
Tutorial 1: Getting a Simple Link Going with the
nRF24L01 and the nRF24L01 C Library (PIC18)

Written by Brennen Ball, © 2007

Introduction

Hopefully you’ve made it through Tutorial 0 and now you have a pretty good
grasp on the basic operation of the nRF24L01. In this tutorial, we’ll actually get into
doing some hardware and software instead of a bunch of boring old reading so you can
get a nifty little RF link up and running.

The Ins and Outs

Let me describe the tutorial to you first. Essentially, one microcontroller is

connected to your PC via the serial port. Using Hyperterminal, you set up a connection
that is 9600 baud, 8-N-1, with no flow control. You type a character, and this character is
received by the microcontroller. Next, the microcontroller sends this character to the
24L01 which is attached to it via SPI, which then transmits the data over RF to another
waiting 24L01. This other 24L01 is connected to another microcontroller, also via SPI.
Upon reception of a character, this remote microcontroller just sends the character right
back to the first 24L01 chip. When the microcontroller receives this data, it transmits it
back up the 232 link to your PC’s serial port and it is displayed on your screen. If a
character isn’t received, it transmits a “?” to the computer.

In case you didn’t catch it from the description, you will need two
microcontrollers and two 24L01’s. This is pretty common sense, though, because to get a
wireless link you are obviously going to have to have two 24L01’s, and each of them
requires a microcontroller to do anything useful with. You will also need a level shifter
circuit (like the MAX232 for 5V or the MAX3232 for 3.3V) to allow you to
communicate with your computer’s serial port for one of the microcontrollers.

The Hardware I Used for this Tutorial

First off, I’ll give you a run down of the hardware I’m using. The wireless boards
that I have are the MiRF-v2 from Sparkfun Electronics (described extensively in the
section titled “A Closer Look at the MiRF-v2 Breakout of the nRF24L01” in Tutorial 0).

 The microcontroller that I’m using is the Microchip PIC18F452. The breakout
board for the PIC18F452 that I will be demonstrating with is the PIC-P40 (see Figure 1
on the next page for a picture), which is also available from Sparkfun and is made by
Olimex (http://www.olimex.com). The board itself costs $16, and you can sample the
chips for free from Microchip’s website. NOTE: I have changed the default crystal

from 20 MHz to 10 MHz so I could use the PLL. The code that comes with this

tutorial depends on this modification.

To program these little gems, I’m using the PIC-MCP-USB, also from Sparkfun.
It runs around $92, but it is powered from the USB port and can do in-circuit serial
programming (ICSP), which is really nice. The unit can also be seen in Figure 1.

Figure 1. PIC-P40 (left) and PIC-MCP-USB (right) (pics from www.sparkfun.com)

As I mentioned, you must connect one of your microcontrollers to your computer

over a serial port (RS232). You will need some type of level conversion for this to work,
and I personally use MAX3232 chip, which allows the user to run at 3.3V or 5V and still
get a working RS232 link. Since the PIC-P40 development board has this circuit built-in,
I simply wired it to the PIC’s USART (more on connections later). I have also included
information on connecting such a circuit up if you don’t have one on your board (see the
“Pin Connections to the MAX3232 Level Converter” section for details).

Hardware Requirements for Non-PIC18 Users

Remember that you don’t have to have the same micro as I do to get this code to

work. Most any micro that has built-in SPI will work just fine, even if it works at 5V
because of the 5V-tolerant inputs on the 24L01. You will also need at least two, but up to
three free GPIO ports that (definitely one pin each for CE and CSN, but optionally one
additional pin for IRQ). The only issue with using other micros is that you will have to
write your own delay, SPI, and USART functions. This isn’t terribly difficult, but it will
set you back some time getting everything working if your IDE/compilation suite doesn’t
have them built-in.

Pin Connections to the MiRF-v2 Breakout Board

 The hardware pin connections to the 24L01 are pretty simple, and here is how I
have my stuff connected, from the perspective of the 24L01. For those of you also using
the PIC18F452, I have included the way that the pins are set up on my micro, including
IO function select and input/output.

24L01 pins
(1) Vcc -> +5Vdc supply

(2) CE -> uC pin PORTC.1, configured as GPIO/input
(3) CSN -> uC pin PORTC.2, configured as GPIO/output
(4) SCK -> uC pin PORTC.3/SCK, configured as SCK(SPI)/output
(5) MOSI -> uC pin PORTC.5/SDO, configured as SDO(SPI)/output
(6) MISO -> uC pin PORTC.4/SDI, configured as SDI(SPI)/input
(7) IRQ -> uC pin PORTB.0, configured as GPIO/input
(8) GND -> common digital ground

 I apologize for the ASCII wiring hardware connections. I don’t have a circuit
CAD program handy, but since there aren’t a terribly large amount of pins to connect, I
think that you should probably be able to handle the task.

Pin Connections to the MAX232 Level Converter

 The PIC-P40 board has a MAX232 circuit implemented on-board, so I’m not
going to put up a schematic. You only have to wire up two pins by yourself: TX and RX.
The pin labeled TX on the PIC-P40 must be wired to the RX pin on the PIC (PORTC.7)
and the PIC-P40’s RX pin should be wired to the PIC’s TX pin (PORTC.6).

Tutorial Software Description/Requirements

The code for this tutorial was written in C and has been written to be compiled
under the Microchip C18 compilation suite (*free* student evaluation version). The
library code for the 24L01 (nrf24l01.h and nrf24l01.c) *should* work with pretty much
any C compiler because it doesn’t have anything other than straight C code in it.

Within the nRF24L01 library, you will find defines for all of the registers, fields
within the registers, register default values, opcodes, and functions that are necessary for
getting your link up and running. There are also a ton of other functions that will make
things easier for you to get things done, and I constantly am making additions to the
library as I use it more and more and find the need for more functionality.

One issue that has been found is that since the library is rather large, users that
have very small program memories in their micros sometimes don’t have enough space to
link the code properly. I am planning on working on a lite version of the library for these
users, so stick around for that in the future.

Compiling the Tutorial Code

In order to compile the code as-is, you need to install Microchip’s MPLAB IDE

and C18 compiler. Go to www.microchip.com and click “Development Tools” under the
“Design” box. Then, under the software box, there are links to both the IDE and the
compiler. You have to register to get the free version of C18, but it’s pretty simple and if
you have ordered samples before, that login will work.

The project comes pre-compiled for those of you who are using a uC that is
compatible with code generated for the PIC18F452. The .hex files that you can upload to
your local and remote microcontrollers are contained in the main project directory. You

can use whatever programmer you like to program the PIC (I personally use the PIC-
MCP-USB from Olimex).

If you would like make changes to the code and compile the tutorial yourself,
simply press the “Build All” button in MPLAB. If you have all of the necessary tools
working properly, you should have a new set of .hex files in the project directory that you
can upload.

PIC18F452-specific Support Files

There are a few files included in the software that are specific to the processor
that I’m using. These are delays.h, delays.c, spi1.h, and spi1.c. These .c and .h files
mentioned are libraries to do specific features in the PIC18F452, and depend on the
configuration that I have used (in particular, the10 MHz crystal with PLL enabled). They
may or may not work for you right out of the box, but if you have your PIC’s internal
clock running at 40 MHz (10 MIPS), then the delays should work just fine. The SPI
functions are limited to the PIC18 parts that only have one SPI, but for those that don’t,
just change SSPBUF to SSPBUF1 (I think, at least), and then SPI should work. C18 will
complain at you in this case, anyway.

NRF24L01.h and .c

Since the source files in the nRF24L01 library are pretty well commented, I don’t
really want to use this space to write redundant information. Rather, what I do want to do
here is to give you an outline of the normal procedures of using my library in your own
projects.

There are a few prerequisites that you need for this library to work. First you
need a function that will delay a specified number of microseconds. Also, you need a
function to operate the SPI bus. This function takes a byte as an argument, sends that
byte over SPI, receives a byte from the 24L01 over SPI, and then returns this received
byte. Also, there is a section in the header file where you must make defines for the IO
control registers and pin masks for each of the IO pins that go to the 24L01 (CSN, CE,
and IRQ).

When you get the support code working and move onto your actual useful code,
you will start off by initializing the nRF24L01. I have included three initialize functions,
and they serve different purposes and are targeted for different users. The first and most
useful is nrf24l01_initialize(). It allows you to initialize the values to every writeable
register in the 24L01. It also allows you to set whether or not you set the CE pin when
the 24L01 is set up as a receiver. To get a simple connection up and running, use the
nrf24l01_initialize_debug() function. It limits you to using pipe 0, but gives you the
options of selecting RX/TX, payload width, and Enhanced Shockburst. The third init
function is nrf24l01_initialize_debug_lite(). It doesn’t initialize all of the registers, but
instead sets up only the CONFIG and RX_PW_P0 registers and leaves all other registers
in whatever state they’re already in (Enhanced Shockburst is left on). Both of the debug
versions of the init functions set CE if the device is going to be a receiver.

After the init function has been called, the device will either be a receiver or a
transmitter. If the device is a receiver and CE is high, then you will be monitoring

packets 130 uS after the CE pin was set (this is important to remember for a transmitter
that is sending packets to it). At this point, you have two options in your microcontroller:
interrupts and polling. If you are using interrupts, then you will more than likely put a
call to nrf24l01_read_rx_payload()in your interrupt service routine. If you are polling,
you should first check the function nrf24l01_irq_pin_active() and then check the function
irq_rx_dr_active() to see if you have received a packet. Then you would call
nrf24l01_read_rx_paylaod() to get the packet. Once you read the packet in either mode,
you should call nrf24l01_irq_clear_rx_ds() or nrf24l01_irq_clear_all() to clear the
RX_DS interrupt.

In the case that you are using more than one pipe, once you receive a packet, you
can check the status register to see what pipe it was received on. The easiest way to do
this is to set a variable equal to the nrf24l01_read_rx_payload() function because this
function returns the status register at the time of the payload read. Then take you take
this variable and give it to the nrf24l01_get_pipe_from_status() function as an argument
to find what pipe you received your packet on. Remember that once you read the packet
out of the FIFO, you won’t be able to get the pipe it came on. It is important to do this
either before you call nrf24l01_read_rx_payload() or use the return value of the function
as was just described.

If the 24L01 was made a TX after initialization, then you have a slightly different
road to follow. In normal operation, when you decide you want to send a packet, you call
the nrf24l01_write_tx_payload() function. If you are using a very high data rate, you
should check the to make sure the TX FIFO isn’t full before you send the payload over
SPI (this is available in both the STATUS and FIFO_STATUS registers). Once you send
the payload, you wait for the TX_DS interrupt to go active before you send another
packet, which is similar to waiting for RX_DR with an RX. If you’re using the Enhanced
Shockburst feature, you also need to watch for the MAX_RT interrupt in case your
packet never makes it to the receiver. You also need to clear the interrupts when you get
them, just as with an RX.

Just as a hint, remember that anytime a receiver calls the
nrf24l01_read_rx_payload() function, it needs up to 130 uS to come back to active mode
before it starts monitoring for packets again. You need to take this into account with
your transmitter and allow for a 130 uS delay when appropriate or else you *may* lose
packets. I have written code before that didn’t have the delay and still worked. In my
experience I have found that this delay seems to be more important to include when you
are using Enhanced Shockburst than regular Shockburst.

If in some time during your wireless transceiving you need to change a device
from a TX to an RX or vice versa, there are also functions for this. These are,
surprisingly enough, nrf24l01_set_as_tx() and nrf24l01_set_as_rx(). There are also
parameterized versions of these functions that allow you to change the contents of the
whole CONFIG register.

Many devices will want to conserve battery power and keep the 24L01 powered
down. The functions nrf24l01_power_up() and nrf24l01_power_down() make easy work
of this task by keeping all of the registers in their current state except for the PWR_UP
bit in the CONFIG register. They also do all of the timing and other operations for you.
As with the mode change functions, these functions also have parameterized versions that
allow you to change the entire CONFIG register.

A very useful function for debugging is the nrf24l01_get_all_registers() function.
For this guy, you simply pass it an array of 36 bytes and it will read every register in the
24L01. I use it very often when I am writing new code for the library and trying to debug
new functions to make sure they are actually doing what I want them to do. The only
thing to remember with this function is that it gets all five of the three multi-byte registers
(TX_ADDR, RX_ADDR_P0, and RX_ADDR_P1).

Most of the other functions in the nRF24L01 library have somewhat more sparse
uses, so I won’t be discussing them in this tutorial. All of the functions are well
commented in the .c file, so feel free to look there to see what each function does and if it
will solve a specific problem for you.

Local Main File: maintutorial1local.c

 This is the place where the interesting stuff starts. This file is the main routine for
the uC that is connected to the serial port of your computer. I am going to try to describe
in detail the things that are going on in this file that aren’t PIC18F452-specific to give
you a clear vision of the things that are going on.
 Let’s get started on the code from the top down. The first few lines of code are
the necessary defines and include files for main. The includes are pretty self-explanatory,
and are there for the headers for the PIC18F452 defines, stdio, USART library, SPI
library, delays library, and nRF24L01 library.

Some parts of the next section of code is specific to the PIC18F452, and others
are simply declarations for various initialization functions. Initialize() is simply a
function that calls all of the other, more specific, initialization functions. InitializeIO()
sets up all of the IO pin directions and functionalities for the device. The next declaration
is the ToggleLED() routine, which is called when I want to change the status of the on-
board LED attached to GPIO pin PORTA.0. The final declaration is PIC-specific, and is
called to fix errors in the USART that will stop normal operation if you hold down a
button on your keyboard.

Now we move on to the main function. This is our primary point of entry to the
application and it’s where all the magic will happen, as you will soon see. First, we
define a couple of variables to use in the code. These are unsigned char data, which is
used to hold the data that we are sending and receiving, and unsigned int count, which is
a loop counter.
 First we call the Initialize() function, which was mentioned before, to get
everything setup. This includes a call to nrf24l01_initialize_debug(), which sets up the
24L01 to be a TX with payload width of 1 byte and no Enhanced Shockburst features. At
this point, we move into the main while loop for the program code.
 First in the main loop, we check to make sure there aren’t any errors in the
USART. Then we wait until we receive a character from the computer. When we have a
character ready in the USART, we read it into the variable “data”. Next, we write data as
a TX payload with the nrf24l01_write_tx_payload() function. The first argument is a
pointer to the data being sent, so we send it the data variable’s address. The next
argument is the length of the payload, which we have set to 1 byte. The final argument
for the function is whether to send or not, so we tell it to go ahead and do so.

 Now we wait until the packet has been sent. This is done by first monitoring the
IRQ pin itself with the nrf24l01_irq_pin_active() function, and then when this function is
true, we check to see if the TX_DS interrupt is active. If both of these are true, we know
that we have sent the packet and we can then clear the interrupts with the
nrf24l01_clear_all() function.
 Next, we want to get back the character that we just sent to the other 24L01 over
RF. Therefore, we call the nrf24l01_set_to_rx() function to change the local 24L01 to a
receiver. This function has one argument, and it is true to set the device into RX mode
(CE high) and false to set the device to standby mode (CE low). In this call, we will put
the device into RX mode so it will monitor the air.

 The next thing we must do is wait until the RX_DR interrupt is active. However,
we don’t want to wait forever if the packet doesn’t make it back to us. Therefore, I have
put in a for loop that will allow the unit to check 25,000 times to see if the interrupt is
active (I don’t know how long this goes, but I am guessing on the order of milliseconds).
If we successfully read the IRQ pin and the RX_DS interrupt both being active, we read
the payload, put the character into the data variable, and then exit out of the for loop. If
we reach the last iteration and we still haven’t received the character, we set data to a
question mark to indicate that the character was not received.
 Next up, we once again clear our interrupts and then print what we set the data
variable to be in the previous for loop to the screen. Next, we need to wait on the remote
unit to get back into active RX mode. This is the purpose of the 130 uS delay (see Table
13 in the 24L01 datasheet). Finally, we toggle the status of the on-board LED to show
that all the data operations for this particular character session have been completed. We
then go back to the beginning of the loop to check for USART characters again.
 The other function of interest is the Initialize() function. This function sets up the
IO pins in the PIC18F452, as well as opens the USART and SPI sections for
communications. Finally, it sets up the 24L01 using the nrf24l01_initialize_debug()
function.

Remote Main File: maintutorial1remote.c

 This guy contains the main routine for the remote unit. The defines before main
are identical to those found in maintutorial1local.c, except for that in this file, usart.h is
not included since the remote unit doesn’t connect to a computer.
 The main function in this file is a bit different than the other. Initially, we set up a
variable unsigned char data to receive the data we got over RF and then send it back.
Initialize() is also called, just as it is in maintutorial1local.c, but the actual function body
is slightly different because we have to setup the 24L01 to be a receiver initially.
 Once we get into the main program loop, we sit and wait until we receive a
packet, in the same way as in maintutorial1local.c. Then, we read the data that was
received and clear interrupts. Next, we wait on the local unit to go into RX mode with a
130 uS delay and set our attached 24L01 to be a transmitter. We then send whatever
character we received back to the local unit over RF. When the character has been sent,
we clear the interrupts and set up this 24L01 to be a receiver again. At this point, we go
back to the top of the loop and wait for more characters.

 As mentioned before, the Initialize() routine in this file is slightly different from
that in maintutorial1local.c. There is no call to OpenUSART(), because we are not using
USART for this node. The other difference is the call to nrf24l01_initialize_debug().
Here, the first argument is false to tell the 24L01 to be a TX.

Actual Program Output

 In Figure 2, you can see the window in AbsoluteTelnet that shows the program
working (AbsoluteTelnet is similar to HyperTerminal). The 24L01s are in very close
proximity to one another (around 6” apart), so there is an extremely high percentage of
successful packets. Only one of the packets actually did not make it through. This
packet can be seen on the 4th line and the 8th character as a question mark.

For those of you using HyperTerminal, you may have to alter the way your return
key is set up within HyperTerminal’s settings in order for it to send the proper characters
(a carriage return and line feed combination). Make sure that you are disconnected in
HyperTerminal by pressing the “Disconnect” button. Then, click File->Properties, and
on the “Settings” tab, click the “ASCII Setup” button. Check the box beside “Send line
feeds with line ends” (it’s the very first check box). Take a look at Figure 3 to see what
I’m talking about.

Figure 2. Output window from AbsoluteTelnet, a similar program to HyperTerminal

Figure 3. Setting up HyperTerminal to send CR/LF pairs when pressing the Enter key

Concluding Remarks

At this point, you should have a working link that you can use in future tutorials
and in your own projects. You should also now have a basic understanding of the flow of
the more important functions in the nRF24L01 library. If you have any questions, feel
free to email me at brennen@diyembedded.com.

Disclaimer: The author provides no guarantees, warrantees, or promises, implied or otherwise. By using the software in this

tutorial, you agree to indemnify the author of any damages incurred by using it. You also agree to indemnify the author

against any personal injury that may come about using this tutorial. The plain English version – I’m doing you a favor

by trying to help you out, so take some responsibility and don’t sue me!

