Where we are:

Chap 2 Configuration Space
Chap 3 Rigid-Body Motions
Chap 4 Forward Kinematics
Chap 5 Velocity Kinematics and Statics
Chap 6 Inverse Kinematics
Chap 8 Dynamics of Open Chains
 8.1 Lagrangian Formulation
Chap 9 Trajectory Generation
Chap 11 Robot Control
Chap 13 Wheeled Mobile Robots
Important concepts, symbols, and equations

\[\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta) \]

kinetic energy of a robot:

\[\mathcal{K}(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} \]

When \(\dot{\theta} = 0 \) and \(g = 0 \),

\(M(\theta) \) maps \(\ddot{\theta} \) to \(\tau \) and

\(M^{-1}(\theta) \) maps \(\tau \) to \(\ddot{\theta} \)
Important concepts, symbols, and equations (cont.)

If $V = J(\theta) \dot{\theta}$ is the e-e velocity and J is invertible (there exists a unique joint velocity for each e-e velocity):

$$\frac{1}{2} V^T \Lambda(\theta) V = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta}$$

$$\dot{\theta}^T J^T(\theta) \Lambda(\theta) J(\theta) \dot{\theta} = \dot{\theta}^T M(\theta) \dot{\theta}$$

$$\Lambda(\theta) = J^{-T}(\theta) M(\theta) J^{-1}(\theta)$$

What if J is tall? wide?

end-effector mass matrix
Important concepts, symbols, and equations (cont.)

When $\dot{\theta} = 0$ and $g = 0$, $\Lambda(\theta)$ maps \dot{V} to F and $\Lambda^{-1}(\theta)$ maps F to \dot{V}

Force and acceleration are only parallel along principal axes.
\[\tau = M(\theta)\ddot{\theta} + c(\theta, \dot{\theta}) + g(\theta) \]

\[M(\theta) = \begin{bmatrix} I_1 + I_2 + m_1 L_1^2 + m_2 \theta_2^2 & 0 \\ 0 & m_2 \end{bmatrix} \]

What are the e-vals and e-vecs of \(M \)?

Draw the ellipse of \(\tau \) corresponding to a unit circle of \(\ddot{\theta} \) as \(\theta_2 \) increases from zero and \(I_1 = I_2 = m_1 = m_2 = L_1 = 1 \).
At $\theta_1 = 0$, the e-e mass matrix is

$$\Lambda(\theta) = \begin{bmatrix} m_2 & 0 \\ 0 & \frac{(I_1 + I_2 + m_1 L_1^2 + m_2 \theta_2^2)}{\theta_2^2} \end{bmatrix}$$

Draw the ellipse of F corresponding to a unit circle of \dot{V} as θ_2 increases from zero and $I_1 = I_2 = m_1 = m_2 = L_1 = 1$. How does it change as θ_1 changes?