

Simulation of a 2-link Brachiating
Robot with Open-Loop Controllers

David Ufford

Northwestern University

June 2009

1. Project Overview
The goal of this project was to write a complete simulation of a 2-link swinging robot

(the “MonkeyBot”). The simulation models swinging, free flight, and impacts with user-

inputted parameters.

A secondary goal of this project was to attempt to identify the stability of the MonkeyBot

with an open-loop controller. Gaits for horizontal swinging and their dependence on

initial conditions were examined.

2. MonkeyBot Overview
The MonkeyBot is a two-link robot, currently in the prototype stage, which is designed to

climb along vertical walls. It attaches to the wall surface using electromagnets at the end

of each link. These magnets are configured to allow the device to pivot about the

attachment point. The electromagnets can be simultaneously or individually activated as

needed.

The two links are connected by an actuated rotating joint. With proper control, the motor

at this joint can leverage the 2-link swinging dynamics to create desired motion. A

combination of swinging the links and changing the activated electromagnet will allow

the robot to move about the wall.

The MonkeyBot is modeled as two massive links connected by a central joint. The links

of length L1, L2 each have mass m1, m2 and rotational inertia (I1, I2). The center of gravity

(CG) is located axially a distance r1, r2 along the link.

Figure 1: Diagram of 2-link MonkeyBot model with parameters.

If we contain the device to planar movement, the system can be fully expressed in terms

of four generalized coordinates, contained in vector q.



















=

2

1

θ

θ

y

x

q

(x, y) is the coordinate location of the “top” link. θ1 is the angle of the top link relative to

vertical, and θ2 is the relative angle between the links.

The MonkeyBot is capable of engage in three general types of motion phases that are

defined by the configuration of active magnets

1. Free flight - no magnets are active, system has four degrees of freedom.

2. Swinging – one magnet is activated, system has two degrees of freedom.

3. Fixed – both magnets activated so that the robot cannot move. Dynamics during

this state are trivially zero, and are not analyzed.

Transitioning to the swinging or fixed phase involves activating the magnet on one or

both links. The resultant clamping of the magnet to the wall surface is a collision that

must be accounted for in dynamics and motion planning.

3. MonkeyBot Dynamics

3.1 Motion Dynamics

The simplest way to obtain the mechanical dynamics of our system is via Lagrangian

dynamics. The Lagrangian L of the system is defined as the difference between the

kinetic (K) and potential (V) energies of the system.

()qVqqKqqL −=
••

),(),(

For our system, the KE and PE terms can be expressed as:

)(

)(
2

1

2211

2
212

2
11

2

22

2

11

ymymgV

IIvmvmK

+=







++++=

•••

θθθ

v1 and v2 are velocities of the CGs expressed in the x-y coordinate system. Likewise y1

and y2 are the vertical positions of the CG in the x-y system. They are used in the

previous equations for simplicity and conciseness, and are replaced by variables in the q

coordinate system using the following transformations:

2

21212111

2

21212111

2

2

2

111

2

111

2

1

212112

111

))(sin()sin(

))(cos()cos(

)sin()cos(

)sin()sin(

)sin(







++++

+





++++=







++





+=

+−−=

−=

••••

••••

••••

θθθθθθ

θθθθθθ

θθθθ

θθθ

θ

rLy

rLxv

ryrxv

rLyy

ryy

Once the substitutions are made in K and V for the generalized q coordinates, we can

generate the Euler-Lagrange equations of motion, written below. F is the vector of

applied external forces in the generalized q system.

F
q

L

q

L

dt

d
=

∂

∂
−

∂

∂
•

The Euler-Lagrange gives us a system of 4 differential equations, one for each coordinate

in q. The equations can then be manipulated and grouped into the standardized form:

)(),()(qgqqqCqqMF ++=
••••

 *(1)

Where M(q) is the mass or inertia matrix, C is a matrix that contains centrifugal and

coriolis terms, and g is a vector of gravitational forces. For our 2-link system, these

matrices are:
i



















+++

+++++++++++

+++

+++

=

2

22222122

2

2212221222

22122

2

222122

2

22

2

12

2

1121122211211122211211

122212221121121

122212221121121

2)()(

)(0

)(0

)(

rmIIcLrmrmsrmcrm

IcLrmrmcLrmrmLmrmIIsrmsLmrmcrmcLmrm

srmsrmsLmrmmm

crmcrmcLmrmmm

qM

where s1=sin(θ1), c1=cos(θ1), c12=cos(θ1+θ2), etc.

The external force vector, F allows us to apply friction and motor torque to the system.

Motor torque, if any, is inserted into the third row of the F vector, corresponding to a

force applied to the relative θ2 angle between the joints.

These equations describe the 2-link system with four degrees of freedom. Numerical

integration of these general equation *(1) with the given matrices will result in a

simulated MonkeyBot in unrestricted free-flight motion.

3.2 Reduced Dynamics for Swinging State

While the free-flight dynamics fully describe the unrestricted system, we need to

contstrain one of the link ends in order to take advantage of the MonkeyBot’s swinging

properties. In the swinging state, the robot is assumed to rotate around the fixed end at

(x,y). Instead of applying constraints to the equations of 3.1, the system can be reduced

to only two generalized coordinates, q=[θ1 θ2]
T
. Solving this reduced system follows the

procedure above (though the algebra is much simpler). The resultant matrices for the

standardized form *(1) in this swinging state are:









=

2

1

θ

θ
q

This swinging state is applicable to any brachiating type motion. The robot might swing

with only one magnet attached to the wall - a situation that is described by these reduced

equations. At the end of the swing, the robot could release the magnet and enter a free-

flight phase, which would instead be described by the full 4 degree of freedom system in

section 3.1 Smooth transitions between these states is critical to an accurate simulation.

3.3 Impact Dynamics

To move any significant distance across the wall, the MonkeyBot needs to transition its

holding points by changing which magnet is fixed. The transitions involve impact and

corresponding loss of energy as the magnet attaches to the wall surface. It is assumed the

friction and holding force of the magnets is high, so we model these collisions as purely

plastic.

If both magnets are simultaneously active, then the solution to this impact is trivial and

uninteresting – all motion and velocities are halted. As such, we will only consider

impacts in the case of transition from free-flight to swinging dynamics (or, equivalently,

an instantaneous change from one magnet to the other).

Using the end of the top link as the attachment point, we approximate the impact as an

(unknown) finite impulse applied at the (x,y) position. The impulse is constrained so that

the fixed end velocities in the post-impact state are zero (plastic collision).
ii

 0)(=
•
+qqJ (*)

J(q) is a Jacobian matrix that transforms the generalized velocities (dq) into a secondary

coordinate system consisting only of the velocities we want to become zero: [dx dy]
T
. dx

and dy are identical in both systems, so J(q) is simply:

 







=

0010

0001
)(qJ

Impulse applied to a system causes a change in momentum (mass*velocity). The change

in momentum is reflected by a change in velocity, ∆dq=(dq
+

- dq
-
), where dq

-
 and dq

+
 are

the pre- and post- impact velocities respectively.

 λTqJqqM)()(=∆
•

 (**)

The parameter λ in (**) represents the (unknown) impulse applied to the fixed end

during.

Combining equations (*) and (**), and solving to eliminate the parameter λ, gives us the

solution to our impact problem. The post-impact velocities are in terms of the pre-impact

state and a projection matrix P(q):

JJJMJMIqP

qqPq

TT 111)()(

)(

−−−

−•+•

−=

= *(2)

The above equation applies when the end at (x,y) becomes fixed. In the alternate case

where we desire to activate the other magent (at the end of the second/bottom link), we

can simply transform the coordinates so that (x,y) are located about the desired point.

Applying geometry to q and dq, the bottom and top links are effectively interchanged.

These transformations are:























−

+

++++

++++

=























=



















−

++

+−−

+++

=



















=

•

••

••••

••••

•

•

•

•

•

2

21

21212111

21212111

2

1

2

21

21211

21211

2

1

))(sin()sin(

))(cos()cos(

)cos()cos(

)sin()sin(

θ

θθ

θθθθθθ

θθθθθθ

θ

θ

θ

θθπ

θθθ

θθθ

θ

θ

LLy

LLx

y

x

q

LLy

LLx

y

x

q

flipped

flipped

flipped

flipped

We must also ensure to swap the parameters for the links, to ensure the “flipped” system

is consistent with the old one. The impact equations *(2) can then be correctly applied to

dqflipped.

4. Simulation

4.1 Code High-Level Overview

The primary objective of the code was to provide a simulation for MonkeyBot. The

code, written in Matlab, handles equations of motions for all possible motion types: free-

flight, swinging, and fixed. It also smoothly transitions between motion types, modeling

impacts as necessary. Parameters for the MonkeyBot are user modifiable.

The simulation function, monkeySim is called with the initial conditions and system

parameters. It will return results of the simulation at each time step (.001seconds).

Numerical integration is done with Matlab’s ode45, using the standardized equation *(1)

and the matrices applicable to the motion state / magnet configuration.

Solving the equations of motion for each time step is handled by the function

DiffEqWrapper. The control algorithm is (mostly) modular and contained with

controlAlgorithm.m. It can be easily replaced or modified.

The attached .zip file contains a folder with the simulation code, and a sample script file

main.m to demonstrate its use.

The overall algorithm is as follows:

1. Setup script: main.m – sets up the initial conditions, system parameters, and

controller parameters

2. Simulation function: monkeySim is then called with all necessary parameters

3. Values for generating the matrices M, C, and G are pre-calculated to improve

speed

4. ode45 is called to numerically integrate the equations of motion

5. For each time step in ode45, the equations of motion are solved by

DiffEqWrapper

a. Reduced matrices (2 DOF) used when swinging with only one magnet

attached

b. Full matrices (4 DOF) used when neither magnet is attached.

6. For each time step specified (.001seconds), a monitoring function, DiffEqMonitor

is called by ode45

a. Plots the location and state of the MonkeyBot, so that user can watch

simulation progress

b. Control algorithm is called to check current state

i. Control algorithm receives current system state Q

ii. Can adjust motor torque or change magnet states

7. Integration continues, but is halted when magnet states are transitioned

a. System state is flipped (bottom link becomes top, end point becomes new

base x/y)

b. Projection matrix calculates post impact velocities from free-flight

dynamics.

8. Repeat integration with new initial conditions (from post-impact velocities)

4.2 Adjusting Control Algorithm and System Parameters

System parameters available for modification include m, I, L, and r for each link, as well

as the gravity constant g. These parameters are passed in vector form (e.g. M=[m1 m2])

to the simulation function. Demonstration of these parameters is shown in main.m.

The control algorithm setup was designed to be isolated from the rest of the simulation.

The function controlAlgorithm is called for each time step, and is passed the current time

and system state. Any changes made to the global control variables (motorState,

magnetState) will be reflected as the simulation progresses.

The current code package includes a simple time-based (open-loop) controller.

Modification of initial_t, motor_t, swap_t, and maxMotorPower will give demonstration

of varying simulation results. See main.m and controlAlgorithm.m.

Additional parameters can be fine tuned in various parts of the program:

o Step size (currently .001) can be changed in monkeySim.m to change the

controller resolution or number of reported values. Note: This does not affect the

accuracy of the integration as ode45 chooses its own step size then interpolates to

return values at the desired points.

o Friction (currently 0). DiffEqWrapper includes parameters to apply both constant

and viscous friction to the joints at θ1 and θ2.

o Frequency of graphing can be changed in DiffEqMonitor. This has a large impact

on simulation time.

i
 M(q), C(q,dq), G(q) matrices for both dynamic systems (free-flight/4 DOF and

swinging/2 DOF) obtained from Nelson Rosa.
ii
 Equations for impact dynamics obtained from Kevin Lynch.

