Special Function Registers

- Ex. TRISX = 0x0000

- More understanding of underlying code
- More difficult to program

- Microchip Reference Manual
- Jasio book – Programming 32-bit Microcontrollers in C
Macros / Functions

- Ex. ReadADC10(bufIndex)
- SFR → (*(&ADC1BUF0+((bufIndex) * 4)))

- Special Function Registers are used underneath the function (can be seen in the header and source files)

- PIC32 Peripheral Libraries for MPLAB C32 Compiler
Outline

- Digital Inputs / Outputs – SFR
- Analog Inputs – Macros / Functions
SFR – I/O Ports

- TRISx – initializes pins as input or output
- PORTx – digital input
- LATx – digital output
- ODCx – open drain (similar to transistor)
- CNCON, CNEN, CNPUE – change notification
Available Pins

<table>
<thead>
<tr>
<th>Port</th>
<th>bit 15</th>
<th>bit 14</th>
<th>bit 13</th>
<th>bit 12</th>
<th>bit 11</th>
<th>bit 10</th>
<th>bit 9</th>
<th>bit 8</th>
<th>bit 7</th>
<th>bit 6</th>
<th>bit 5</th>
<th>bit 4</th>
<th>bit 3</th>
<th>bit 2</th>
<th>bit 1</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- TRISx, PORTx, and LATx operate on a 16 bit number for port x
- Each bit corresponds to a given pin
- Note: not always 16 pins available for each port
- Note: port B defaults to analog input

PIC32

PIC32 but not available for programming

Not on PIC32
TRISx

- TRISx bit = 0 → sets up digital output
- TRISx bit = 1 → sets up digital input
- TRISx &= 0xFFF0
 - TRISx &= 1111 1111 1111 0000
 - Makes bits 0, 1, 2, 3 digital outputs
- TRISx |= 0x00F0
 - TRISx |= 0000 0000 1111 0000
 - Makes bits 4, 5, 6, 7 digital inputs
- TRISEbits.TRISE0 = 0
 - Makes E0 digital output

Functions
- PORTSetPinsDigitalOut(IOPORT_C, IOPORT_PIN_6 | IOPORT_PIN_7);
PORTx (Input)

- Read High or Low for pin / port (READ)
- `#define PIN_A9 PORTAbits.RA9`
 - `value = PIN_A9`

- Functions:
 - `unsigned int mPORTxRead(void)`
 - `unsigned int mPORTxReadBit(unsigned int _bits)`
LATx (Output)

- Sets pin / port as High or Low (Write)

- `#define PIN_D1 LATDbits.LATD1`
 - `PIN_D1 = 1; // Sets High`
 - `PIN_D1 = 0; // Sets Low`

- Functions:
 - `void mPORTxWrite(unsigned int _value)`
Analog Input

- 10 Bit Analog to Digital Conversion (ADC)
- 0 – 1023 for (0 to 3.3 V)

- Examples
 - Potentiometer
 - Accelerometer
17.2 CONTROL REGISTERS

The ADC module includes the following Special Function Registers (SFRs):

The AD1CON1, AD1CON2 and AD1CON3 registers control the operation of the ADC module.

- **AD1CON1**: ADC Control Register 1

 AD1CON1CLR, AD1CON1SET, AD1CON1INV: Atomic Bit Manipulation, Write-only Registers for AD1CON1.

- **AD1CON2**: ADC Control Register 2

 AD1CON2CLR, AD1CON2SET, AD1CON2INV: Atomic Bit Manipulation, Write-only Registers for AD1CON2.

- **AD1CON3**: ADC Control Register 3

 AD1CON3CLR, AD1CON3SET, AD1CON3INV: Atomic Bit Manipulation, Write-only Registers for AD1CON3.

The AD1CHS register selects the input pins to be connected to the SHA.

- **AD1CHS**: ADC Input Channel Select Register

 AD1CHSCLR, AD1CHSSET, AD1CHSINV: Atomic Bit Manipulation, Write-only Registers for AD1CHS.

The AD1PCFG register configures the analog input pins as analog inputs or as digital I/O.

- **AD1PCFG**: ADC Port Configuration Register

 AD1PCFGCLR, AD1PCFGSET, AD1PCFGINV: Atomic Bit Manipulation, Write-only Registers for AD1PCFG.

The AD1CSSL register selects inputs to be sequentially scanned.

- **AD1CSSL**: ADC Input Scan Selection Register

 AD1CSSLCLR, AD1CSSLSET, AD1CSSLINV: Atomic Bit Manipulation, Write-only Registers for AD1CSSL.

The ADC module also has the following associated bits for interrupt control:

- Interrupt Request Flag Status bit (AD1IF) in IFS1: Interrupt Flag Status Register 1
- Interrupt Enable Control bit (AD1IE) in IEC1: Interrupt Enable Control Register 1
- Interrupt Priority Control bits (AD1IP<2:0>) and (AD1IS<1:0>) in IPC6: Interrupt Priority Control Register 6
Bit Registers

- AD1CON1 = 1010 0000 1110 0100

- OpenADC10(config1, config2, config3, configport, configscan)

 (mPORTBSetPinsAnalogIn(configport),
 AD1CSSL = ~(configscan),
 AD1CON3 = (config3),
 AD1CON2 = (config2),
 AD1CON1 = (config1))

- Macros / Functions are a lot easier to read and understand
AD1CON1

Register 17-1: AD1CON1: ADC Control Register 1

<table>
<thead>
<tr>
<th>bit 31</th>
<th>bit 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 23</th>
<th>bit 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>FRZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 7</th>
<th>bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSRC<2:0></td>
<td>CLRASAM</td>
</tr>
</tbody>
</table>
PIC32MX460F512L.h

C:\Program Files \Microchip\MPLAB C32 \pic32mx\include\proc\pic32mx460f512l.h

- _AD1CON1_ADON_POSITION = 15
- _AD1CON1_ADSIDL_POSITION = 13
- _AD1CON1_FORM_POSITION = 8
- _AD1CON1_SSRC_POSITION = 5
- _AD1CON1_ASAM_POSITION = 2
AD1CON1

1000 0000 0000 0000
0000 0000 0000 0000
0000 0000 1110 0000
0000 0000 0000 0100

1000 0000 1110 0100
Example Code

- C:\Program Files\Microchip\MPLAB C32\examples\plib_examples\adc10\adc10_basic\source
Lab

- PCB
- Digital Input / Output
- Analog Input
- LCD Display
- Computer Communication – RS232