cheapest PIC32 that meets these specs, and what is its
volume price? How many ADC, UART, SPI, and I2C channels does it have? How many timers?

(b) What is the cheapest PIC32 overall? How much flash and RAM does it have, and what is its
maximum clock speed?

(c) Among all PIC32’s with 512 KB flash and 128 KB RAM, which is the cheapest? How does it
di↵er from the PIC32MX795F512L?

2. Based on C syntax for bitwise operators and bit-shifting, calculate the following and give your results
in hexadecimal.

(a) 0x37 | 0xA8

(b) 0x37 & 0xA8

(c) ~0x37

(d) 0x37>>3

3. Describe the four functions that pin 22 of the PIC32MX795F512L can have. Is it 5 V tolerant?

4. Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have to modify if
you want to change pins on PORTC from output to input?

5. The SFR CM1CON controls comparator behavior. Referring to the Memory Organization section of
the Data Sheet, what is the reset value of CM1CON in hexadecimal?

6. In one sentence each, without going into detail, explain the basic function of the following items shown
in the PIC32 architecture block diagram Figure 2.2: SYSCLK, PBCLK, PORTA...G (and indicate
which of these can be used for analog input on the NU32’s PIC32), Timer 1-5, 10-bit ADC, PWM
OC1-5, Data RAM, Program Flash Memory, and Prefetch Cache Module.

7. List the peripherals that are not clocked by PBCLK.

8. If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage di↵erence that it may
not be able to detect? (It’s a 10-bit ADC.)

31 20:19 January 17, 2014

CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

9. Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum size of a program
loop, in bytes, that can be completely stored in the cache?

10. Explain why the path between flash memory and the prefetch cache module is 128 bits wide instead of
32, 64, or 256 bits.

11. Explain how a digital output could be configured to swing between 0 and 4 V, even though the PIC32
is powered by 3.3 V.

12. PIC32’s have increased their flash and RAM over the years. What is the maximum amount of flash
memory a PIC32 can have before the current choice of base addresses in the physical memory map (for
RAM, flash, peripherals, and boot flash) would have to be changed? What is the maximum amount of
RAM? Give your answers in bytes in hexadecimal.

13. Check out the Special Features section of the Data Sheet.

(a) If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits of which
Device Configuration Register do you have to modify? What values do you give those bits?

(b) Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set the postscale
that determines the time interval during which the watchdog must be reset to prevent it from
restarting the PIC32? What values would you give these bits to enable the watchdog and to set
the time interval to be the maximum?

(c) The SYSCLK for a PIC32 can be generated in a number of ways. This is discussed in the Oscillator
chapter in the Reference Manual and the Oscillator Configuration section in the Data Sheet. The
PIC32 on the NU32 uses the (external) primary oscillator in HS mode with the phase-locked loop
(PLL) module. Which bits of which device configuration register enable the primary oscillator and
turn on the PLL module?

14. Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and the unregulated
input voltage (e.g., 6 V). You plan to put a load from the 5 V output to ground. If the load is modeled
as a resistor, what is the smallest resistance that would be safe? An approximate answer is fine. In a
sentence, explain how you arrived at the answer.

15. The NU32 could be powered by di↵erent voltages. Give a reasonable range of voltages that could be
used, minimum to maximum, and explain the reason for the limits.

16. Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are they connected
to? Give the actual pin numbers, 1-100, as well as the name of the pin function as it is used on the
NU32. For example, pin 57 on the PIC32MX795F512L could have the function D+ (USB data line) or
RG2 (Port G digital input/output), but only one of these functions could be active at a given time.

32 20:19 January 17, 2014

