

Release 9.10
Release date February 2015

Licence LGPL
Toolbox home page http://www.petercorke.com/robot
Discussion group http://groups.google.com.au/group/robotics-tool-box

Copyright c©2015 Peter Corke
peter.i.corke@gmail.com
http://www.petercorke.com

http://www.petercorke.com/robot
http://groups.google.com.au/group/robotics-tool-box
http://www.petercorke.com

3

Preface

Peter C0rke

The practice of robotics and computer vision
each involve the application of computational algo-

rithms to data. The research community has devel-
oped a very large body of algorithms but for a
newcomer to the field this can be quite daunting.

For more than 10 years the author has maintained two open-
source matlab® Toolboxes, one for robotics and one for vision.
They provide implementations of many important algorithms and
allow users to work with real problems, not just trivial examples.

This new book makes the fundamental algorithms of robotics,
vision and control accessible to all. It weaves together theory, algo-
rithms and examples in a narrative that covers robotics and com-
puter vision separately and together. Using the latest versions
of the Toolboxes the author shows how complex problems can be
decomposed and solved using just a few simple lines of code.
The topics covered are guided by real problems observed by the
author over many years as a practitioner of both robotics and
computer vision. It is written in a light but informative style, it is
easy to read and absorb, and includes over 1000 matlab® and
Simulink® examples and figures. The book is a real walk through
the fundamentals of mobile robots, navigation, localization, arm-
robot kinematics, dynamics and joint level control, then camera
models, image processing, feature extraction and multi-view
geometry, and finally bringing it all together with an extensive
discussion of visual servo systems.

Peter Corke

Robotics,
 Vision
 and
 Control

Robotics, Vision and Control

isbn 978-3-642-20143-1

1

› springer.com
123

Corke

FUNDAMENTAL
ALGORITHMS
IN MATL AB®

783642 2014319

Robotics,
 Vision
 and
 Control

This, the ninth major release of the Toolbox, repre-
sents twenty years of development and a substantial
level of maturity. This version captures a large number
of changes and extensions generated over the last two
years which support my new book “Robotics, Vision &
Control” shown to the left.

The Toolbox has always provided many functions that
are useful for the study and simulation of classical arm-
type robotics, for example such things as kinematics,
dynamics, and trajectory generation. The Toolbox is
based on a very general method of representing the
kinematics and dynamics of serial-link manipulators.
These parameters are encapsulated in MATLAB

R©
ob-

jects — robot objects can be created by the user for any serial-link manipulator and a
number of examples are provided for well know robots such as the Puma 560 and the
Stanford arm amongst others. The Toolbox also provides functions for manipulating
and converting between datatypes such as vectors, homogeneous transformations and
unit-quaternions which are necessary to represent 3-dimensional position and orienta-
tion.

This ninth release of the Toolbox has been significantly extended to support mobile
robots. For ground robots the Toolbox includes standard path planning algorithms
(bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF,
particle filter), map building (EKF) and simultaneous localization and mapping (EKF),
and a Simulink model a of non-holonomic vehicle. The Toolbox also includes a de-
tailed Simulink model for a quadrotor flying robot.

The routines are generally written in a straightforward manner which allows for easy
understanding, perhaps at the expense of computational efficiency. If you feel strongly
about computational efficiency then you can always rewrite the function to be more
efficient, compile the M-file using the MATLAB

R©
compiler, or create a MEX version.

This manual is now essentially auto-generated from the comments in the MATLAB
R©

code itself which reduces the effort in maintaining code and a separate manual as I used
to — the downside is that there are no worked examples and figures in the manual.
However the book “Robotics, Vision & Control” provides a detailed discussion (600
pages, nearly 400 figures and 1000 code examples) of how to use the Toolbox functions
to solve many types of problems in robotics.

Robotics Toolbox 9.10 for MATLAB
R©

4 Copyright c©Peter Corke 2015

Contents

Preface . 4
Functions by category . 10

1 Introduction 13
1.1 What’s changed . 13

1.1.1 New features and changes to RTB 9.10 13
1.1.2 Earlier changes to RTB 9 . 14

1.2 Migrating from RTB 8 and earlier 16
1.2.1 New functions . 17
1.2.2 General improvements . 18

1.3 How to obtain the Toolbox . 18
1.3.1 Documentation . 19

1.4 MATLAB version issues . 19
1.5 Use in teaching . 19
1.6 Use in research . 19
1.7 Support . 20
1.8 Related software . 20

1.8.1 Octave . 20
1.8.2 Python version . 21
1.8.3 Machine Vision toolbox . 21

1.9 Contributing to the Toolboxes . 21
1.10 Acknowledgements . 21

2 Functions and classes 22
about . 22
angdiff . 22
angvec2r . 23
angvec2tr . 23
Animate . 24
Arbotix . 25
bresenham . 33
Bug2 . 34
ccodefunctionstring . 35
circle . 36
CodeGenerator . 37
colnorm . 68
colorname . 68
ctraj . 69

Robotics Toolbox 9.10 for MATLAB
R©

5 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

delta2tr . 69
DHFactor . 70
diff2 . 71
distancexform . 71
distributeblocks . 72
dockfigs . 73
doesblockexist . 73
Dstar . 73
DXform . 78
e2h . 81
edgelist . 81
EKF . 82
eul2jac . 90
eul2r . 91
eul2tr . 92
gauss2d . 92
h2e . 93
homline . 93
homtrans . 93
ishomog . 94
ishomog2 . 94
isrot . 95
isrot2 . 95
isvec . 96
joy2tr . 96
joystick . 97
jsingu . 98
jtraj . 98
Link . 99
lspb . 108
makemap . 108
Map . 109
mdl 3link3d . 112
mdl ball . 112
mdl baxter . 113
mdl coil . 114
mdl Fanuc10L . 114
mdl hyper2d . 115
mdl hyper3d . 116
mdl irb140 . 116
mdl irb140 mdh . 117
mdl jaco . 118
mdl KR5 . 119
mdl m16 . 119
mdl mico . 120
mdl MotomanHP6 . 121
mdl nao . 121
mdl offset3 . 122
mdl offset6 . 123
mdl onelink . 123

Robotics Toolbox 9.10 for MATLAB
R©

6 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

mdl p8 . 124
mdl phantomx . 125
mdl planar1 . 125
mdl planar2 . 126
mdl planar3 . 126
mdl puma560 . 127
mdl puma560akb . 128
mdl quadrotor . 128
mdl S4ABB2p8 . 130
mdl simple6 . 130
mdl stanford . 131
mdl stanford mdh . 131
mdl twolink . 132
mdl twolink mdh . 133
mstraj . 133
mtraj . 135
multidfprintf . 135
Navigation . 136
numcols . 142
numrows . 143
oa2r . 143
oa2tr . 144
ParticleFilter . 144
peak . 149
peak2 . 150
PGraph . 151
plot2 . 165
plot arrow . 166
plot box . 166
plot circle . 167
plot ellipse . 168
plot ellipse inv . 168
plot homline . 169
plot point . 170
plot poly . 171
plot sphere . 171
plot vehicle . 172
plotbotopt . 172
plotp . 173
polydiff . 173
Polygon . 173
Prismatic . 179
PrismaticMDH . 179
PRM . 180
qplot . 182
Quaternion . 183
r2t . 192
randinit . 193
RandomPath . 193
RangeBearingSensor . 196

Robotics Toolbox 9.10 for MATLAB
R©

7 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

Revolute . 200
RevoluteMDH . 201
RobotArm . 201
rot2 . 205
rotx . 205
roty . 206
rotz . 206
rpy2jac . 206
rpy2r . 207
rpy2tr . 208
RRT . 208
rt2tr . 212
rtbdemo . 212
runscript . 213
rvcpath . 214
se2 . 214
se3 . 215
Sensor . 215
SerialLink . 217
simulinkext . 256
skew . 257
startup rtb . 257
symexpr2slblock . 257
t2r . 258
tb optparse . 258
tpoly . 260
tr2angvec . 260
tr2delta . 261
tr2eul . 261
tr2jac . 262
tr2rpy . 262
tr2rt . 263
tranimate . 264
transl . 265
transl2 . 266
trchain . 266
trchain2 . 267
trinterp . 268
trnorm . 268
trot2 . 269
trotx . 269
troty . 270
trotz . 270
trplot . 271
trplot2 . 272
trprint . 273
trscale . 274
unit . 274
Vehicle . 275
vex . 283

Robotics Toolbox 9.10 for MATLAB
R©

8 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

VREP . 284
VREP arm . 300
VREP camera . 304
VREP mirror . 309
VREP obj . 312
wtrans . 316
xaxis . 316
xyzlabel . 317
yaxis . 317

Robotics Toolbox 9.10 for MATLAB
R©

9 Copyright c©Peter Corke 2015

Functions by category

3D transforms

angvec2r . 23
angvec2tr . 23
eul2r . 91
eul2tr . 92
ishomog2 . 94
ishomog . 94
isrot2 . 95
isrot . 95
oa2r . 143
oa2tr . 144
r2t . 192
rotx . 205
roty . 206
rotz . 206
rpy2r . 207
rpy2tr . 208
rt2tr . 212
t2r . 258
tr2angvec . 260
tr2eul . 261
tr2rpy . 262
tr2rt . 263
tranimate .264
transl2 . 266
transl . 265
trchain2 . 267
trchain . 266
trnorm . 268
trotx . 269
troty . 270
trotz . 270
trplot2 . 272
trplot . 271
trprint . 273
trscale . 274

2D transforms

ishomog2 . 94
isrot2 . 95
rot2 . 205
se2 . 214
se3 . 215
transl2 . 266
trchain2 . 267
trot2 . 269
trplot2 . 272

Homogeneous points and
lines

e2h . 81
h2e . 93
homline . 93
homtrans . 93
plot homline . 169

Differential motion

delta2tr . 69
eul2jac . 90
rpy2jac . 206
skew. .257
tr2delta . 261
tr2jac . 262
vex . 283
wtrans . 316

Trajectory generation

ctraj . 69
jtraj . 98

Robotics Toolbox 9.10 for MATLAB
R©

10 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

lspb . 108
mstraj . 133
mtraj . 135
tpoly . 260
trinterp . 268

Quaternion

Quaternion . 183

Serial-link manipulator

CodeGenerator . 37
Link . 99
PrismaticMDH . 179
Prismatic .179
RevoluteMDH . 201
Revolute . 200
SerialLink .217

Models

Kinematic

DHFactor . 70
jsingu . 98

Dynamics

wtrans . 316

Mobile robot

Map . 109
Navigation . 136
RandomPath . 193
RangeBearingSensor 196
Sensor . 215
Vehicle . 275
makemap . 108

Localization

EKF . 82
ParticleFilter . 144

Path planning

Bug2 . 34
DXform. 78
Dstar . 73
PRM . 180
RRT . 208

Graphics

Animate . 24
plot2 . 165
plotp . 173
qplot . 182
trplot2 . 272
xaxis . 316
xyzlabel . 317
yaxis . 317

Utility

PGraph . 151
Polygon . 173
about . 22
angdiff . 22
bresenham . 33
circle . 36
colnorm . 68
colorname . 68
diff2 . 71
distancexform . 71
dockfigs . 73
edgelist . 81
gauss2d . 92
isvec . 96
multidfprintf . 135
numcols . 142
numrows . 143
peak2 . 150
peak . 149
plot circle . 167
polydiff . 173
randinit . 193
runscript . 213
rvcpath . 214
unit . 274

Robotics Toolbox 9.10 for MATLAB
R©

11 Copyright c©Peter Corke 2015

CONTENTS CONTENTS

Demonstrations
rtbdemo. 212

Interfacing
Arbotix . 25
RobotArm . 201
VREP arm . 300
VREP camera . 304
VREP mirror . 309
VREP obj . 312
VREP . 284
joy2tr . 96

joystick . 97

Code generation

ccodefunctionstring 35
distributeblocks . 72
doesblockexist . 73
simulinkext . 256
symexpr2slblock 257

Examples

plotbotopt . 172

Robotics Toolbox 9.10 for MATLAB
R©

12 Copyright c©Peter Corke 2015

Chapter 1

Introduction

1.1 What’s changed

1.1.1 New features and changes to RTB 9.10

Features of this dot point release include:

• A major pass over all the documentation working on clarity and consistency.

• startup rvc now checks whether an update to RTB is available.

• Fixed the bug in SerialLink.plot for prismatic joints and modified DH
parameters where the links were missing or in the wrong place.

• New methods for SerialLink

– edit which presents all the parameters as a table in a figure window and
allows interactive editing.

– fellipse and vellipse which respectively plot the force and velocity
ellipsoid of the robot.

– trchain which describes forward kinematics as a minimal series of ele-
mentary transforms.

– numerical inverse kinematic: ikcon and ikunc for constrained and un-
constrained joint angles, based on the MATLAB Optimisation Toolbox.
These provide a good alternative to the existing method ikine. Con-
tributed by Bryan Moutrie.

– pay and paycap to determine the effect of payload and maximum pay-
load capability. Contributed by Bryan Moutrie.

– collisionswhich interfaces to the public domain package pHRIWARE
(by Bryan Moutrie) to perform collision checking between a robot arm
and static and moving objects which are described by simple 3D shape
primitives.

Robotics Toolbox 9.10 for MATLAB
R©

13 Copyright c©Peter Corke 2015

1.1. WHAT’S CHANGED CHAPTER 1. INTRODUCTION

• A new function called models which lists all the robot models and their key-
words. Allows searching by keywords. Becoming useful as the number of model
files increases.

• Prototype models for Baxter, NAO and Kuka KR5 robots.

• New version of rtbdemo that uses a proper GUI.

• Update of the V-REP interface to support version 3.1.x and a demo created, see
rtbdemo.

• An increasing number of functions now have a ’deg’ option which allows it to
accept angle input in units of degrees rather than the default of radians.

• New Simulink blocks to support N-rotor flyers, eg. hexa- and octo-rotors. This
includes a new control mixer block and a generalized N-rotor dynamics block.
Graphics has been updated to render the appropriate number of rotors. The ve-
hicle model structure must now include an element nrotors to specify the
number of rotors.

• roblocks, the Toolbox Simulink block library is now a .slx file, rather than
a .mdl file and all models have been updated to suit. Some older Simulink
models had atrophied and have been updated.

1.1.2 Earlier changes to RTB 9

• A major rewrite of CodeGenerator

• A major rewrite of ikine6s to handle a number of specific cases: robot with no
shoulder offset, robot with shoulder offset (can have lefty/right configuration),
Stanford arm (prismatic third joint), Puma 560 arm. The previous code made
lots of assumptions applicable to the Puma, which caused errors for other 6-axis
robots with spherical wrists.

• Symbolic inverse kinematics (developmental) can be found for robots with 2, 3
or 6 DOF. See SerialLink.ikine sym.

Figure 1.1: New rendered robot model using the plot3d() method.

Robotics Toolbox 9.10 for MATLAB
R©

14 Copyright c©Peter Corke 2015

1.1. WHAT’S CHANGED CHAPTER 1. INTRODUCTION

• Aesthetic updates to plot() and teach() methods of the SerialLink ob-
ject

• A new method plot3d() which uses STL format solid models to render real-
istic looking robots as shown in Figure 1.1. This requires STL models, such as
those shipped with the package ARTE by Arturo Gil (https://arvc.umh.
es/arte).

• Subclasses of Link called Revolute, Prismatic, RevoluteMDH and PrismaticMDH
that can be used to make your code clearer and more concise.

• The behaviour of Fast RNE is a bit different. The MATLAB version @SerialLink/rne.m
is always executed, and it makes the decision whether or not to invoke the MEX
file. The MEX file is executed if:

1. the robot is not symbolic, and

2. the SerialLink property fast is true (ie. the ‘nofast’ option is not
given), and

3. the MEX file exists.

• A significant number of new robot models.

• A major renovation of DHFactor to bring it up to spec with the lastest version
of Java.

• A ’flip’ option added to tr2eul.

• A new method A for SerialLink object that computes a sequence of Link A
matrices.

• A new method trchain for SerialLink object that emits the kinematic
model as a sequence of elementary transforms.

• A new method trchain that expresses kinematics as a chain of elementary
transforms.

• A bunch of functions with suffix 2 that deal with SE(2) and SO(2) transforms.

• An improved version of the demo rtbdemo, with more functions and an im-
proved interface. It uses the common function runscript to step through the
individual demo scripts. It works even better with cprintf from MATLAB
Central.

• A set of classes (experimental) to interface with the V-REP robotics simulation
engine by Coppelia Robotics. See robot/interfaces/VREP.

• Since 9.8 the Toolbox now contains the Robotic Symbolic Toolbox by Jörn
Malzahn. There are additional functions, as well as symbolic support throughout
the SerialLink class.

• Many bug fixes

Robotics Toolbox 9.10 for MATLAB
R©

15 Copyright c©Peter Corke 2015

https://arvc.umh.es/arte
https://arvc.umh.es/arte

1.2. MIGRATING FROM RTB 8 AND EARLIER CHAPTER 1. INTRODUCTION

1.2 Migrating from RTB 8 and earlier

If you’re upgrading from RTB 8 or earlier note a significant number of changes sum-
marised below.

• The command startup rvc should be executed before using the Toolbox.
This sets up the MATLAB search paths correctly.

• The Robot class is now named SerialLink to be more specific.

• Almost all functions that operate on a SerialLink object are now methods rather
than functions, for example plot() or fkine(). In practice this makes little dif-
ference to the user but operations can now be expressed as robot.plot(q) or
plot(robot, q). Toolbox documentation now prefers the former convention which
is more aligned with object-oriented practice.

• The parametrers to the Link object constructor are now in the order: theta, d,
a, alpha. Why this order? It’s the order in which the link transform is created:
RZ(theta) TZ(d) TX(a) RX(alpha).

• All robot models now begin with the prefix mdl , so puma560 is now mdl puma560.

• The function drivebot is now the SerialLink method teach.

• The function ikine560 is now the SerialLink method ikine6s to indicate that it
works for any 6-axis robot with a spherical wrist.

• The link class is now named Link to adhere to the convention that all classes
begin with a capital letter.

• The robot class is now called SerialLink. It is created from a vector of
Link objects, not a cell array.

• The quaternion class is now named Quaternion to adhere to the convention that
all classes begin with a capital letter.

• A number of utility functions have been moved into the a directory common
since they are not robot specific.

• skew no longer accepts a skew symmetric matrix as an argument and returns a
3-vector, this functionality is provided by the new function vex.

• tr2diff and diff2tr are now called tr2delta and delta2tr

• ctraj with a scalar argument now spaces the points according to a trapezoidal
velocity profile (see lspb). To obtain even spacing provide a uniformly spaced
vector as the third argument, eg. linspace(0, 1, N).

• The RPY functions tr2rpy and rpy2tr assume that the roll, pitch, yaw rotations
are about the X, Y, Z axes which is consistent with common conventions for
vehicles (planes, ships, ground vehicles). For some applications (eg. cameras)
it useful to consider the rotations about the Z, Y, X axes, and this behaviour can
be obtained by using the option ’zyx’ with these functions (note this is the pre
release 8 behaviour).

• Many functions now accept MATLAB style arguments given as trailing strings,
or string-value pairs. These are parsed by the internal function tb optparse.

Robotics Toolbox 9.10 for MATLAB
R©

16 Copyright c©Peter Corke 2015

1.2. MIGRATING FROM RTB 8 AND EARLIER CHAPTER 1. INTRODUCTION

1.2.1 New functions

Release 9 introduces considerable new functionality, in particular for mobile robot con-
trol, navigation and localization:

• Mobile robotics:

Vehicle Model of a mobile robot that has the “bicycle” kinematic model (car-
like). For given inputs it updates the robot state and returns noise corrupted
odometry measurements. This can be used in conjunction with a “driver”
class such as RandomPath which drives the vehicle between random way-
points within a specified rectangular region.

Sensor

RangeBearingSensor Model of a laser scanner RangeBearingSensor, subclass
of Sensor, that works in conjunction with a Map object to return range and
bearing to invariant point features in the environment.

EKF Extended Kalman filter EKF can be used to perform localization by dead
reckoning or map featuers, map buildings and simultaneous localization
and mapping.

DXForm Path planning classes: distance transform DXform, D* lattice planner
Dstar, probabilistic roadmap planner PRM, and rapidly exploring random
tree RRT.

Monte Carlo estimator ParticleFilter.

• Arm robotics: jsingu, qplot, DHFactor (a simple means to generate the
Denavit-Hartenberg kinematic model of a robot from a sequence of elementary
transforms)

• Trajectory related: lspb, tpoly, mtraj, mstraj

• General transformation: homtrans, se2, se3, wtrans, vex (performs the
inverse function to skew, it converts a skew-symmetric matrix to a 3-vector)

• Data structures:

Pgraph represents a non-directed embedded graph, supports plotting and min-
imum cost path finding.

Polygon a generic 2D polygon class that supports plotting, intersectio/union/difference
of polygons, line/polygon intersection, point/polygon containment.

• Graphical functions:

trprint compact display of a transform in various formats.

trplot display a coordinate frame in SE(3)

trplot2 as above but for SE(2)

tranimate animate the motion of a coordinate frame

plot box plot a box given TL/BR corners or center+WH, with options for
edge color, fill color and transparency.

Robotics Toolbox 9.10 for MATLAB
R©

17 Copyright c©Peter Corke 2015

1.3. HOW TO OBTAIN THE TOOLBOX CHAPTER 1. INTRODUCTION

plot circle plot one or more circles, with options for edge color, fill color
and transparency.

plot sphere plot a sphere, with options for edge color, fill color and trans-
parency.

plot ellipse plot an ellipse, with options for edge color, fill color and trans-
parency.

plot ellipsoid plot an ellipsoid, with options for edge color, fill color and
transparency.

plot poly plot a polygon, with options for edge color, fill color and trans-
parency.

• Utility:

about display a one line summary of a matrix or class, a compact version of
whos

tb optparse general argument handler and options parser, used internally in
many functions.

• Lots of Simulink models are provided in the subdirectory simulink. These
models all have the prefix sl .

1.2.2 General improvements

• Many functions now accept MATLAB style arguments given as trailing strings,
or string-value pairs. These are parsed by the internal function tb optparse.

• Many functions now handle sequences of rotation matrices or homogeneous
transformations.

• Improved error messages in many functions

• Removed trailing commas from if and for statements

1.3 How to obtain the Toolbox

The Robotics Toolbox is freely available from the Toolbox home page at

http://www.petercorke.com

The web page requests some information from you regarding such as your country,
type of organization and application. This is just a means for me to gauge interest and
to remind myself that this is a worthwhile activity.

The file is available in zip format (.zip). Download it and unzip it. Files all unpack to
the correct parts of a hiearchy of directories (folders) headed by rvctools.

If you already have the Machine Vision Toolbox installed then download the zip file to
the directory above the existing rvctools directory, and then unzip it. The files from
this zip archive will properly interleave with the Machine Vision Toolbox files.

Robotics Toolbox 9.10 for MATLAB
R©

18 Copyright c©Peter Corke 2015

http://www.petercorke.com

1.4. MATLAB VERSION ISSUES CHAPTER 1. INTRODUCTION

Ensure that the folder rvctools is on your MATLAB
R©

search path. You can do this
by issuing the addpath command at the MATLAB

R©
prompt. Then issue the com-

mand startup rvc and it will add a number of paths to your MATLAB
R©

search
path. You need to setup the path every time you start MATLAB

R©
but you can auto-

mate this by setting up environment variables, editing your startup.m script, or by
pressing the “Update Toolbox Path Cache” button under MATLAB

R©
General prefer-

ences.

A menu-driven demonstration can be invoked by the function rtbdemo.

1.3.1 Documentation

This document robot.pdf is a manual that describes all functions in the Toolbox. It
is auto-generated from the comments in the MATLAB

R©
code and is fully hyperlinked:

to external web sites, the table of content to functions, and the “See also” functions to
each other.

The same documentation is available online in alphabetical order at http://www.
petercorke.com/RTB/r9/html/index_alpha.html or by category at http:
//www.petercorke.com/RTB/r9/html/index.html. Documentation is also
available via the MATLAB

R©
help browser, “Robotics Toolbox” appears under the

Contents.

1.4 MATLAB version issues

The Toolbox has been tested under R2014b. Compatibility problems are increasingly
likely the older your version of MATLAB

R©
is.

1.5 Use in teaching

This is definitely encouraged! You are free to put the PDF manual (robot.pdf or
the web-based documentation html/*.html on a server for class use. If you plan to
distribute paper copies of the PDF manual then every copy must include the first two
pages (cover and licence).

1.6 Use in research

If the Toolbox helps you in your endeavours then I’d appreciate you citing the Toolbox
when you publish. The details are:

@book{Corke11a,
Author = {Peter I. Corke},
Date-Added = {2011-01-12 08:19:32 +1000},
Date-Modified = {2012-07-29 20:07:27 +1000},
Note = {ISBN 978-3-642-20143-1},

Robotics Toolbox 9.10 for MATLAB
R©

19 Copyright c©Peter Corke 2015

http://www.petercorke.com/RTB/r9/html/index_alpha.html
http://www.petercorke.com/RTB/r9/html/index_alpha.html
http://www.petercorke.com/RTB/r9/html/index.html
http://www.petercorke.com/RTB/r9/html/index.html

1.7. SUPPORT CHAPTER 1. INTRODUCTION

Publisher = {Springer},
Title = {Robotics, Vision \& Control: Fundamental Algorithms in {MATLAB}},
Year = {2011}}

or

P.I. Corke, Robotics, Vision & Control: Fundamental Algorithms in MAT-
LAB. Springer, 2011. ISBN 978-3-642-20143-1.

which is also given in electronic form in the CITATION file.

1.7 Support

There is no support! This software is made freely available in the hope that you find it
useful in solving whatever problems you have to hand. I am happy to correspond with
people who have found genuine bugs or deficiencies but my response time can be long
and I can’t guarantee that I respond to your email.

I can guarantee that I will not respond to any requests for help with assignments
or homework, no matter how urgent or important they might be to you. That’s
what your teachers, tutors, lecturers and professors are paid to do.

You might instead like to communicate with other users via the Google Group called
“Robotics and Machine Vision Toolbox”

http://groups.google.com.au/group/robotics-tool-box

which is a forum for discussion. You need to signup in order to post, and the signup
process is moderated by me so allow a few days for this to happen. I need you to write a
few words about why you want to join the list so I can distinguish you from a spammer
or a web-bot.

1.8 Related software

1.8.1 Octave

Octave is an open-source mathematical environment that is very similar to MATLAB
R©

,
but it has some important differences particularly with respect to graphics and classes.
Many Toolbox functions work just fine under Octave. Three important classes (Quater-
nion, Link and SerialLink) will not work so modified versions of these classes is pro-
vided in the subdirectory called Octave. Copy all the directories from Octave to
the main Robotics Toolbox directory.

The Octave port is a second priority for support and upgrades and is offered in the hope
that you find it useful.

Robotics Toolbox 9.10 for MATLAB
R©

20 Copyright c©Peter Corke 2015

http://groups.google.com.au/group/robotics-tool-box

1.9. CONTRIBUTING TO THE TOOLBOXES CHAPTER 1. INTRODUCTION

1.8.2 Python version

A python implementation of the Toolbox at http://code.google.com/p/robotics-toolbox-python.
All core functionality of the release 8 Toolbox is present including kinematics, dynam-
ics, Jacobians, quaternions etc. It is based on the python numpy class. The main
current limitation is the lack of good 3D graphics support but people are working on
this. Nevertheless this version of the toolbox is very usable and of course you don’t
need a MATLAB

R©
licence to use it. Watch this space.

1.8.3 Machine Vision toolbox

Machine Vision toolbox (MVTB) for MATLAB
R©

. This was described in an article

@article{Corke05d,
Author = {P.I. Corke},
Journal = {IEEE Robotics and Automation Magazine},
Month = nov,
Number = {4},
Pages = {16-25},
Title = {Machine Vision Toolbox},
Volume = {12},
Year = {2005}}

and provides a very wide range of useful computer vision functions beyond the Math-
work’s Image Processing Toolbox. You can obtain this from http://www.petercorke.
com/vision.

1.9 Contributing to the Toolboxes

I am very happy to accept contributions for inclusion in future versions of the toolbox.
You will, of course, be suitably acknowledged (see below).

1.10 Acknowledgements

I have corresponded with a great many people via email since the first release of this
Toolbox. Some have identified bugs and shortcomings in the documentation, and even
better, some have provided bug fixes and even new modules, thankyou. See the file
CONTRIB for details.

Jörn Malzahn has donated a considerable amount of code, his Robot Symbolic Tool-
box for MATLAB. Bryan Moutrie has contributed parts of his open-source package
phiWARE to RTB, the remainder of that package can be found online. Other mentions
to Gautam Sinha, Wynand Smart for models of industrial robot arm, Paul Pounds for
the quadrotor and related models, and Paul Newman (Oxford) for inspiring the mobile
robot code.

Robotics Toolbox 9.10 for MATLAB
R©

21 Copyright c©Peter Corke 2015

http://code.google.com/p/robotics-toolbox-python
http://www.petercorke.com/vision
http://www.petercorke.com/vision

Chapter 2

Functions and classes

about
Compact display of variable type

about(x) displays a compact line that describes the class and dimensions of x.

about x as above but this is the command rather than functional form

Examples

>> a=1;
>> about a
a [double] : 1x1 (8 bytes)

>> a = rand(5,7);
>> about a
a [double] : 5x7 (280 bytes)

See also

whos

angdiff
Difference of two angles

d = angdiff(th1, th2) returns the difference between angles th1 and th2 on the circle.
The result is in the interval [-pi pi). If th1 is a column vector, and th2 a scalar then re-

Robotics Toolbox 9.10 for MATLAB
R©

22 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

turn a column vector where th2 is modulo subtracted from the corresponding elements
of th1.

d = angdiff(th) returns the equivalent angle to th in the interval [-pi pi).

angvec2r
Convert angle and vector orientation to a rotation matrix

R = angvec2r(theta, v) is an orthonormal rotation matrix (3×3) equivalent to a rotation
of theta about the vector v.

See also

eul2r, rpy2r, tr2angvec

angvec2tr
Convert angle and vector orientation to a homogeneous trans-
form

T = angvec2tr(theta, v) is a homogeneous transform matrix (4 × 4) equivalent to a
rotation of theta about the vector v.

Note

• The translational part is zero.

See also

eul2tr, rpy2tr, angvec2r, tr2angvec

Robotics Toolbox 9.10 for MATLAB
R©

23 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Animate
Create an animation

Helper class for creating animations. Saves snapshots of a figture as a folder of indi-
vidual PNG format frames numbered 0000.png, 0001.png and so on.

Example

anim = Animate(’movie’);

for i=1:100

plot(...);
anim.add();

end

To convert the image files to a movie you could use a tool like ffmpeg

% ffmpeg -r 10 -i movie/*.png out.mp4

Animate.Animate
Create an animation class

a = ANIMATE(name, options) initializes an animation, and creates a folder called
name to hold the individual frames.

Options

‘resolution’, R Set the resolution of the saved image to R pixels per

inch.

Animate.add
Adds current plot to the animation

A.ADD() adds the current figure in PNG format to the animation folder with a unique
sequential filename.

A.ADD(fig) as above but captures the figure fig.

Robotics Toolbox 9.10 for MATLAB
R©

24 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

print

Arbotix
Interface to Arbotix robot-arm controller

A concrete subclass of the abstract Machine class that implements a connection over a
serial port to an Arbotix robot-arm controller.

Methods

Arbotix Constructor, establishes serial communications
delete Destructor, closes serial connection
getpos Get joint angles
setpos Set joint angles and optionally speed
setpath Load a trajectory into Arbotix RAM
relax Control relax (zero torque) state
setled Control LEDs on servos
gettemp Temperature of motors
writedata1 Write byte data to servo control table
writedata2 Write word data to servo control table
readdata Read servo control table
command Execute command on servo
flush Flushes serial data buffer
receive Receive data

Example

arb=Arbotix(’port’, ’/dev/tty.usbserial-A800JDPN’, ’nservos’, 5);
q = arb.getpos();
arb.setpos(q + 0.1);

Notes

• This is experimental code.

• Considers the robot as a string of motors, and the last joint is assumed to be the
gripper. This should be abstracted, at the moment this is done in RobotArm.

• Connects via serial port to an Arbotix controller running the pypose sketch.

Robotics Toolbox 9.10 for MATLAB
R©

25 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Machine, RobotArm

Arbotix.Arbotix
Create Arbotix interface object

arb = Arbotix(options) is an object that represents a connection to a chain of Arbotix
servos connected via an Arbotix controller and serial link to the host computer.

Options

‘port’, P Name of the serial port device, eg. /dev/tty.USB0
‘baud’, B Set baud rate (default 38400)
‘debug’, D Debug level, show communications packets (default 0)
‘nservos’, N Number of servos in the chain

Arbotix.a2e
Convert angle to encoder

E = ARB.A2E(a) is a vector of encoder values E corresponding to the vector of joint
angles a. TODO:

• Scale factor is constant, should be a parameter to constructor.

Arbotix.char
Convert Arbotix status to string

C = ARB.char() is a string that succinctly describes the status of the Arbotix controller
link.

Arbotix.command
Execute command on servo

R = ARB.COMMAND(id, instruc) executes the instruction instruc on servo id.

Robotics Toolbox 9.10 for MATLAB
R©

26 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

R = ARB.COMMAND(id, instruc, data) as above but the vector data forms the
payload of the command message, and all numeric values in data must be in the range
0 to 255.

The optional output argument R is a structure holding the return status.

Notes

• id is in the range 0 to N-1, where N is the number of servos in the system.

• Values for instruc are defined as class properties INS *.

• If ‘debug’ was enabled in the constructor then the hex values are echoed to the
screen as well as being sent to the Arbotix.

• If an output argument is requested the serial channel is flushed first.

See also

Arbotix.receive, Arbotix.flush

Arbotix.connect
Connect to the physical robot controller

ARB.connect() establish a serial connection to the physical robot controller.

See also

Arbotix.disconnect

Arbotix.disconnect
Disconnect from the physical robot controller

ARB.disconnect() closes the serial connection.

See also

Arbotix.connect

Robotics Toolbox 9.10 for MATLAB
R©

27 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Arbotix.display
Display parameters

ARB.display() displays the servo parameters in compact single line format.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Arbotix object and the command has no trailing semicolon.

See also

Arbotix.char

Arbotix.e2a
Convert encoder to angle

a = ARB.E2A(E) is a vector of joint angles a corresponding to the vector of encoder
values E.

TODO:

• Scale factor is constant, should be a parameter to constructor.

Arbotix.flush
Flush the receive buffer

ARB.FLUSH() flushes the serial input buffer, data is discarded.

s = ARB.FLUSH() as above but returns a vector of all bytes flushed from the channel.

Notes

• Every command sent to the Arbotix elicits a reply.

• The method receive() should be called after every command.

• Some Arbotix commands also return diagnostic text information.

Robotics Toolbox 9.10 for MATLAB
R©

28 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Arbotix.receive, Arbotix.parse

Arbotix.getpos
Get position

p = ARB.GETPOS(id) is the position (0-1023) of servo id.

p = ARB.GETPOS([]) is a vector (1×N) of positions of servos 1 to N.

Notes

• N is defined at construction time by the ‘nservos’ option.

See also

Arbotix.e2a

Arbotix.gettemp
Get temperature

T = ARB.GETTEMP(id) is the tempeature (deg C) of servo id.

T = ARB.GETTEMP() is a vector (1×N) of the temperature of servos 1 to N.

Notes

• N is defined at construction time by the ‘nservos’ option.

Arbotix.parse
Parse Arbotix return strings

ARB.PARSE(s) parses the string returned from the Arbotix controller and prints di-
agnostic text. The string s contains a mixture of Dynamixel style return packets and
diagnostic text.

Robotics Toolbox 9.10 for MATLAB
R©

29 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Every command sent to the Arbotix elicits a reply.

• The method receive() should be called after every command.

• Some Arbotix commands also return diagnostic text information.

See also

Arbotix.flush, Arbotix.command

Arbotix.readdata
Read byte data from servo control table

R = ARB.READDATA(id, addr) reads the successive elements of the servo control
table for servo id, starting at address addr. The complete return status in the structure
R, and the byte data is a vector in the field ‘params’.

Notes

• id is in the range 0 to N-1, where N is the number of servos in the system.

• If ‘debug’ was enabled in the constructor then the hex values are echoed to the
screen as well as being sent to the Arbotix.

See also

Arbotix.receive, Arbotix.command

Arbotix.receive
Decode Arbotix return packet

R = ARB.RECEIVE() reads and parses the return packet from the Arbotix and returns
a structure with the following fields:

id The id of the servo that sent the message
error Error code, 0 means OK
params The returned parameters, can be a vector of byte values

Robotics Toolbox 9.10 for MATLAB
R©

30 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Every command sent to the Arbotix elicits a reply.

• The method receive() should be called after every command.

• Some Arbotix commands also return diagnostic text information.

• If ‘debug’ was enabled in the constructor then the hex values are echoed

Arbotix.relax
Control relax state

ARB.RELAX(id) causes the servo id to enter zero-torque (relax state) ARB.RELAX(id,
FALSE) causes the servo id to enter position-control mode ARB.RELAX([]) causes
servos 1 to N to relax ARB.RELAX() as above ARB.RELAX([], FALSE) causes ser-
vos 1 to N to enter position-control mode.

Notes

• N is defined at construction time by the ‘nservos’ option.

Arbotix.setled
Set LEDs on servos

ARB.led(id, status) sets the LED on servo id to on or off according to the status
(logical).

ARB.led([], status) as above but the LEDs on servos 1 to N are set.

Notes

• N is defined at construction time by the ‘nservos’ option.

Arbotix.setpath
Load a path into Arbotix controller

ARB.setpath(jt) stores the path jt (P × N) in the Arbotix controller where P is the
number of points on the path and N is the number of robot joints. Allows for smooth
multi-axis motion.

Robotics Toolbox 9.10 for MATLAB
R©

31 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Arbotix.a2e

Arbotix.setpos
Set position

ARB.SETPOS(id, pos) sets the position (0-1023) of servo id. ARB.SETPOS(id, pos,
SPEED) as above but also sets the speed.

ARB.SETPOS(pos) sets the position of servos 1-N to corresponding elements of the
vector pos (1 × N). ARB.SETPOS(pos, SPEED) as above but also sets the velocity
SPEED (1×N).

Notes

• id is in the range 1 to N

• N is defined at construction time by the ‘nservos’ option.

• SPEED varies from 0 to 1023, 0 means largest possible speed.

See also

Arbotix.a2e

Arbotix.writedata1
Write byte data to servo control table

ARB.WRITEDATA1(id, addr, data) writes the successive elements of data to the
servo control table for servo id, starting at address addr. The values of data must be
in the range 0 to 255.

Notes

• id is in the range 0 to N-1, where N is the number of servos in the system.

• If ‘debug’ was enabled in the constructor then the hex values are echoed to the
screen as well as being sent to the Arbotix.

Robotics Toolbox 9.10 for MATLAB
R©

32 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Arbotix.writedata2, Arbotix.command

Arbotix.writedata2
Write word data to servo control table

ARB.WRITEDATA2(id, addr, data) writes the successive elements of data to the
servo control table for servo id, starting at address addr. The values of data must be
in the range 0 to 65535.

Notes

• id is in the range 0 to N-1, where N is the number of servos in the system.

• If ‘debug’ was enabled in the constructor then the hex values are echoed to the
screen as well as being sent to the Arbotix.

See also

Arbotix.writedata1, Arbotix.command

bresenham
Generate a line

p = bresenham(x1, y1, x2, y2) is a list of integer coordinates (2×N) for points lying
on the line segement (x1,y1) to (x2,y2).

p = bresenham(p1, p2) as above but p1=[x1,y1] and p2=[x2,y2].

Notes

• Endpoints must be integer values.

Robotics Toolbox 9.10 for MATLAB
R©

33 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

icanvas

Bug2
Bug navigation class

A concrete subclass of the abstract Navigation class that implements the bug2 naviga-
tion algorithm. This is a simple automaton that performs local planning, that is, it can
only sense the immediate presence of an obstacle.

Methods

path Compute a path from start to goal
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
display Display state/parameters in human readable form
char Convert to string

Example

load map1 % load the map
bug = Bug2(map); % create navigation object
bug.goal = [50, 35]; % set the goal
bug.path([20, 10]); % animate path to (20,10)

Reference

• Dynamic path planning for a mobile automaton with limited information on the
environment,, V. Lumelsky and A. Stepanov, IEEE Transactions on Automatic
Control, vol. 31, pp. 1058-1063, Nov. 1986.

• Robotics, Vision & Control, Sec 5.1.2, Peter Corke, Springer, 2011.

See also

Navigation, DXform, Dstar, PRM

Robotics Toolbox 9.10 for MATLAB
R©

34 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Bug2.Bug2
bug2 navigation object constructor

b = Bug2(map) is a bug2 navigation object, and map is an occupancy grid, a represen-
tation of a planar world as a matrix whose elements are 0 (free space) or 1 (occupied).

Options

‘goal’, G Specify the goal point (1× 2)
‘inflate’, K Inflate all obstacles by K cells.

See also

Navigation.Navigation

ccodefunctionstring
Converts a symbolic expression into a C-code function

[funstr, hdrstr] = ccodefunctionstring(symexpr, arglist) returns a string represent-
ing a C-code implementation of a symbolic expression symexpr. The C-code imple-
mentation has a signature of the form:

void funname(double[][n_o] out, const double in1,

const double* in2, const double[][n_i] in3);

depending on the number of inputs to the function as well as the dimensionality of
the inputs (n i) and the output (n o). The whole C-code implementation is returned in
funstr, while hdrstr contains just the signature ending with a semi-colon (for the use
in header files).

Options

‘funname’, name Specify the name of the generated C-function. If this optional argument is omitted,
the variable name of the first input argument is used, if possible.

‘output’, outVar Defines the identifier of the output variable in the C-function.
‘vars’, varCells The inputs to the C-code function must be defined as a cell array. The elements of this

cell array contain the symbolic variables required to compute the output. The elements
may be scalars, vectors or matrices symbolic variables. The C-function prototype will
be composed accoringly as exemplified above.

‘flag’, sig Specifies if function signature only is generated, default (false).

Robotics Toolbox 9.10 for MATLAB
R©

35 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Example

% Create symbolic variables
syms q1 q2 q3

Q = [q1 q2 q3];
% Create symbolic expression
myrot = rotz(q3)*roty(q2)*rotx(q1)

% Generate C-function string
[funstr, hdrstr] = ccodefunctionstring(myrot,’output’,’foo’, ...
’vars’,{Q},’funname’,’rotate_xyz’)

Notes

• The function wraps around the built-in Matlab function ‘ccode’. It does not
check for proper C syntax. You must take care of proper dimensionality of inputs
and outputs with respect to your symbolic expression on your own. Otherwise
the generated C-function may not compile as desired.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

ccode, matlabfunction

circle
Compute points on a circle

circle(C, R, opt) plots a circle centred at C (1× 2) with radius R on the current axes.

x = circle(C, R, opt) is a matrix (2 × N) whose columns define the coordinates [x,y]
of points around the circumferance of a circle centred at C (1× 2) and of radius R.

C is normally 2× 1 but if 3× 1 then the circle is embedded in 3D, and x is N × 3, but
the circle is always in the xy-plane with a z-coordinate of C(3).

Options

‘n’, N Specify the number of points (default 50)

Robotics Toolbox 9.10 for MATLAB
R©

36 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator
Class for code generation

Objects of the CodeGenerator class automatcally generate robot specific code, as either
M-functions, C-functions, C-MEX functions, or real-time capable Simulink blocks.

The various methods return symbolic expressions for robot kinematic and dynamic
functions, and optionally support side effects such as:

• M-functions with symbolic robot specific model code

• real-time capable robot specific Simulink blocks

• mat-files with symbolic robot specific model expressions

• C-functions and -headers with symbolic robot specific model code

• robot specific MEX functions based on the generated C-code (C-compiler must
be installed).

Example

% load robot model
mdl_twolink

cg = CodeGenerator(twolink);
cg.geneverything();

% a new class has been automatically generated in the robot directory.
addpath robot

tl = @robot();
% this class is a subclass of SerialLink, and thus polymorphic with
% SerialLink but its methods have been overloaded with robot-specific code,
% for example
T = tl.fkine([0.2 0.3]);
% uses concise symbolic expressions rather than the generalized A-matrix
% approach

% The Simulink block library containing robot-specific blocks can be
% opened by
open robot/robotslib.slx
% and the blocks dragged into your own models.

Methods

gencoriolis generate Coriolis/centripetal code
genfdyn generate forward dynamics code
genfkine generate forward kinematics code
genfriction generate joint friction code
gengravload generate gravity load code
geninertia generate inertia matrix code
geninvdyn generate inverse dynamics code
genjacobian generate Jacobian code
geneverything generate code for all of the above

Robotics Toolbox 9.10 for MATLAB
R©

37 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read/write)

basepath basic working directory of the code generator
robjpath subdirectory for specialized MATLAB functions
sympath subdirectory for symbolic expressions
slib filename of the Simulink library
slibpath subdirectory for the Simulink library
verbose print code generation progress on console (logical)
saveresult save symbolic expressions to .mat-files (logical)
logfile print modeling progress to specified text file (string)
genmfun generate executable M-functions (logical)
genslblock generate Embedded MATLAB Function blocks (logical)
genccode generate C-functions and -headers (logical)
genmex generate MEX-functions as replacement for M-functions (logical)
compilemex automatically compile MEX-functions after generation (logical)

Properties (read only)

rob SerialLink object to generate code for (1× 1).

Notes

• Requires the MATLAB Symbolic Toolbox.

• For robots with > 3 joints the symbolic expressions are massively complex, they
are slow and you may run out of memory.

• As much as possible the symbolic calculations are down row-wise to reduce the
computation/memory burden.

• Requires a C-compiler if robot specific MEX-functions shall be generated as
m-functions replacement (see MATLAB documentation of MEX files).

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

SerialLink, Link

Robotics Toolbox 9.10 for MATLAB
R©

38 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.CodeGenerator
Construct a code generator object

cGen = CodeGenerator(rob, options) is a code generator object for the SerialLink
object rob.

Options

CodeGenerator has many options, and useful sets of options are called optionSets,
and the following are recognized:

‘default’ set the options: verbose, saveResult, genMFun, genSLBlock
‘debug’ set the options: verbose, saveResult, genMFun, genSLBlock and create a logfile

named ‘robModel.log’ in the working directory
‘silent’ set the options: saveResult, genMFun, genSLBlock
‘disk’ set the options: verbose, saveResult
‘workspace’ set the option: verbose; just outputs symbolic expressions to workspace
‘mfun’ set the options: verbose, saveResult, genMFun
‘slblock’ set the options: verbose, saveResult, genSLBlock
‘ccode’ set the options: verbose, saveResult, genCcode
‘mex’ set the options: verbose, saveResult, genMEX

If no optionSet is provided, then ‘default’ is used.

The options themselves control the code generation and user information:

‘verbose’ write code generation progress to command window
’saveResult save results to hard disk (always enabled, when genMFun and genSLBlock are set)
‘logFile’, logfile write code generation progress to specified logfile
‘genMFun’ generate robot specific m-functions
‘genSLBlock’ generate real-time capable robot specific Simulink blocks
‘genccode’ generate robot specific C-functions and -headers
‘mex’ generate robot specific MEX-functions as replacement for the m-functions
‘compilemex’ select whether generated MEX-function should be compiled directly after generation

Any option may also be modified individually as optional parameter value pairs.

Author

Joern Malzahn 2012 RST, Technische Universitaet Dortmund, Germany. http://www.rst.e-
technik.tu-dortmund.de

Robotics Toolbox 9.10 for MATLAB
R©

39 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.addpath
Adds generated code to search path

cGen.addpath() adds the generated m-functions and block library to the MATLAB
function search path.

Author

Joern Malzahn 2012 RST, Technische Universitaet Dortmund, Germany. http://www.rst.e-
technik.tu-dortmund.de

See also

addpath

CodeGenerator.genccodecoriolis
Generate C-function for robot inertia matrix

cGen.genccodecoriolis() generates robot-specific C-functions to compute the robot
coriolis matrix.

Notes

• Is called by CodeGenerator.gencoriolis if cGen has active flag genccode or gen-
mex.

• The .c and .h files are generated in the directory specified by the ccodepath prop-
erty of the CodeGenerator object.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis, CodeGenerator.genmexcoriolis

Robotics Toolbox 9.10 for MATLAB
R©

40 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genccodefdyn
Generate C-code for forward dynamics

cGen.genccodeinvdyn() generates a robot-specific C-code to compute the forward dy-
namics.

Notes

• Is called by CodeGenerator.genfdyn if cGen has active flag genccode or genmex.

• The .c and .h files are generated in the directory specified by the ccodepath prop-
erty of the CodeGenerator object.

• The resulting C-function is composed of previously generated C-functions for
the inertia matrix, Coriolis matrix, vector of gravitational load and joint fric-
tion vector. This function recombines these components to compute the forward
dynamics.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfdyn, CodeGenerator.genccodeinvdyn

CodeGenerator.genccodefkine
Generate C-code for the forward kinematics

cGen.genccodefkine() generates a robot-specific C-function to compute forward kine-
matics.

Notes

• Is called by CodeGenerator.genfkine if cGen has active flag genccode or genmex

• The generated .c and .h files are wirtten to the directory specified in the ccodepath
property of the CodeGenerator object.

Robotics Toolbox 9.10 for MATLAB
R©

41 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfkine, CodeGenerator.genmexfkine

CodeGenerator.genccodefriction
Generate C-code for the joint friction

cGen.genccodefriction() generates a robot-specific C-function to compute vector of
friction torques/forces.

Notes

• Is called by CodeGenerator.genfriction if cGen has active flag genccode or gen-
mex

• The generated .c and .h files are wirtten to the directory specified in the ccodepath
property of the CodeGenerator object.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfriction, CodeGenerator.genmexfriction

CodeGenerator.genccodegravload
Generate C-code for the vector of

gravitational load torques/forces

cGen.genccodegravload() generates a robot-specific C-function to compute vector of
gravitational load torques/forces.

Robotics Toolbox 9.10 for MATLAB
R©

42 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Is called by CodeGenerator.gengravload if cGen has active flag genccode or gen-
mex

• The generated .c and .h files are wirtten to the directory specified in the ccodepath
property of the CodeGenerator object.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gengravload, CodeGenerator.genmexgravload

CodeGenerator.genccodeinertia
Generate C-function for robot inertia matrix

cGen.genccodeinertia() generates robot-specific C-functions to compute the robot in-
ertia matrix.

Notes

• Is called by CodeGenerator.geninertia if cGen has active flag genccode or gen-
mex.

• The generated .c and .h files are generated in the directory specified by the ccode-
path property of the CodeGenerator object.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia, CodeGenerator.genmexinertia

Robotics Toolbox 9.10 for MATLAB
R©

43 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genccodeinvdyn
Generate C-code for inverse dynamics

cGen.genccodeinvdyn() generates a robot-specific C-code to compute the inverse dy-
namics.

Notes

• Is called by CodeGenerator.geninvdyn if cGen has active flag genccode or gen-
mex.

• The .c and .h files are generated in the directory specified by the ccodepath prop-
erty of the CodeGenerator object.

• The resulting C-function is composed of previously generated C-functions for
the inertia matrix, coriolis matrix, vector of gravitational load and joint friction
vector. This function recombines these components to compute the inverse dy-
namics.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn, CodeGenerator.genccodefdyn

CodeGenerator.genccodejacobian
Generate C-functions for robot jacobians

cGen.genccodejacobian() generates a robot-specific C-function to compute the jaco-
bians with respect to the robot base as well as the end effector.

Notes

• Is called by CodeGenerator.genjacobian if cGen has active flag genccode or gen-
mex.

• The generated .c and .h files are generated in the directory specified by the ccode-
path property of the CodeGenerator object.

Robotics Toolbox 9.10 for MATLAB
R©

44 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genccodefkine, CodeGenerator.genjacobian

CodeGenerator.gencoriolis
Generate code for Coriolis force

coriolis = cGen.gencoriolis() is a symbolic matrix (N×N) of centrifugal and Coriolis
forces/torques.

Notes

• The Coriolis matrix is stored row by row to avoid memory issues. The generated
code recombines these rows to output the full matrix.

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia, CodeGenerator.genfkine

Robotics Toolbox 9.10 for MATLAB
R©

45 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genfdyn
Generate code for forward dynamics

Iqdd = cGen.genfdyn() is a symbolic vector (1×N) of joint inertial reaction forces/torques.

Notes

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia, CodeGenerator.genfkine

CodeGenerator.genfkine
Generate code for forward kinematics

T = cGen.genfkine() generates a symbolic homogeneous transform matrix (4×4) rep-
resenting the pose of the robot end-effector in terms of the symbolic joint coordinates
q1, q2, ...

[T, allt] = cGen.genfkine() as above but also generates symbolic homogeneous trans-
form matrices (4× 4×N) for the poses of the individual robot joints.

Robotics Toolbox 9.10 for MATLAB
R©

46 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn, CodeGenerator.genjacobian

CodeGenerator.genfriction
Generate code for joint friction

f = cGen.genfriction() is the symbolic vector (1×N) of joint friction forces.

Notes

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

Robotics Toolbox 9.10 for MATLAB
R©

47 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn, CodeGenerator.genfdyn

CodeGenerator.gengravload
Generate code for gravitational load

g = cGen.gengravload() is a symbolic vector (1×N) of joint load forces/torques due
to gravity.

Notes

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

Robotics Toolbox 9.10 for MATLAB
R©

48 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CodeGenerator, CodeGenerator.geninvdyn, CodeGenerator.genfdyn

CodeGenerator.geninertia
Generate code for inertia matrix

i = cGen.geninertia() is the symbolic robot inertia matrix (N ×N).

Notes

• The inertia matrix is stored row by row to avoid memory issues. The generated
code recombines these rows to output the full matrix.

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn, CodeGenerator.genfdyn

Robotics Toolbox 9.10 for MATLAB
R©

49 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.geninvdyn
Generate code for inverse dynamics

tau = cGen.geninvdyn() is the symbolic vector (1×N) of joint forces/torques.

Notes

• The inverse dynamics vector is composed of the previously computed inertia
matrix coriolis matrix, vector of gravitational load and joint friction for speedup.
The generated code recombines these components to output the final vector.

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfdyn, CodeGenerator.genfkine

CodeGenerator.genjacobian
Generate code for robot Jacobians

j0 = cGen.genjacobian() is the symbolic expression for the Jacobian matrix (6 × N)
expressed in the base coordinate frame.

[j0, Jn] = cGen.genjacobian() as above but also returns the symbolic expression for
the Jacobian matrix (6×N) expressed in the end-effector frame.

Robotics Toolbox 9.10 for MATLAB
R©

50 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Side effects of execution depends on the cGen flags:

– saveresult: the symbolic expressions are saved to disk in the directory spec-
ified by cGen.sympath

– genmfun: ready to use m-functions are generated and provided via a sub-
class of SerialLink stored in cGen.robjpath

– genslblock: a Simulink block is generated and stored in a robot specific
block library cGen.slib in the directory cGen.basepath

– genccode: generates C-functions and -headers in the directory specified by
the ccodepath property of the CodeGenerator object.

– mex: generates robot specific MEX-functions as replacement for the m-
functions mentioned above. Access is provided by the SerialLink subclass.
The MEX files rely on the C code generated before.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfkine

CodeGenerator.genmexcoriolis
Generate C-MEX-function for robot coriolis matrix

cGen.genmexcoriolis() generates robot-specific MEX-functions to compute robot cori-
olis matrix.

Notes

• Is called by CodeGenerator.gencoriolis if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated functions is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless

Robotics Toolbox 9.10 for MATLAB
R©

51 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis

CodeGenerator.genmexfdyn
Generate C-MEX-function for forward dynamics

cGen.genmexfdyn() generates a robot-specific MEX-function to compute the forward
dynamics.

Notes

• Is called by CodeGenerator.genfdyn if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfdyn, CodeGenerator.genmexinvdyn

Robotics Toolbox 9.10 for MATLAB
R©

52 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genmexfkine
Generate C-MEX-function for forward kinematics

cGen.genmexfkine() generates a robot-specific MEX-function to compute forward
kinematics.

Notes

• Is called by CodeGenerator.genfkine if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfkine

CodeGenerator.genmexfriction
Generate C-MEX-function for joint friction

cGen.genmexfriction() generates a robot-specific MEX-function to compute the vec-
tor of joint friction.

Notes

• Is called by CodeGenerator.genfriction if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

Robotics Toolbox 9.10 for MATLAB
R©

53 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gengravload

CodeGenerator.genmexgravload
Generate C-MEX-function for gravitational load

cGen.genmexgravload() generates a robot-specific MEX-function to compute gravi-
tation load forces and torques.

Notes

• Is called by CodeGenerator.gengravload if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

Robotics Toolbox 9.10 for MATLAB
R©

54 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CodeGenerator.CodeGenerator, CodeGenerator.gengravload

CodeGenerator.genmexinertia
Generate C-MEX-function for robot inertia matrix

cGen.genmexinertia() generates robot-specific MEX-functions to compute robot iner-
tia matrix.

Notes

• Is called by CodeGenerator.geninertia if cGen has active flag genmex

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated functions is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia

CodeGenerator.genmexinvdyn
Generate C-MEX-function for inverse dynamics

cGen.genmexinvdyn() generates a robot-specific MEX-function to compute the in-
verse dynamics.

Robotics Toolbox 9.10 for MATLAB
R©

55 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Is called by CodeGenerator.geninvdyn if cGen has active flag genmex.

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gengravload

CodeGenerator.genmexjacobian
Generate C-MEX-function for the robot Jacobians

cGen.genmexjacobian() generates robot-specific MEX-function to compute the robot
Jacobian with respect to the base as well as the end effector frame.

Notes

• Is called by CodeGenerator.genjacobian if cGen has active flag genmex.

• The MEX file uses the .c and .h files generated in the directory specified by the
ccodepath property of the CodeGenerator object.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

• You will need a C compiler to use the generated MEX-functions. See the MAT-
LAB documentation on how to setup the compiler in MATLAB. Nevertheless
the basic C-MEX-code as such may be generated without a compiler. In this
case switch the cGen flag compilemex to false.

Robotics Toolbox 9.10 for MATLAB
R©

56 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genjacobian

CodeGenerator.genmfuncoriolis
Generate M-functions for Coriolis matrix

cGen.genmfuncoriolis() generates a robot-specific M-function to compute the Coriolis
matrix.

Notes

• Is called by CodeGenerator.gencoriolis if cGen has active flag genmfun

• The Coriolis matrix is stored row by row to avoid memory issues.

• The generated M-function recombines the individual M-functions for each row.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis, CodeGenerator.geninertia

CodeGenerator.genmfunfdyn
Generate M-function for forward dynamics

cGen.genmfunfdyn() generates a robot-specific M-function to compute the forward
dynamics.

Robotics Toolbox 9.10 for MATLAB
R©

57 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Is called by CodeGenerator.genfdyn if cGen has active flag genmfun

• The generated M-function is composed of previously generated M-functions for
the inertia matrix, coriolis matrix, vector of gravitational load and joint friction
vector. This function recombines these components to compute the forward dy-
namics.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn

CodeGenerator.genmfunfkine
Generate M-function for forward kinematics

cGen.genmfunfkine() generates a robot-specific M-function to compute forward kine-
matics.

Notes

• Is called by CodeGenerator.genfkine if cGen has active flag genmfun

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genjacobian

Robotics Toolbox 9.10 for MATLAB
R©

58 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genmfunfriction
Generate M-function for joint friction

cGen.genmfunfriction() generates a robot-specific M-function to compute joint fric-
tion.

Notes

• Is called only if cGen has active flag genmfun

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gengravload

CodeGenerator.genmfungravload
Generate M-functions for gravitational load

cGen.genmfungravload() generates a robot-specific M-function to compute gravita-
tion load forces and torques.

Notes

• Is called by CodeGenerator.gengravload if cGen has active flag genmfun

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

Robotics Toolbox 9.10 for MATLAB
R©

59 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia

CodeGenerator.genmfuninertia
Generate M-function for robot inertia matrix

cGen.genmfuninertia() generates a robot-specific M-function to compute robot inertia
matrix.

Notes

• Is called by CodeGenerator.geninertia if cGen has active flag genmfun

• The inertia matrix is stored row by row to avoid memory issues.

• The generated M-function recombines the individual M-functions for each row.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis

CodeGenerator.genmfuninvdyn
Generate M-functions for inverse dynamics

cGen.genmfuninvdyn() generates a robot-specific M-function to compute inverse dy-
namics.

Notes

• Is called by CodeGenerator.geninvdyn if cGen has active flag genmfun

Robotics Toolbox 9.10 for MATLAB
R©

60 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The generated M-function is composed of previously generated M-functions for
the inertia matrix, coriolis matrix, vector of gravitational load and joint friction
vector. This function recombines these components to compute the inverse dy-
namics.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn

CodeGenerator.genmfunjacobian
Generate M-functions for robot Jacobian

cGen.genmfunjacobian() generates a robot-specific M-function to compute robot Ja-
cobian.

Notes

• Is called by CodeGenerator.genjacobian, if cGen has active flag genmfun

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis

Robotics Toolbox 9.10 for MATLAB
R©

61 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

CodeGenerator.genslblockcoriolis
Generate Simulink block for Coriolis matrix

cGen.genslblockcoriolis() generates a robot-specific Simulink block to compute Cori-
olis/centripetal matrix.

Notes

• Is called by CodeGenerator.gencoriolis if cGen has active flag genslblock

• The Coriolis matrix is stored row by row to avoid memory issues.

• The Simulink block recombines the the individual blocks for each row.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.gencoriolis

CodeGenerator.genslblockfdyn
Generate Simulink block for forward dynamics

cGen.genslblockfdyn() generates a robot-specific Simulink block to compute forward
dynamics.

Notes

• Is called by CodeGenerator.genfdyn if cGen has active flag genslblock

• The generated Simulink block is composed of previously generated blocks for
the inertia matrix, coriolis matrix, vector of gravitational load and joint friction
vector. The block recombines these components to compute the forward dynam-
ics.

• Access to generated function is provided via subclass of SerialLink whose class
definition is stored in cGen.robjpath.

Robotics Toolbox 9.10 for MATLAB
R©

62 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfdyn

CodeGenerator.genslblockfkine
Generate Simulink block for forward kinematics

cGen.genslblockfkine() generates a robot-specific Simulink block to compute forward
kinematics.

Notes

• Is called by CodeGenerator.genfkine if cGen has active flag genslblock.

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

• Blocks are created for intermediate transforms T0, T1 etc. as well.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfkine

CodeGenerator.genslblockfriction
Generate Simulink block for joint friction

cGen.genslblockfriction() generates a robot-specific Simulink block to compute the
joint friction model.

Robotics Toolbox 9.10 for MATLAB
R©

63 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Is called by CodeGenerator.genfriction if cGen has active flag genslblock

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genfriction

CodeGenerator.genslblockgravload
Generate Simulink block for gravitational load

cGen.genslblockgravload() generates a robot-specific Simulink block to compute grav-
itational load.

Notes

• Is called by CodeGenerator.gengravload if cGen has active flag genslblock

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also CodeGenerator.CodeGenerator, CodeGenerator.gengravload

CodeGenerator.genslblockinertia
Generate Simulink block for inertia matrix

cGen.genslbgenslblockinertia() generates a robot-specific Simulink block to compute
robot inertia matrix.

Robotics Toolbox 9.10 for MATLAB
R©

64 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Is called by CodeGenerator.geninertia if cGen has active flag genslblock

• The Inertia matrix is stored row by row to avoid memory issues.

• The Simulink block recombines the the individual blocks for each row.

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninertia

CodeGenerator.genslblockinvdyn
Generate Simulink block for inverse dynamics

cGen.genslblockinvdyn() generates a robot-specific Simulink block to compute in-
verse dynamics.

Notes

• Is called by CodeGenerator.geninvdyn if cGen has active flag genslblock

• The generated Simulink block is composed of previously generated blocks for
the inertia matrix, coriolis matrix, vector of gravitational load and joint friction
vector. The block recombines these components to compute the forward dynam-
ics.

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

Robotics Toolbox 9.10 for MATLAB
R©

65 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

CodeGenerator.CodeGenerator, CodeGenerator.geninvdyn

CodeGenerator.genslblockjacobian
Generate Simulink block for robot Jacobians

cGen.genslblockjacobian() generates a robot-specific Simulink block to compute robot
Jacobians (world and tool frame).

Notes

• Is called by CodeGenerator.genjacobian if cGen has active flag genslblock

• The Simulink blocks are generated and stored in a robot specific block library
cGen.slib in the directory cGen.basepath.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

CodeGenerator.CodeGenerator, CodeGenerator.genjacobian

CodeGenerator.logmsg
Print CodeGenerator logs.

count = CGen.logmsg(FORMAT, A, ...) is the number of characters written to the
CGen.logfile. For the additional arguments see fprintf.

Note

Matlab ships with a function for writing formatted strings into a text file or to the con-
sole (fprintf). The function works with single target identifiers (file, console, string).
This function uses the same syntax as for the fprintf function to output log messages to
either the Matlab console, a log file or both.

Robotics Toolbox 9.10 for MATLAB
R©

66 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Authors

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

multidfprintf, fprintf, sprintf

CodeGenerator.purge
Cleanup generated files

cGen.purge() deletes all generated files, first displays a question dialog to make sure
the user really wants to delete all generated files.

cGen.purge(1) as above but skips the question dialog.

Author

Joern Malzahn 2012 RST, Technische Universitaet Dortmund, Germany. http://www.rst.e-
technik.tu-dortmund.de

CodeGenerator.rmpath
Removes generated code from search path

cGen.rmpath() removes generated m-functions and block library from the MATLAB
function search path.

Author

Joern Malzahn 2012 RST, Technische Universitaet Dortmund, Germany. http://www.rst.e-
technik.tu-dortmund.de

See also

rmpath

Robotics Toolbox 9.10 for MATLAB
R©

67 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

colnorm
Column-wise norm of a matrix

cn = colnorm(a) is vector (1 × M) of the normals of each column of the matrix a
(N ×M).

colorname
Map between color names and RGB values

rgb = colorname(name) is the rgb-tristimulus value (1×3) corresponding to the color
specified by the string name. If rgb is a cell-array (1×N) of names then rgb is a matrix
(N × 3) with each row being the corresponding tristimulus.

XYZ = colorname(name, ‘xyz’) as above but the XYZ-tristimulus value correspond-
ing to the color specified by the string name.

XY = colorname(name, ‘xy’) as above but the xy-chromaticity coordinates corre-
sponding to the color specified by the string name.

name = colorname(rgb) is a string giving the name of the color that is closest (Eu-
clidean) to the given rgb-tristimulus value (1 × 3). If rgb is a matrix (N × 3) then
return a cell-array (1×N) of color names.

name = colorname(XYZ, ‘xyz’) as above but the color is the closest (Euclidean) to
the given XYZ-tristimulus value.

name = colorname(XYZ, ‘xy’) as above but the color is the closest (Euclidean) to the
given xy-chromaticity value with assumed Y=1.

Notes

• Color name may contain a wildcard, eg. “?burnt”

• Based on the standard X11 color database rgb.txt.

• Tristimulus values are in the range 0 to 1

Robotics Toolbox 9.10 for MATLAB
R©

68 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

ctraj
Cartesian trajectory between two poses

tc = ctraj(T0, T1, n) is a Cartesian trajectory (4 × 4 × n) from pose T0 to T1 with n
points that follow a trapezoidal velocity profile along the path. The Cartesian trajectory
is a homogeneous transform sequence and the last subscript being the point index, that
is, T(:,:,i) is the i’th point along the path.

tc = ctraj(T0, T1, s) as above but the elements of s (n × 1) specify the fractional dis-
tance along the path, and these values are in the range [0 1]. The i’th point corresponds
to a distance s(i) along the path.

Notes

• If T0 or T1 is equal to [] it is taken to be the identity matrix.

• In the second case s could be generated by a scalar trajectory generator such as
TPOLY or LSPB (default).

Reference

Robotics, Vision & Control, Sec 3.1.5, Peter Corke, Springer 2011

See also

lspb, mstraj, trinterp, Quaternion.interp, transl

delta2tr
Convert differential motion to a homogeneous transform

T = delta2tr(d) is a homogeneous transform (4×4) representing differential translation
and rotation. The vector d=(dx, dy, dz, dRx, dRy, dRz) represents an infinitessimal
motion, and is an approximation to the spatial velocity multiplied by time.

See also

tr2delta

Robotics Toolbox 9.10 for MATLAB
R©

69 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

DHFactor
Simplify symbolic link transform expressions

f = dhfactor(s) is an object that encodes the kinematic model of a robot provided by
a string s that represents a chain of elementary transforms from the robot’s base to its
tool tip. The chain of elementary rotations and translations is symbolically factored
into a sequence of link transforms described by DH parameters.

For example:

s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;

indicates a rotation of q1 about the z-axis, then rotation of q2 about the x-axis, transla-
tion of L1 about the y-axis, rotation of q3 about the x-axis and translation of L2 along
the z-axis.

Methods

base the base transform as a Java string
tool the tool transform as a Java string
command a command string that will create a SerialLink() object representing the specified kine-

matics
char convert to string representation
display display in human readable form

Example

>> s = ’Rz(q1).Rx(q2).Ty(L1).Rx(q3).Tz(L2)’;
>> dh = DHFactor(s);
>> dh
DH(q1+90, 0, 0, +90).DH(q2, L1, 0, 0).DH(q3-90, L2, 0, 0).Rz(+90).Rx(-90).Rz(-90)
>> r = eval(dh.command(’myrobot’));

Notes

• Variables starting with q are assumed to be joint coordinates.

• Variables starting with L are length constants.

• Length constants must be defined in the workspace before executing the last line
above.

• Implemented in Java.

• Not all sequences can be converted to DH format, if conversion cannot be achieved
an error is generated.

Robotics Toolbox 9.10 for MATLAB
R©

70 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

• A simple and systematic approach to assigning Denavit-Hartenberg parameters,
P.Corke, IEEE Transaction on Robotics, vol. 23, pp. 590-594, June 2007.

• Robotics, Vision & Control, Sec 7.5.2, 7.7.1, Peter Corke, Springer 2011.

See also

SerialLink

diff2
First-order difference

d = diff2(v) is the first-order difference (1×N) of the series data in vector v (1×N)
and the first element is zero.

d = diff2(a) is the first-order difference (M ×N) of the series data in each row of the
matrix a (M ×N) and the first element in each row is zero.

Notes

• Unlike the builtin function DIFF, the result of diff2 has the same number of
columns as the input.

See also

diff

distancexform
Distance transform of occupancy grid

d = distancexform(world, goal) is the distance transform of the occupancy grid world
with respect to the specified goal point goal = [X,Y]. The cells of the grid have values
of 0 for free space and 1 for obstacle.

Robotics Toolbox 9.10 for MATLAB
R©

71 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

d = distancexform(world, goal, metric) as above but specifies the distance metric as
either ‘cityblock’ or ‘Euclidean’ (default).

d = distancexform(world, goal, metric, show) as above but shows an animation of
the distance transform being formed, with a delay of show seconds between frames.

Notes

• The Machine Vision Toolbox function imorph is required.

• The goal is [X,Y] not MATLAB [row,col].

See also

imorph, DXform

distributeblocks
Distribute blocks in Simulink block library

distributeblocks(model) equidistantly distributes blocks in a Simulink block library
named model.

Notes

• The MATLAB functions to create Simulink blocks from symbolic expresssions
actually place all blocks on top of each other. This function scans a simulink
model and rearranges the blocks on an equidistantly spaced grid.

• The Simulink model must already be opened before running this function!

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

symexpr2slblock, doesblockexist

Robotics Toolbox 9.10 for MATLAB
R©

72 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

dockfigs
Control figure docking in the GUI

dockfigs causes all new figures to be docked into the GUI

dockfigs(1) as above.

dockfigs(0) causes all new figures to be undocked from the GUI

doesblockexist
Check existence of block in Simulink model

res = doesblockexist(mdlname, blockaddress) is a logical result that indicates whether
or not the block blockaddress exists within the Simulink model mdlname.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

symexpr2slblock, distributeblocks

Dstar
D* navigation class

A concrete subclass of the abstract Navigation class that implements the D* navigation
algorithm. This provides minimum distance paths and facilitates incremental replan-
ning.

Robotics Toolbox 9.10 for MATLAB
R©

73 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal (inherited from Navigation)
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
costmap modify Modify the costmap
modify cost Modify the costmap (deprecated, use costmap modify)
costmap get Return the current costmap
costmap set Set the current costmap
distancemap get Set the current distance map
display Print the parameters in human readable form
char Convert to string

Properties

costmap Distance from each point to the goal.

Example

load map1 % load map
goal = [50,30];
start=[20,10];
ds = Dstar(map); % create navigation object
ds.plan(goal) % create plan for specified goal
ds.path(start) % animate path from this start location

Notes

• Obstacles are represented by Inf in the costmap.

• The value of each element in the costmap is the shortest distance from the corre-
sponding point in the map to the current goal.

References

• The D* algorithm for real-time planning of optimal traverses, A. Stentz, Tech.
Rep. CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon University,
1994.

• Robotics, Vision & Control, Sec 5.2.2, Peter Corke, Springer, 2011.

See also

Navigation, DXform, PRM

Robotics Toolbox 9.10 for MATLAB
R©

74 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.Dstar
D* constructor

ds = Dstar(map, options) is a D* navigation object, and map is an occupancy grid,
a representation of a planar world as a matrix whose elements are 0 (free space) or 1
(occupied). The occupancy grid is coverted to a costmap with a unit cost for traversing
a cell.

Options

‘goal’, G Specify the goal point (2× 1)
‘metric’, M Specify the distance metric as ‘euclidean’ (default) or ‘cityblock’.
‘inflate’, K Inflate all obstacles by K cells.
‘quiet’ Don’t display the progress spinner

Other options are supported by the Navigation superclass.

See also

Navigation.Navigation

Dstar.char
Convert navigation object to string

DS.char() is a string representing the state of the Dstar object in human-readable form.

See also

Dstar.display, Navigation.char

Dstar.costmap get
Get the current costmap

C = DS.costmap get() is the current costmap. The cost map is the same size as the
occupancy grid and the value of each element represents the cost of traversing the cell.
It is autogenerated by the class constructor from the occupancy grid such that:

• free cell (occupancy 0) has a cost of 1

• occupied cell (occupancy >0) has a cost of Inf

Robotics Toolbox 9.10 for MATLAB
R©

75 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Dstar.costmap set, Dstar.costmap modify

Dstar.costmap modify
Modify cost map

DS.costmap modify(p, new) modifies the cost map at p=[X,Y] to have the value new.
If p (2×M) and new (1×M) then the cost of the points defined by the columns of p
are set to the corresponding elements of new.

Notes

• After one or more point costs have been updated the path should be replanned
by calling DS.plan().

• Replaces modify cost, same syntax.

See also

Dstar.costmap set, Dstar.costmap get

Dstar.costmap set
Set the current costmap

DS.costmap set(C) sets the current costmap. The cost map is the same size as the
occupancy grid and the value of each element represents the cost of traversing the cell.
A high value indicates that the cell is more costly (difficult) to traverese. A value of Inf
indicates an obstacle.

Notes

• After the cost map is changed the path should be replanned by calling DS.plan().

See also

Dstar.costmap get, Dstar.costmap modify

Robotics Toolbox 9.10 for MATLAB
R©

76 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.distancemap get
Get the current distance map

C = DS.distancemap get() is the current distance map. This map is the same size
as the occupancy grid and the value of each element is the shortest distance from the
corresponding point in the map to the current goal. It is computed by Dstar.plan.

See also

Dstar.plan

Dstar.modify cost
Modify cost map

Notes

• Deprecated: use modify cost instead instead.

See also

Dstar.costmap set, Dstar.costmap get

Dstar.plan
Plan path to goal

DS.plan() updates DS with a costmap of distance to the goal from every non-obstacle
point in the map. The goal is as specified to the constructor.

DS.plan(goal) as above but uses the specified goal.

Note

• If a path has already been planned, but the costmap was modified, then reinvok-
ing this method will replan, incrementally updating the plan at lower cost than a
full replan.

Robotics Toolbox 9.10 for MATLAB
R©

77 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Dstar.plot
Visualize navigation environment

DS.plot() displays the occupancy grid and the goal distance in a new figure. The goal
distance is shown by intensity which increases with distance from the goal. Obstacles
are overlaid and shown in red.

DS.plot(p) as above but also overlays a path given by the set of points p (M × 2).

See also

Navigation.plot

Dstar.reset
Reset the planner

DS.reset() resets the D* planner. The next instantiation of DS.plan() will perform a
global replan.

DXform
Distance transform navigation class

A concrete subclass of the abstract Navigation class that implements the distance trans-
form navigation algorithm which computes minimum distance paths.

Methods

plan Compute the cost map given a goal and map
path Compute a path to the goal (inherited)
visualize Display the obstacle map (deprecated)
plot Display the distance function and obstacle map
plot3d Display the distance function as a surface
display Print the parameters in human readable form
char Convert to string

Robotics Toolbox 9.10 for MATLAB
R©

78 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

distancemap The distance transform of the occupancy grid.
metric The distance metric, can be ‘euclidean’ (default) or ‘cityblock’

Example

load map1 % load map
goal = [50,30]; % goal point
start = [20, 10]; % start point
dx = DXform(map); % create navigation object
dx.plan(goal) % create plan for specified goal
dx.path(start) % animate path from this start location

Notes

• Obstacles are represented by NaN in the distancemap.

• The value of each element in the distancemap is the shortest distance from the
corresponding point in the map to the current goal.

References

• Robotics, Vision & Control, Sec 5.2.1, Peter Corke, Springer, 2011.

See also

Navigation, Dstar, PRM, distancexform

DXform.DXform
Distance transform constructor

dx = DXform(map, options) is a distance transform navigation object, and map is an
occupancy grid, a representation of a planar world as a matrix whose elements are 0
(free space) or 1 (occupied).

Options

‘goal’, G Specify the goal point (2× 1)
‘metric’, M Specify the distance metric as ‘euclidean’ (default) or ‘cityblock’.
‘inflate’, K Inflate all obstacles by K cells.

Other options are supported by the Navigation superclass.

Robotics Toolbox 9.10 for MATLAB
R©

79 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.Navigation

DXform.char
Convert to string

DX.char() is a string representing the state of the object in human-readable form.

See also DXform.display, Navigation.char

DXform.plan
Plan path to goal

DX.plan() updates the internal distancemap where the value of each element is the
minimum distance from the corresponding point to the goal. The goal is as specified to
the constructor.

DX.plan(goal) as above but uses the specified goal.

DX.plan(goal, s) as above but displays the evolution of the distancemap, with one
iteration displayed every s seconds.

Notes

• This may take many seconds.

See also

Navigation.path

DXform.plot
Visualize navigation environment

DX.plot() displays the occupancy grid and the goal distance in a new figure. The goal
distance is shown by intensity which increases with distance from the goal. Obstacles
are overlaid and shown in red.

DX.plot(p) as above but also overlays a path given by the set of points p (2×M).

Robotics Toolbox 9.10 for MATLAB
R©

80 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.plot

DXform.plot3d
3D costmap view

DX.plot3d() displays the distance function as a 3D surface with distance from goal as
the vertical axis. Obstacles are “cut out” from the surface.

DX.plot3d(p) as above but also overlays a path given by the set of points p (M × 2).

DX.plot3d(p, ls) as above but plot the line with the linestyle ls.

See also

Navigation.plot

e2h
Euclidean to homogeneous

H = e2h(E) is the homogeneous version (K+1×N) of the Euclidean points E (K×N)
where each column represents one point in RK .

See also

h2e

edgelist
Return list of edge pixels for region

eg = edgelist(im, seed) is a list of edge pixels (N×2) of a region in the image im start-
ing at edge coordinate seed=[X,Y]. The edgelist has one row per edge point coordinate
(x,y).

Robotics Toolbox 9.10 for MATLAB
R©

81 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

eg = edgelist(im, seed, direction) as above, but the direction of edge following is
specified. direction == 0 (default) means clockwise, non zero is counter-clockwise.
Note that direction is with respect to y-axis upward, in matrix coordinate frame, not
image frame.

[eg,d] = edgelist(im, seed, direction) as above but also returns a vector of edge seg-
ment directions which have values 1 to 8 representing W SW S SE E NW N NW
respectively.

Notes

• Coordinates are given assuming the matrix is an image, so the indices are always
in the form (x,y) or (column,row).

• im is a binary image where 0 is assumed to be background, non-zero is an object.

• seed must be a point on the edge of the region.

• The seed point is always the first element of the returned edgelist.

• 8-direction chain coding can give incorrect results when used with blobs founds
using 4-way connectivty.

Reference

• METHODS TO ESTIMATE AREAS AND PERIMETERS OF BLOB-LIKE
OBJECTS: A COMPARISON Luren Yang, Fritz Albregtsen, Tor Lgnnestad and
Per Grgttum IAPR Workshop on Machine Vision Applications Dec. 13-15, 1994,
Kawasaki

See also

ilabel

EKF
Extended Kalman Filter for navigation

Extended Kalman filter for optimal estimation of state from noisy measurments given
a non-linear dynamic model. This class is specific to the problem of state estimation
for a vehicle moving in SE(2).

This class can be used for:

• dead reckoning localization

Robotics Toolbox 9.10 for MATLAB
R©

82 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• map-based localization

• map making

• simultaneous localization and mapping (SLAM)

It is used in conjunction with:

• a kinematic vehicle model that provides odometry output, represented by a Ve-
hicle object.

• The vehicle must be driven within the area of the map and this is achieved by
connecting the Vehicle object to a Driver object.

• a map containing the position of a number of landmark points and is represented
by a Map object.

• a sensor that returns measurements about landmarks relative to the vehicle’s lo-
cation and is represented by a Sensor object subclass.

The EKF object updates its state at each time step, and invokes the state update methods
of the Vehicle. The complete history of estimated state and covariance is stored within
the EKF object.

Methods

run run the filter
plot xy plot the actual path of the vehicle
plot P plot the estimated covariance norm along the path
plot map plot estimated feature points and confidence limits
plot ellipse plot estimated path with covariance ellipses
plot error plot estimation error with standard deviation bounds
display print the filter state in human readable form
char convert the filter state to human readable string

Properties

x est estimated state
P estimated covariance
V est estimated odometry covariance
W est estimated sensor covariance
features maps sensor feature id to filter state element
robot reference to the Vehicle object
sensor reference to the Sensor subclass object
history vector of structs that hold the detailed filter state from each time step
verbose show lots of detail (default false)
joseph use Joseph form to represent covariance (default true)

Robotics Toolbox 9.10 for MATLAB
R©

83 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle position estimation (localization)

Create a vehicle with odometry covariance V, add a driver to it, create a Kalman filter
with estimated covariance V est and initial state covariance P0

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
ekf = EKF(veh, V_est, P0);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot true vehicle path

veh.plot_xy(’b’);

and overlay the estimated path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse(20, ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Map-based vehicle localization

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial vehicle state covariance P0

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, V_est, P0, sensor, W_est, map);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the estimatd path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse([], ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Robotics Toolbox 9.10 for MATLAB
R©

84 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle-based map making

Create a vehicle with odometry covariance V, add a driver to it, create a sensor that
uses the map and vehicle state to estimate feature range and bearing with covariance
W, the Kalman filter with estimated sensor covariance W est and a “perfect” vehicle
(no covariance), then run the filter for N time steps.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, [], [], sensor, W_est, []);

We run the simulation for 1000 time steps

ekf.run(1000);

Then plot the true map

map.plot();

and overlay the estimated map with 3 sigma ellipses

ekf.plot_map(3, ’g’);

Simultaneous localization and mapping (SLAM)

Create a vehicle with odometry covariance V, add a driver to it, create a map with 20
point features, create a sensor that uses the map and vehicle state to estimate feature
range and bearing with covariance W, the Kalman filter with estimated covariances
V est and W est and initial state covariance P0, then run the filter to estimate the vehicle
state at each time step and the map.

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));
map = Map(20);
sensor = RangeBearingSensor(veh, map, W);
ekf = EKF(veh, V_est, P0, sensor, W, []);

We run the simulation for 1000 time steps

ekf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the estimated path

ekf.plot_xy(’r’);

and overlay uncertainty ellipses at every 20 time steps

ekf.plot_ellipse([], ’g’);

We can plot the covariance against time as

clf
ekf.plot_P();

Then plot the true map

map.plot();

Robotics Toolbox 9.10 for MATLAB
R©

85 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

and overlay the estimated map with 3 sigma ellipses

ekf.plot_map(3, ’g’);

References

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

Stochastic processes and filtering theory, AH Jazwinski Academic Press 1970

Acknowledgement

Inspired by code of Paul Newman, Oxford University, http://www.robots.ox.ac.uk/ pnew-
man

See also

Vehicle, RandomPath, RangeBearingSensor, Map, ParticleFilter

EKF.EKF
EKF object constructor

E = EKF(vehicle, v est, p0, options) is an EKF that estimates the state of the vehicle
with estimated odometry covariance v est (2× 2) and initial covariance (3× 3).

E = EKF(vehicle, v est, p0, sensor, w est, map, options) as above but uses informa-
tion from a vehicle mounted sensor, estimated sensor covariance w est and a map.

Options

‘verbose’ Be verbose.
‘nohistory’ Don’t keep history.
‘joseph’ Use Joseph form for covariance
‘dim’, D Dimension of the robot’s workspace. Scalar D is D×D, 2-vector D(1)xD(2), 4-vector

is D(1)<x<D(2), D(3)<y<D(4).

Notes

• If map is [] then it will be estimated.

• If v est and p0 are [] the vehicle is assumed error free and the filter will only
estimate the landmark positions (map).

Robotics Toolbox 9.10 for MATLAB
R©

86 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• If v est and p0 are finite the filter will estimate the vehicle pose and the landmark
positions (map).

• EKF subclasses Handle, so it is a reference object.

• Dimensions of workspace are normally taken from the map if given.

See also

Vehicle, Sensor, RangeBearingSensor, Map

EKF.char
Convert to string

E.char() is a string representing the state of the EKF object in human-readable form.

See also

EKF.display

EKF.display
Display status of EKF object

E.display() displays the state of the EKF object in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a EKF object and the command has no trailing semicolon.

See also

EKF.char

Robotics Toolbox 9.10 for MATLAB
R©

87 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.init
Reset the filter

E.init() resets the filter state and clears the history.

EKF.plot ellipse
Plot vehicle covariance as an ellipse

E.plot ellipse() overlay the current plot with the estimated vehicle position covariance
ellipses for 20 points along the path.

E.plot ellipse(i) as above but for i points along the path.

E.plot ellipse(i, ls) as above but pass line style arguments ls to plot ellipse. If i is []
then assume 20.

See also

plot ellipse

EKF.plot error
Plot vehicle position

E.plot error(options) plot the error between actual and estimated vehicle path (x, y,
theta). Heading error is wrapped into the range [-pi,pi)

out = E.plot error() is the estimation error versus time as a matrix (N ×3) where each
row is x, y, theta.

Options

‘bound’, S Display the S sigma confidence bounds (default 3). If S =0 do not display bounds.
‘boundcolor’, C Display the bounds using color C
LS Use MATLAB linestyle LS for the plots

Robotics Toolbox 9.10 for MATLAB
R©

88 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The bounds show the instantaneous standard deviation associated with the state.
Observations tend to decrease the uncertainty while periods of dead-reckoning
increase it.

• Ideally the error should lie “mostly” within the +/-3sigma bounds.

See also

EKF.plot xy, EKF.plot ellipse, EKF.plot P

EKF.plot map
Plot landmarks

E.plot map() overlay the current plot with the estimated landmark position (a +-marker)
and a covariance ellipses.

E.plot map(ls) as above but pass line style arguments ls to plot ellipse.

p = E.plot map() is the estimated landmark locations (2×N) and column I is the I’th
map feature. If the landmark was not estimated the corresponding column contains
NaNs.

See also

plot ellipse

EKF.plot P
Plot covariance magnitude

E.plot P() plots the estimated covariance magnitude against time step.

E.plot P(ls) as above but the optional line style arguments ls are passed to plot.

m = E.plot P() is the estimated covariance magnitude at all time steps as a vector.

Robotics Toolbox 9.10 for MATLAB
R©

89 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

EKF.plot xy
Plot vehicle position

E.plot xy() overlay the current plot with the estimated vehicle path in the xy-plane.

E.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

p = E.plot xy() is the estimated vehicle pose trajectory as a matrix (N × 3) where each
row is x, y, theta.

See also

EKF.plot error, EKF.plot ellipse, EKF.plot P

EKF.run
Run the filter

E.run(n, options) runs the filter for n time steps and shows an animation of the vehicle
moving.

Options

‘plot’ Plot an animation of the vehicle moving

Notes

• All previously estimated states and estimation history are initially cleared.

eul2jac
Euler angle rate Jacobian

J = eul2jac(eul) is a Jacobian matrix (3 × 3) that maps Euler angle rates to angular
velocity at the operating point eul=[PHI, THETA, PSI].

J = eul2jac(phi, theta, psi) as above but the Euler angles are passed as separate argu-
ments.

Robotics Toolbox 9.10 for MATLAB
R©

90 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Used in the creation of an analytical Jacobian.

See also

rpy2jac, SerialLink.JACOBN

eul2r
Convert Euler angles to rotation matrix

R = eul2r(phi, theta, psi, options) is an SO(2) orthonornal rotation matrix (3 × 3)
equivalent to the specified Euler angles. These correspond to rotations about the Z, Y,
Z axes respectively. If phi, theta, psi are column vectors (N×1) then they are assumed
to represent a trajectory and R is a three-dimensional matrix (3 × 3 × N), where the
last index corresponds to rows of phi, theta, psi.

R = eul2r(eul, options) as above but the Euler angles are taken from consecutive
columns of the passed matrix eul = [phi theta psi]. If eul is a matrix (N ×3) then they
are assumed to represent a trajectory and R is a three-dimensional matrix (3× 3×N),
where the last index corresponds to rows of eul which are assumed to be [phi, theta,
psi].

Options

‘deg’ Compute angles in degrees (radians default)

Note

• The vectors phi, theta, psi must be of the same length.

See also

eul2tr, rpy2tr, tr2eul

Robotics Toolbox 9.10 for MATLAB
R©

91 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

eul2tr
Convert Euler angles to homogeneous transform

T = eul2tr(phi, theta, psi, options) is a SE(3) homogeneous transformation matrix
(4 × 4) equivalent to the specified Euler angles. These correspond to rotations about
the Z, Y, Z axes respectively. If phi, theta, psi are column vectors (N × 1) then they
are assumed to represent a trajectory and R is a three-dimensional matrix (4× 4×N),
where the last index corresponds to rows of phi, theta, psi.

T = eul2tr(eul, options) as above but the Euler angles are taken from consecutive
columns of the passed matrix eul = [phi theta psi]. If eul is a matrix (N ×3) then they
are assumed to represent a trajectory and T is a three-dimensional matrix (4× 4×N),
where the last index corresponds to rows of eul which are assumed to be [phi, theta,
psi].

Options

‘deg’ Compute angles in degrees (radians default)

Note

• The vectors phi, theta, psi must be of the same length.

• The translational part is zero.

See also

eul2r, rpy2tr, tr2eul

gauss2d
Gaussian kernel

out = gauss2d(im, sigma, C) is a unit volume Gaussian kernel rendered into matrix
out (W ×H) the same size as im (W ×H). The Gaussian has a standard deviation of
sigma. The Gaussian is centered at C=[U,V].

Robotics Toolbox 9.10 for MATLAB
R©

92 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

h2e
Homogeneous to Euclidean

E = h2e(H) is the Euclidean version (K-1×N) of the homogeneous points H (K×N)
where each column represents one point in PK .

See also

e2h

homline
Homogeneous line from two points

L = homline(x1, y1, x2, y2) is a vector (3× 1) which describes a line in homogeneous
form that contains the two Euclidean points (x1,y1) and (x2,y2).

Homogeneous points X (3× 1) on the line must satisfy L’*X = 0.

See also

plot homline

homtrans
Apply a homogeneous transformation

p2 = homtrans(T, p) applies homogeneous transformation T to the points stored
columnwise in p.

• If T is in SE(2) (3× 3) and

– p is 2×N (2D points) they are considered Euclidean (R2)

– p is 3×N (2D points) they are considered projective (p2)

• If T is in SE(3) (4× 4) and

– p is 3×N (3D points) they are considered Euclidean (R3)

Robotics Toolbox 9.10 for MATLAB
R©

93 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

– p is 4×N (3D points) they are considered projective (p3)

tp = homtrans(T, T1) applies homogeneous transformation T to the homogeneous
transformation T1, that is tp=T*T1. If T1 is a 3-dimensional transformation then T
is applied to each plane as defined by the first two dimensions, ie. if T = N × N and
T=N ×N × p then the result is N ×N × p.

See also

e2h, h2e

ishomog
Test if SE(3) homogeneous transformation

ishomog(T) is true (1) if the argument T is of dimension 4× 4 or 4× 4×N , else false
(0).

ishomog(T, ‘valid’) as above, but also checks the validity of the rotation sub-matrix.

Notes

• The first form is a fast, but incomplete, test for a transform is SE(3).

• Does not work for the SE(2) case.

See also

isrot, isvec

ishomog2
Test if SE(2) homogeneous transformation

ishomog2(T) is true (1) if the argument T is of dimension 3 × 3 or 3 × 3 × N , else
false (0).

ishomog2(T, ‘valid’) as above, but also checks the validity of the rotation sub-matrix.

Robotics Toolbox 9.10 for MATLAB
R©

94 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The first form is a fast, but incomplete, test for a transform in SE(3).

• Does not work for the SE(3) case.

See also

ishomog, isrot2, isvec

isrot
Test if SO(3) rotation matrix

isrot(R) is true (1) if the argument is of dimension 3× 3 or 3× 3×N , else false (0).

isrot(R, ‘valid’) as above, but also checks the validity of the rotation matrix.

Notes

• A valid rotation matrix has determinant of 1.

See also

ishomog, isvec

isrot2
Test if SO(2) rotation matrix

isrot2(R) is true (1) if the argument is of dimension 2× 2 or 2× 2×N , else false (0).

isrot2(R, ‘valid’) as above, but also checks the validity of the rotation matrix.

Notes

• A valid rotation matrix has determinant of 1.

Robotics Toolbox 9.10 for MATLAB
R©

95 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

ishomog2, isvec

isvec
Test if vector

isvec(v) is true (1) if the argument v is a 3-vector, else false (0).

isvec(v, L) is true (1) if the argument v is a vector of length L, either a row- or column-
vector. Otherwise false (0).

Notes

• Differs from MATLAB builtin function ISVECTOR, the latter returns true for
the case of a scalar, isvec does not.

• Gives same result for row- or column-vector, ie. 3× 1 or 1× 3 gives true.

See also

ishomog, isrot

joy2tr
Update transform from joystick

T = joy2tr(T, options) updates the SE(3) homogeneous transform (4 × 4) according
to spatial velocities sourced from a connected joystick device.

Options

‘delay’, D Pause for D seconds after reading (default 0.1)
‘scale’, S A 2-vector which scales joystick translational and rotational to rates (default [0.5m/s,

0.25rad/s])
‘world’ Joystick motion is in the world frame
‘tool’ Joystick motion is in the tool frame (default)
‘rotate’, R Index of the button used to enable rotation (default 7)

Robotics Toolbox 9.10 for MATLAB
R©

96 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Joystick axes 0,1,3 map to X,Y,Z or R,P,Y motion.

• A joystick button enables the mapping to translation OR rotation.

• A ‘delay’ of zero means no pause

• If ‘delay’ is non-zero ‘scale’ maps full scale to m/s or rad/s.

• If ‘delay’ is zero ‘scale’ maps full scale to m/sample or rad/sample.

See also

joystick

joystick
Input from joystick

J = joystick() returns a vector of joystick values in the range -1 to +1.

[J,b] = joystick() as above but also returns a vector of button values, either 0 (not
pressed) or 1 (pressed).

Notes

• This is a MEX file that uses SDL (www.libsdl.org) to interface to a standard
gaming joystick.

• The length of the vectors J and b depend on the capabilities of the joystick
identified when it is first opened.

See also

joy2tr

Robotics Toolbox 9.10 for MATLAB
R©

97 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

jsingu
Show the linearly dependent joints in a Jacobian matrix

jsingu(J) displays the linear dependency of joints in a Jacobian matrix. This depen-
dency indicates joint axes that are aligned and causes singularity.

See also

SerialLink.jacobn

jtraj
Compute a joint space trajectory between two configurations

[q,qd,qdd] = jtraj(q0, qf, m) is a joint space trajectory q (m × N) where the joint
coordinates vary from q0 (1×N) to qf (1×N). A quintic (5th order) polynomial is used
with default zero boundary conditions for velocity and acceleration. Time is assumed
to vary from 0 to 1 in m steps. Joint velocity and acceleration can be optionally returned
as qd (m×N) and qdd (m×N) respectively. The trajectory q, qd and qdd are m×N
matrices, with one row per time step, and one column per joint.

[q,qd,qdd] = jtraj(q0, qf, m, qd0, qdf) as above but also specifies initial and final
joint velocity for the trajectory.

[q,qd,qdd] = jtraj(q0, qf, T) as above but the trajectory length is defined by the length
of the time vector T (m× 1).

[q,qd,qdd] = jtraj(q0, qf, T, qd0, qdf) as above but specifies initial and final joint
velocity for the trajectory and a time vector.

See also

qplot, ctraj, SerialLink.jtraj

Robotics Toolbox 9.10 for MATLAB
R©

98 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Link
Robot manipulator Link class

A Link object holds all information related to a robot link such as kinematics parame-
ters, rigid-body inertial parameters, motor and transmission parameters.

Methods

A link transform matrix
RP joint type: ‘R’ or ‘P’
friction friction force
nofriction Link object with friction parameters set to zero
dyn display link dynamic parameters
islimit test if joint exceeds soft limit
isrevolute test if joint is revolute
isprismatic test if joint is prismatic
display print the link parameters in human readable form
char convert to string

Properties (read/write)

theta kinematic: joint angle
d kinematic: link offset
a kinematic: link length
alpha kinematic: link twist
sigma kinematic: 0 if revolute, 1 if prismatic
mdh kinematic: 0 if standard D&H, else 1
offset kinematic: joint variable offset
qlim kinematic: joint variable limits [min max]
m dynamic: link mass
r dynamic: link COG wrt link coordinate frame 3× 1
I dynamic: link inertia matrix, symmetric 3× 3, about link COG.
B dynamic: link viscous friction (motor referred)
Tc dynamic: link Coulomb friction
G actuator: gear ratio
Jm actuator: motor inertia (motor referred)

Examples

L = Link([0 1.2 0.3 pi/2]);
L = Link(’revolute’, ’d’, 1.2, ’a’, 0.3, ’alpha’, pi/2);
L = Revolute(’d’, 1.2, ’a’, 0.3, ’alpha’, pi/2);

Robotics Toolbox 9.10 for MATLAB
R©

99 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This is a reference class object.

• Link objects can be used in vectors and arrays.

References

• Robotics, Vision & Control, Chap 7, P. Corke, Springer 2011.

See also

Link, Revolute, Prismatic, SerialLink, RevoluteMDH, PrismaticMDH

Link.Link
Create robot link object

This the class constructor which has several call signatures.

L = Link() is a Link object with default parameters.

L = Link(lnk) is a Link object that is a deep copy of the link object lnk.

L = Link(options) is a link object with the kinematic and dynamic parameters specified
by the key/value pairs.

Robotics Toolbox 9.10 for MATLAB
R©

100 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘theta’, TH joint angle, if not specified joint is revolute
‘d’, D joint extension, if not specified joint is prismatic
‘a’, A joint offset (default 0)
‘alpha’, A joint twist (default 0)
‘standard’ defined using standard D&H parameters (default).
‘modified’ defined using modified D&H parameters.
‘offset’, O joint variable offset (default 0)
‘qlim’, L joint limit (default [])
‘I’, I link inertia matrix (3× 1, 6× 1 or 3× 3)
‘r’, R link centre of gravity (3× 1)
‘m’, M link mass (1× 1)
‘G’, G motor gear ratio (default 1)
‘B’, B joint friction, motor referenced (default 0)
‘Jm’, J motor inertia, motor referenced (default 0)
‘Tc’, T Coulomb friction, motor referenced (1× 1 or 2× 1), (default [0 0])
‘revolute’ for a revolute joint (default)
‘prismatic’ for a prismatic joint ‘p’
‘standard’ for standard D&H parameters (default).
‘modified’ for modified D&H parameters.
‘sym’ consider all parameter values as symbolic not numeric

• It is an error to specify both ‘theta’ and ‘d’

• The link inertia matrix (3 × 3) is symmetric and can be specified by giving a
3 × 3 matrix, the diagonal elements [Ixx Iyy Izz], or the moments and products
of inertia [Ixx Iyy Izz Ixy Iyz Ixz].

• All friction quantities are referenced to the motor not the load.

• Gear ratio is used only to convert motor referenced quantities such as friction
and interia to the link frame.

Old syntax

L = Link(dh, options) is a link object using the specified kinematic convention and
with parameters:

• dh = [THETA D A ALPHA SIGMA OFFSET] where OFFSET is a constant
displacement between the user joint angle vector and the true kinematic solution.

• dh = [THETA D A ALPHA SIGMA] where SIGMA=0 for a revolute and 1 for
a prismatic joint, OFFSET is zero.

• dh = [THETA D A ALPHA], joint is assumed revolute and OFFSET is zero.

Robotics Toolbox 9.10 for MATLAB
R©

101 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘standard’ for standard D&H parameters (default).
‘modified’ for modified D&H parameters.
‘revolute’ for a revolute joint, can be abbreviated to ‘r’ (default)
‘prismatic’ for a prismatic joint, can be abbreviated to ‘p’

Examples

A standard Denavit-Hartenberg link

L3 = Link(’d’, 0.15005, ’a’, 0.0203, ’alpha’, -pi/2);

since ‘theta’ is not specified the joint is assumed to be revolute, and since the kinematic
convention is not specified it is assumed ‘standard’.

Using the old syntax

L3 = Link([0, 0.15005, 0.0203, -pi/2], ’standard’);

the flag ‘standard’ is not strictly necessary but adds clarity. Only 4 parameters are
specified so sigma is assumed to be zero, ie. the joint is revolute.

L3 = Link([0, 0.15005, 0.0203, -pi/2, 0], ’standard’);

the flag ‘standard’ is not strictly necessary but adds clarity. 5 parameters are specified
and sigma is set to zero, ie. the joint is revolute.

L3 = Link([0, 0.15005, 0.0203, -pi/2, 1], ’standard’);

the flag ‘standard’ is not strictly necessary but adds clarity. 5 parameters are specified
and sigma is set to one, ie. the joint is prismatic.

For a modified Denavit-Hartenberg revolute joint

L3 = Link([0, 0.15005, 0.0203, -pi/2, 0], ’modified’);

Notes

• Link object is a reference object, a subclass of Handle object.

• Link objects can be used in vectors and arrays.

• The parameter D is unused in a revolute joint, it is simply a placeholder in the
vector and the value given is ignored.

• The parameter THETA is unused in a prismatic joint, it is simply a placeholder
in the vector and the value given is ignored.

• The joint offset is a constant added to the joint angle variable before forward
kinematics and subtracted after inverse kinematics. It is useful if you want the
robot to adopt a ‘sensible’ pose for zero joint angle configuration.

• The link dynamic (inertial and motor) parameters are all set to zero. These must
be set by explicitly assigning the object properties: m, r, I, Jm, B, Tc.

Robotics Toolbox 9.10 for MATLAB
R©

102 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The gear ratio is set to 1 by default, meaning that motor friction and inertia will
be considered if they are non-zero.

See also

Revolute, Prismatic

Link.A
Link transform matrix

T = L.A(q) is the link homogeneous transformation matrix (4×4) corresponding to the
link variable q which is either the Denavit-Hartenberg parameter THETA (revolute) or
D (prismatic).

Notes

• For a revolute joint the THETA parameter of the link is ignored, and q used
instead.

• For a prismatic joint the D parameter of the link is ignored, and q used instead.

• The link offset parameter is added to q before computation of the transformation
matrix.

Link.char
Convert to string

s = L.char() is a string showing link parameters in a compact single line format. If L
is a vector of Link objects return a string with one line per Link.

See also

Link.display

Robotics Toolbox 9.10 for MATLAB
R©

103 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Link.display
Display parameters

L.display() displays the link parameters in compact single line format. If L is a vector
of Link objects displays one line per element.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Link object and the command has no trailing semicolon.

See also

Link.char, Link.dyn, SerialLink.showlink

Link.dyn
Show inertial properties of link

L.dyn() displays the inertial properties of the link object in a multi-line format. The
properties shown are mass, centre of mass, inertia, friction, gear ratio and motor prop-
erties.

If L is a vector of Link objects show properties for each link.

See also

SerialLink.dyn

Link.friction
Joint friction force

f = L.friction(qd) is the joint friction force/torque for link velocity qd.

Robotics Toolbox 9.10 for MATLAB
R©

104 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The returned friction value is referred to the output of the gearbox.

• The friction parameters in the Link object are referred to the motor.

• Motor viscous friction is scaled up by G2.

• Motor Coulomb friction is scaled up by G.

• The appropriate Coulomb friction value to use in the non-symmetric case de-
pends on the sign of the joint velocity, not the motor velocity.

Link.islimit
Test joint limits

L.islimit(q) is true (1) if q is outside the soft limits set for this joint.

Note

• The limits are not currently used by any Toolbox functions.

Link.isprismatic
Test if joint is prismatic

L.isprismatic() is true (1) if joint is prismatic.

See also

Link.isrevolute

Link.isrevolute
Test if joint is revolute

L.isrevolute() is true (1) if joint is revolute.

Robotics Toolbox 9.10 for MATLAB
R©

105 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link.isprismatic

Link.issym
Check if link is a symbolic model

res = L.issym() is true if the Link L has symbolic parameters.

Link.nofriction
Remove friction

ln = L.nofriction() is a link object with the same parameters as L except nonlinear
(Coulomb) friction parameter is zero.

ln = L.nofriction(’all’) as above except that viscous and Coulomb friction are set to
zero.

ln = L.nofriction(’coulomb’) as above except that Coulomb friction is set to zero.

ln = L.nofriction(’viscous’) as above except that viscous friction is set to zero.

Notes

• Forward dynamic simulation can be very slow with finite Coulomb friction.

See also

SerialLink.nofriction, SerialLink.fdyn

Link.RP
Joint type

c = L.RP() is a character ‘R’ or ‘P’ depending on whether joint is revolute or prismatic
respectively. If L is a vector of Link objects return a string of characters in joint order.

Robotics Toolbox 9.10 for MATLAB
R©

106 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Link.set.I
Set link inertia

L.I = [Ixx Iyy Izz] sets link inertia to a diagonal matrix.

L.I = [Ixx Iyy Izz Ixy Iyz Ixz] sets link inertia to a symmetric matrix with specified
inertia and product of intertia elements.

L.I = M set Link inertia matrix to M (3× 3) which must be symmetric.

Link.set.r
Set centre of gravity

L.r = R sets the link centre of gravity (COG) to R (3-vector).

Link.set.Tc
Set Coulomb friction

L.Tc = F sets Coulomb friction parameters to [F -F], for a symmetric Coulomb friction
model.

L.Tc = [FP FM] sets Coulomb friction to [FP FM], for an asymmetric Coulomb friction
model. FP>0 and FM<0. FP is applied for a positive joint velocity and FM for a
negative joint velocity.

Notes

• The friction parameters are defined as being positive for a positive joint veloc-
ity, the friction force computed by Link.friction uses the negative of the friction
parameter, that is, the force opposing motion of the joint.

See also

Link.friction

Robotics Toolbox 9.10 for MATLAB
R©

107 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

lspb
Linear segment with parabolic blend

[s,sd,sdd] = lspb(s0, sf, m) is a scalar trajectory (m× 1) that varies smoothly from s0
to sf in m steps using a constant velocity segment and parabolic blends (a trapezoidal
path). Velocity and acceleration can be optionally returned as sd (m × 1) and sdd
(m× 1).

[s,sd,sdd] = lspb(s0, sf, m, v) as above but specifies the velocity of the linear segment
which is normally computed automatically.

[s,sd,sdd] = lspb(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T (m× 1).

[s,sd,sdd] = lspb(s0, sf, T, v) as above but specifies the velocity of the linear segment
which is normally computed automatically and a time vector.

lspb(s0, sf, m, v) as above but plots s, sd and sdd versus time in a single figure.

Notes

• For some values of v no solution is possible and an error is flagged.

References

• Robotics, Vision & Control, Chap 3, P. Corke, Springer 2011.

See also

tpoly, jtraj

makemap
Make an occupancy map

map = makemap(n) is an occupancy grid map (n× n) created by a simple interactive
editor. The map is initially unoccupied and obstacles can be added using geometric
primitives.

map = makemap() as above but n=128.

map = makemap(map0) as above but the map is initialized from the occupancy grid
map0, allowing obstacles to be added.

Robotics Toolbox 9.10 for MATLAB
R©

108 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

With focus in the displayed figure window the following commands can be entered:

left button click and drag to create a rectangle
p draw polygon
c draw circle
u undo last action
e erase map
q leave editing mode and return map

See also

dxform, PRM, RRT

Map
Map of planar point features

A Map object represents a square 2D environment with a number of landmark feature
points.

Methods

plot Plot the feature map
feature Return a specified map feature
display Display map parameters in human readable form
char Convert map parameters to human readable string

Properties

map Matrix of map feature coordinates 2×N
dim The dimensions of the map region x,y in [-dim,dim]
nfeatures The number of map features N

Examples

To create a map for an area where X and Y are in the range -10 to +10 metres and with
50 random feature points

map = Map(50, 10);

which can be displayed by

map.plot();

Robotics Toolbox 9.10 for MATLAB
R©

109 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

See also

RangeBearingSensor, EKF

Map.Map
Create a map of point feature landmarks

m = Map(n, dim, options) is a Map object that represents n random point features in
a planar region bounded by +/-dim in the x- and y-directions.

Options

‘verbose’ Be verbose

Map.char
Convert map parameters to a string

s = M.char() is a string showing map parameters in a compact human readable format.

Map.display
Display map parameters

M.display() displays map parameters in a compact human readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Map object and the command has no trailing semicolon.

Robotics Toolbox 9.10 for MATLAB
R©

110 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

map.char

Map.feature
Get landmarks from map

f = M.feature(k) is the coordinate (2× 1) of the k’th map feature (landmark).

Map.plot
Plot the map

M.plot() plots the feature map in the current figure, as a square region with dimensions
given by the M.dim property. Each feature is marked by a black diamond.

M.plot(ls) as above, but the arguments ls are passed to plot and override the default
marker style.

Notes

• The plot is left with HOLD ON.

Map.show
Show the feature map

Notes

• Deprecated, use plot method.

Map.verbosity
Set verbosity

M.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

Robotics Toolbox 9.10 for MATLAB
R©

111 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl 3link3d
(C) 1993-2015, by Peter I. Corke

This file is part of The Robotics Toolbox for MATLAB (RTB).

RTB is free software: you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

RTB is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Leser General Public License along with
RTB. If not, see <http://www.gnu.org/licenses/>.

http://www.petercorke.com

mdl ball
Create model of a ball manipulator

MDL BALL creates the workspace variable ball which describes the kinematic char-
acteristics of a serial link manipulator with 50 joints that folds into a ball shape.

mdl ball(n) as above but creates a manipulator with n joints.

Also define the workspace vectors:

q joint angle vector for default ball configuration

Reference

• ”A divide and conquer articulated-body algorithm for parallel O(log(n)) calcu-
lation of rigid body dynamics, Part 2”, Int. J. Robotics Research, 18(9), pp
876-892.

Robotics Toolbox 9.10 for MATLAB
R©

112 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl coil

mdl baxter
Kinematic model of Baxter dual-arm robot

MDL BAXTER is a script that creates the workspace variables LEFT and RIGHT
which describes the kinematic characteristics of the two arms of a Rethink Robotics
Baxter robot using standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qd lower arm horizontal as per data sheet

Notes

• SI units of metres are used.

References

“Kinematics Modeling and Experimental Verification of Baxter Robot” Z. Ju, C. Yang,
H. Ma, Chinese Control Conf, 2015.

See also

SerialLink, mdl nao

Robotics Toolbox 9.10 for MATLAB
R©

113 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl coil
Create model of a coil manipulator

MDL COIL creates the workspace variable coil which describes the kinematic charac-
teristics of a serial link manipulator with 50 joints that folds into a helix shape.

mdl ball(n) as above but creates a manipulator with n joints.

Also defines the workspace vectors:

q joint angle vector for default helical configuration

Reference

• ”A divide and conquer articulated-body algorithm for parallel O(log(n)) calcu-
lation of rigid body dynamics, Part 2”, Int. J. Robotics Research, 18(9), pp
876-892.

Notes

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl ball

mdl Fanuc10L
Create kinematic model of Fanuc AM120iB/10L robot

MDL FANUC10L is a script that creates the workspace variable R which describes the
kinematic characteristics of a Fanuc AM120iB/10L robot using standard DH conven-
tions.

Also defines the workspace vector:

q0 mastering position.

Notes

• SI units of metres are used.

Robotics Toolbox 9.10 for MATLAB
R©

114 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

See also

SerialLink, mdl irb140, mdl m16, mdl motomanhp6, mdl puma560

mdl hyper2d
Create model of a hyper redundant planar manipulator

MDL HYPER2D creates the workspace variable h2d which describes the kinematic
characteristics of a serial link manipulator with 10 joints which at zero angles is a
straight line in the XY plane.

mdl hyper2d(n) as above but creates a manipulator with n joints.

Also define the workspace vectors:

qz joint angle vector for zero angle configuration

R = mdl hyper2d(n) functional form of the above, returns the SerialLink object.

[R,qz] = mdl hyper2d(n) as above but also returns a vector of zero joint angles.

Notes

• The manipulator in default pose is a straight line 1m long.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl hyper3d, mdl coil, mdl ball, mdl twolink

Robotics Toolbox 9.10 for MATLAB
R©

115 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl hyper3d
Create model of a hyper redundant 3D manipulator

MDL HYPER3D is a script that creates the workspace variable h3d which describes
the kinematic characteristics of a serial link manipulator with 10 joints which at zero
angles is a straight line in the XY plane.

mdl hyper3d(n) as above but creates a manipulator with n joints.

Also define the workspace vectors:

qz joint angle vector for zero angle configuration

R = mdl hyper3d(n) functional form of the above, returns the SerialLink object.

[R,qz] = mdl hyper3d(n) as above but also returns a vector of zero joint angles.

Notes

• The manipulator in default pose is a straight line 1m long.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl hyper2d, mdl ball, mdl coil

mdl irb140
Create model of ABB IRB 140 manipulator

MDL IRB140 is a script that creates the workspace variable robot which describes the
kinematic characteristics of an ABB IRB 140 manipulator using standard DH conven-
tions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qd lower arm horizontal as per data sheet

Robotics Toolbox 9.10 for MATLAB
R©

116 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

• “IRB 140 data sheet”, ABB Robotics.

• ”Utilizing the Functional Work Space Evaluation Tool for Assessing a System
Design and Reconfiguration Alternatives” A. Djuric and R. J. Urbanic

Notes

• SI units of metres are used.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl fanuc10l, mdl m16, mdl motormanhp6, mdl S4ABB2p8, mdl puma560

mdl irb140 mdh
Create model of the ABB IRB 140 manipulator

mdl_irb140_mod

Script creates the workspace variable irb which describes the kinematic characteristics
of an ABB IRB 140 manipulator using modified DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration

Reference

• ABB IRB 140 data sheet

• ”THE MODELING OF A SIX DEGREE-OF-FREEDOM INDUSTRIAL ROBOT
FOR THE PURPOSE OF EFFICIENT PATH PLANNING” Master of Science
Thesis, Penn State U, May 2009 Tyler Carter

See also

SerialLink, mdl irb140, mdl puma560, mdl stanford, mdl twolink

Robotics Toolbox 9.10 for MATLAB
R©

117 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• SI units of metres are used.

• The tool frame is in the centre of the tool flange.

• Zero angle configuration has the upper arm vertical and lower arm horizontal.

mdl jaco
Create model of Kinova Jaco manipulator

MDL JACO is a script that creates the workspace variable jaco which describes the
kinematic characteristics of a Kinova Jaco manipulator using standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration

Reference

• “DH Parameters of Jaco” Version 1.0.8, July 25, 2013.

Notes

• SI units of metres are used.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl mico, mdl puma560

Robotics Toolbox 9.10 for MATLAB
R©

118 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl KR5
Create model of Kuka KR5 manipulator

MDL KR5 is a script that creates the workspace variable mico which describes the
kinematic characteristics of a Kuka KR5 manipulator using standard DH conventions.

Also define the workspace vectors:

qk1 nominal working position 1
qk2 nominal working position 2
qk3 nominal working position 3

Notes

• SI units of metres are used.

• Includes 11.5cm tool in the z-direction

Author

• Gautam sinha Indian Institute of Technology, Kanpur.

See also

SerialLink, mdl irb140, mdl fanuc10l, mdl motomanhp6, mdl S4ABB2p8, mdl puma560

mdl m16
Create model of Fanuc M16 manipulator

MDL M16 is a script that creates the workspace variable mico which describes the
kinematic characteristics of a Fanuc M16 manipulator using standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qd lower arm horizontal as per data sheet

Robotics Toolbox 9.10 for MATLAB
R©

119 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Reference

• “Fanuc M-16iB data sheet”, http://www.robots.com/fanuc/m-16ib.

• ”Utilizing the Functional Work Space Evaluation Tool for Assessing a

System Design and Reconfiguration Alternatives"
A. Djuric and R. J. Urbanic

Notes

• SI units of metres are used.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl irb140, mdl fanuc10l, mdl motomanhp6, mdl S4ABB2p8, mdl puma560

mdl mico
Create model of Kinova Mico manipulator

MDL MICO is a script that creates the workspace variable mico which describes the
kinematic characteristics of a Kinova Mico manipulator using standard DH conven-
tions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration

Reference

• “DH Parameters of Mico” Version 1.0.1, August 05, 2013. Kinova

Notes

• SI units of metres are used.

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

Robotics Toolbox 9.10 for MATLAB
R©

120 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink, Revolute, mdl jaco, mdl puma560, mdl twolink

mdl MotomanHP6
Create kinematic data of a Motoman HP6 manipulator

MDL MotomanHP6 is a script that creates the workspace variable R which describes
the kinematic characteristics of a Motoman HP6 manipulator using standard DH con-
ventions.

Also defines the workspace vector:

q0 mastering position.

Author

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

Notes

• SI units of metres are used.

See also

SerialLink, mdl irb140, mdl m16, mdl fanuc10l, mdl S4ABB2p8, mdl puma560

mdl nao
Create model of Aldebaran NAO humanoid robot

MDL NAO is a script that creates several workspace variables

leftarm left-arm kinematics (4DOF)
rightarm right-arm kinematics (4DOF)
leftleg left-leg kinematics (6DOF)
rightleg right-leg kinematics (6DOF)

Robotics Toolbox 9.10 for MATLAB
R©

121 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

which are each SerialLink objects that describe the kinematic characteristics of the
arms and legs of the NAO humanoid.

Reference

• “Forward and Inverse Kinematics for the NAO Humanoid Robot”, Nikolaos Ko-
finas, Thesis, Technical University of Crete July 2012.

• “Mechatronic design of NAO humanoid” David Gouaillier etal. IROS 2009, pp.
769-774.

Notes

• SI units of metres are used.

• The base transform of arms and legs are constant with respect to the torso frame,
which is assumed to be the constant value when the robot is upright. Clearly if
the robot is walking these base transforms will be dynamic.

• The first reference uses Modified DH notation, but doesn’t explicitly mention
this, and the parameter tables have the wrong column headings for Modified DH
parameters.

• TODO; add joint limits

• TODO; add dynamic parameters

See also

SerialLink, Revolute

mdl offset3
A minimalistic 3DOF robot arm with shoulder offset

MDL OFFSET3 is a script that creates the workspace variable off3 which describes
the kinematic characteristics of a simple arm manipulator with a shoulder offset, using
standard DH conventions.

Somewhat like a Puma arm without the wrist.

Also define the workspace vectors:

qz zero joint angle configuration

Robotics Toolbox 9.10 for MATLAB
R©

122 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl offset6, mdl simple6, mdl puma560

mdl offset6
A minimalistic 6DOF robot arm with shoulder offset

MDL OFFSET6 is a script that creates the workspace variable off6 which describes
the kinematic characteristics of a simple arm manipulator with a spherical wrist and a
shoulder offset, using standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration

Notes

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl simple6, mdl puma560, mdl twolink

mdl onelink
Create model of a simple 1-link mechanism

MDL ONELINK is a script that creates the workspace variable tl which describes the
kinematic and dynamic characteristics of a simple planar 1-link mechanism.

Also defines the vector:

Robotics Toolbox 9.10 for MATLAB
R©

123 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

qz corresponds to the zero joint angle configuration.

Notes

• SI units are used.

• It is a planar mechanism operating in the XY (horizontal) plane and is therefore
not affected by gravity.

• Assume unit length links with all mass (unity) concentrated at the joints.

References

• Based on Fig 3-6 (p73) of Spong and Vidyasagar (1st edition).

See also

SerialLink, mdl twolink, mdl planar1

mdl p8
Create model of Puma robot on an XY base

MDL P8 is a script that creates the workspace variable p8 which is an 8-axis robot
comprising a Puma 560 robot on an XY base. Joints 1 and 2 are the base, joints 3-8 are
the robot arm.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction
qn arm is at a nominal non-singular configuration

Notes

• SI units of metres are used.

References

• Robotics, Vision & Control, Sec 7.3.4, P. Corke, Springer 2011.

Robotics Toolbox 9.10 for MATLAB
R©

124 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink, mdl puma560

mdl phantomx
Create model of PhantomX pincher manipulator

MDL PHANTOMX is a script that creates the workspace variable px which describes
the kinematic characteristics of a PhantomX Pincher Robot, a 4 joint hobby class ma-
nipulator by Trossen Robotics.

Also define the workspace vectors:

qz zero joint angle configuration

Notes

• Uses standard DH conventions.

• Tool centrepoint is middle of the fingertips.

• All translational units in mm.

Reference

• http://www.trossenrobotics.com/productdocs/assemblyguides/phantomx-basic-robot-
arm.html

mdl planar1
Create model of a simple planar 1-link mechanism

MDL PLANAR1 is a script that creates the workspace variable p1 which describes the
kinematic characteristics of a simple planar 1-link mechanism.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Robotics Toolbox 9.10 for MATLAB
R©

125 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Moves in the XY plane.

• No dynamics in this model.

See also

SerialLink, mdl onelink, mdl planar2, mdl planar3

mdl planar2
Create model of a simple planar 2-link mechanism

MDL PLANAR2 is a script that creates the workspace variable p2 which describes the
kinematic characteristics of a simple planar 2-link mechanism.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Notes

• Moves in the XY plane.

• No dynamics in this model.

See also

SerialLink, mdl twolink, mdl planar1, mdl planar3

mdl planar3
Create model of a simple planar 3-link mechanism

MDL PLANAR2 is a script that creates the workspace variable p3 which describes the
kinematic characteristics of a simple redundant planar 3-link mechanism.

Robotics Toolbox 9.10 for MATLAB
R©

126 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Notes

• Moves in the XY plane.

• No dynamics in this model.

See also

SerialLink, mdl twolink, mdl planar1, mdl planar2

mdl puma560
Create model of Puma 560 manipulator

MDL PUMA560 is a script that creates the workspace variable p560 which describes
the kinematic and dynamic characteristics of a Unimation Puma 560 manipulator using
standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction
qn arm is at a nominal non-singular configuration

Notes

• SI units are used.

• The model includes armature inertia and gear ratios.

Reference

• “A search for consensus among model parameters reported for the PUMA 560
robot”, P. Corke and B. Armstrong-Helouvry, Proc. IEEE Int. Conf. Robotics
and Automation, (San Diego), pp. 1608-1613, May 1994.

Robotics Toolbox 9.10 for MATLAB
R©

127 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

serialrevolute, mdl puma560akb, mdl stanford

mdl puma560akb
Create model of Puma 560 manipulator

MDL PUMA560AKB is a script that creates the workspace variable p560m which
describes the kinematic and dynamic characterstics of a Unimation Puma 560 manipu-
lator modified DH conventions.

Also defines the workspace vectors:

qz zero joint angle configuration
qr vertical ‘READY’ configuration
qstretch arm is stretched out in the X direction

Notes

• SI units are used.

References

• “The Explicit Dynamic Model and Inertial Parameters of the Puma 560 Arm”
Armstrong, Khatib and Burdick 1986

See also

SerialLink, mdl puma560, mdl stanford mdh

mdl quadrotor
Dynamic parameters for a quadrotor.

MDL QUADCOPTER is a script creates the workspace variable quad which describes
the dynamic characterstics of a quadrotor flying robot.

Robotics Toolbox 9.10 for MATLAB
R©

128 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

This is a structure with the following elements:

nrotors Number of rotors (1× 1)
J Flyer rotational inertia matrix (3× 3)
h Height of rotors above CoG (1× 1)
d Length of flyer arms (1× 1)
nb Number of blades per rotor (1× 1)
r Rotor radius (1× 1)
c Blade chord (1× 1)
e Flapping hinge offset (1× 1)
Mb Rotor blade mass (1× 1)
Mc Estimated hub clamp mass (1× 1)
ec Blade root clamp displacement (1× 1)
Ib Rotor blade rotational inertia (1× 1)
Ic Estimated root clamp inertia (1× 1)
mb Static blade moment (1× 1)
Ir Total rotor inertia (1× 1)
Ct Non-dim. thrust coefficient (1× 1)
Cq Non-dim. torque coefficient (1× 1)
sigma Rotor solidity ratio (1× 1)
thetat Blade tip angle (1× 1)
theta0 Blade root angle (1× 1)
theta1 Blade twist angle (1× 1)
theta75 3/4 blade angle (1× 1)
thetai Blade ideal root approximation (1× 1)
a Lift slope gradient (1× 1)
A Rotor disc area (1× 1)
gamma Lock number (1× 1)

Notes

• SI units are used.

References

• Design, Construction and Control of a Large Quadrotor micro air vehicle. P.Pounds,
PhD thesis, Australian National University, 2007. http://www.eng.yale.edu/pep5/P Pounds Thesis 2008.pdf

• This is a heavy lift quadrotor

See also

sl quadrotor

Robotics Toolbox 9.10 for MATLAB
R©

129 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl S4ABB2p8
Create kinematic model of ABB S4 2.8robot

MDL S4ABB2p8 is a script creates the workspace variable R which describes the kine-
matic characteristics of an ABB S4 2.8 robot using standard DH conventions.

Also defines the workspace vector:

q0 mastering position.

Author

Wynand Swart, Mega Robots CC, P/O Box 8412, Pretoria, 0001, South Africa wynand.swart@gmail.com

See also

SerialLink, mdl fanuc10l, mdl m16, mdl motormanhp6, mdl irb140, mdl puma560

mdl simple6
A minimalistic 6DOF robot arm

MDL SIMPLE6 is a script creates the workspace variable s6 which describes the kine-
matic characteristics of a simple arm manipulator with a spherical wrist and no shoulder
offset, using standard DH conventions.

Also define the workspace vectors:

qz zero joint angle configuration

Notes

• Unlike most other mdl xxx scripts this one is actually a function that behaves
like a script and writes to the global workspace.

See also

SerialLink, mdl offset6, mdl puma560

Robotics Toolbox 9.10 for MATLAB
R©

130 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mdl stanford
Create model of Stanford arm

mdl_stanford

Script creates the workspace variable stanf which describes the kinematic and dynamic
characteristics of the Stanford (Scheinman) arm.

Also defines the vectors:

qz zero joint angle configuration.

Note

• SI units are used.

• Gear ratios not currently known, though reflected armature inertia is known, so
gear ratios are set to 1.

References

• Kinematic data from ”Modelling, Trajectory calculation and Servoing of a com-
puter controlled arm”. Stanford AIM-177. Figure 2.3

• Dynamic data from “Robot manipulators: mathematics, programming and con-
trol” Paul 1981, Tables 6.5, 6.6

• Dobrotin & Scheinman, ”Design of a computer controlled manipulator for robot
research”, IJCAI, 1973.

See also

SerialLink, mdl puma560, mdl puma560akb

mdl stanford mdh
Create model of Stanford arm using MDH conventions

mdl_stanford_mdh

Script creates the workspace variable stanf which describes the kinematic and dynamic
characteristics of the Stanford (Scheinman) arm using modified Denavit-Hartenberg
parameters.

Robotics Toolbox 9.10 for MATLAB
R©

131 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Also defines the vectors:

qz zero joint angle configuration.

Notes

• SI units are used.

References

• Kinematic data from ”Modelling, Trajectory calculation and Servoing of a com-
puter controlled arm”. Stanford AIM-177. Figure 2.3

• Dynamic data from “Robot manipulators: mathematics, programming and con-
trol” Paul 1981, Tables 6.5, 6.6

See also

SerialLink, mdl puma560, mdl puma560akb

mdl twolink
Create model of a 2-link mechanism

MDL TWOLINK is a script that creates the workspace variable tl which describes the
kinematic and dynamic characteristics of a simple planar 2-link mechanism.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Notes

• SI units are used.

• It is a planar mechanism operating in the XY (horizontal) plane and is therefore
not affected by gravity.

• Assume unit length links with all mass (unity) concentrated at the joints.

References

• Based on Fig 3-6 (p73) of Spong and Vidyasagar (1st edition).

Robotics Toolbox 9.10 for MATLAB
R©

132 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink, mdl onelink, mdl twolink mdh, mdl planar2

mdl twolink mdh
Create model of a 2-link mechanism using modified DH con-
vention

MDL TWOLINK MDH is a script that the workspace variable tl which describes the
kinematic and dynamic characteristics of a simple planar 2-link mechanism using mod-
ified Denavit-Hartenberg conventions.

Also defines the vector:

qz corresponds to the zero joint angle configuration.

Notes

• SI units of metres are used.

• It is a planar mechanism operating in the XY (horizontal) plane and is therefore
not affected by gravity.

References

• Based on Fig 3.8 (p71) of Craig (3rd edition).

See also

SerialLink, mdl onelink, mdl twolink, mdl planar2

mstraj
Multi-segment multi-axis trajectory

traj = mstraj(p, qdmax, tseg, q0, dt, tacc, options) is a trajectory (K × N) for N
axes moving simultaneously through M segment. Each segment is linear motion and
polynomial blends connect the segments. The axes start at q0 (1×N) and pass through

Robotics Toolbox 9.10 for MATLAB
R©

133 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

M-1 via points defined by the rows of the matrix p (M × N), and finish at the point
defined by the last row of p. The trajectory matrix has one row per time step, and one
column per axis. The number of steps in the trajectory K is a function of the number
of via points and the time or velocity limits that apply.

• p (M × N) is a matrix of via points, 1 row per via point, one column per axis.
The last via point is the destination.

• qdmax (1×N) are axis speed limits which cannot be exceeded,

• tseg (1×M) are the durations for each of the K segments

• q0 (1×N) are the initial axis coordinates

• dt is the time step

• tacc (1× 1) this acceleration time is applied to all segment transitions

• tacc (1×M) acceleration time for each segment, tacc(i) is the acceleration time
for the transition from segment i to segment i+1. tacc(1) is also the acceleration
time at the start of segment 1.

traj = mstraj(segments, qdmax, q0, dt, tacc, qd0, qdf, options) as above but addi-
tionally specifies the initial and final axis velocities (1×N).

Options

‘verbose’ Show details.

Notes

• Only one of qdmax or tseg should be specified, the other is set to [].

• If no output arguments are specified the trajectory is plotted.

• The path length K is a function of the number of via points, q0, dt and tacc.

• The final via point p(end,:) is the destination.

• The motion has M segments from q0 to p(1,:) to p(2,:) ... to p(end,:).

• All axes reach their via points at the same time.

• Can be used to create joint space trajectories where each axis is a joint coordi-
nate.

• Can be used to create Cartesian trajectories where the “axes” correspond to trans-
lation and orientation in RPY or Euler angle form.

See also

mtraj, lspb, ctraj

Robotics Toolbox 9.10 for MATLAB
R©

134 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

mtraj
Multi-axis trajectory between two points

[q,qd,qdd] = mtraj(tfunc, q0, qf, m) is a multi-axis trajectory (m×N) varying from
configuration q0 (1×N) to qf (1×N) according to the scalar trajectory function tfunc
in m steps. Joint velocity and acceleration can be optionally returned as qd (m × N)
and qdd (m×N) respectively. The trajectory outputs have one row per time step, and
one column per axis.

The shape of the trajectory is given by the scalar trajectory function tfunc
[S,SD,SDD] = TFUNC(S0, SF, M);

and possible values of tfunc include @lspb for a trapezoidal trajectory, or @tpoly for
a polynomial trajectory.

[q,qd,qdd] = mtraj(tfunc, q0, qf, T) as above but T (m × 1) is a time vector which
dictates the number of points on the trajectory.

Notes

• If no output arguments are specified q, qd, and qdd are plotted.

• When tfunc is @tpoly the result is functionally equivalent to JTRAJ except that
no initial velocities can be specified. JTRAJ is computationally a little more
efficient.

See also

jtraj, mstraj, lspb, tpoly

multidfprintf
Print formatted text to multiple streams

COUNT = MULTIDFPRINTF(IDVEC, FORMAT, A, ...) performs formatted output
to multiple streams such as console and files. FORMAT is the format string as used
by sprintf and fprintf. A is the array of elements, to which the format will be applied
similar to sprintf and fprint.

IDVEC is a vector (1 × N) of file descriptors and COUNT is a vector (1 × N) of the
number of bytes written to each file.

Robotics Toolbox 9.10 for MATLAB
R©

135 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• To write to the consolde use the file identifier 1.

Example

% Create and open a new example file:
fid = fopen(’exampleFile.txt’,’w+’);
% Write something to the file and the console simultaneously:
multidfprintf([1 FID],’% s % d % d % d% Close the file:
fclose(FID);

Authors

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

fprintf, sprintf

Navigation
Navigation superclass

An abstract superclass for implementing planar grid-based navigation classes.

Methods

plot Display the occupancy grid
visualize Display the occupancy grid (deprecated)
plan Plan a path to goal
path Return/animate a path from start to goal
display Display the parameters in human readable form
char Convert to string

rand Uniformly distributed random number
randn Normally distributed random number
randi Uniformly distributed random integer

Robotics Toolbox 9.10 for MATLAB
R©

136 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read only)

occgrid Occupancy grid representing the navigation environment
goal Goal coordinate
seed0 Random number state

Methods that must be provided in subclass

plan Generate a plan for motion to goal
next Returns coordinate of next point along path

Methods that may be overriden in a subclass

goal set The goal has been changed by nav.goal = (a,b)
navigate init Start of path planning.

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

• A grid world is assumed and vehicle position is quantized to grid cells.

• Vehicle orientation is not considered.

• The initial random number state is captured as seed0 to allow rerunning an ex-
periment with an interesting outcome.

See also

Dstar, dxform, PRM, RRT

Navigation.Navigation
Create a Navigation object

n = Navigation(occgrid, options) is a Navigation object that holds an occupancy grid
occgrid. A number of options can be be passed.

Robotics Toolbox 9.10 for MATLAB
R©

137 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘navhook’, F Specify a function to be called at every step of path
‘goal’, G Specify the goal point (2× 1)
‘verbose’ Display debugging information
‘inflate’, K Inflate all obstacles by K cells.
‘private’ Use private random number stream.
‘reset’ Reset random number stream.
‘seed’, S Set the initial state of the random number stream. S must be a proper random number

generator state such as saved in the seed0 property of an earlier run.

Notes

• In the occupancy grid a value of zero means free space and non-zero means
occupied (not driveable).

• Obstacle inflation is performed with a round structuring element (kcircle) with
radius given by the ‘inflate’ option.

• The ‘private’ option creates a private random number stream for the methods
rand, randn and randi. If not given the global stream is used.

Navigation.char
Convert to string

N.char() is a string representing the state of the navigation object in human-readable
form.

Navigation.display
Display status of navigation object

N.display() displays the state of the navigation object in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Navigation object and the command has no trailing semicolon.

Robotics Toolbox 9.10 for MATLAB
R©

138 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Navigation.char

Navigation.goal change
Notify change of goal

Invoked when the goal property of the object is changed. Typically this is overriden in
a subclass to take particular action such as invalidating a costmap.

Navigation.message
Print debug message

N.message(s) displays the string s if the verbose property is true.

N.message(fmt, args) as above but accepts printf() like semantics.

Navigation.navigate init
Notify start of path

N.navigate init(start) is called when the path() method is invoked. Typically overriden
in a subclass to take particular action such as computing some path parameters. start
is the initial position for this path, and nav.goal is the final position.

Navigation.path
Follow path from start to goal

N.path(start) animates the robot moving from start (2 × 1) to the goal (which is a
property of the object).

N.path() as above but first displays the occupancy grid, and prompts the user to click
a start location. the object).

x = N.path(start) returns the path (2×M) from start to the goal (which is a property
of the object).

The method performs the following steps:

Robotics Toolbox 9.10 for MATLAB
R©

139 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Get start position interactively if not given

• Initialize navigation, invoke method N.navigate init()

• Visualize the environment, invoke method N.plot()

• Iterate on the next() method of the subclass until the goal is achieved.

See also

Navigation.plot, Navigation.goal

Navigation.plot
Visualize navigation environment

N.plot() displays the occupancy grid in a new figure.

N.plot(p) as above but overlays the points along the path (2×M) matrix.

Options

‘goal’ Superimpose the goal position if set
‘distance’, D Display a distance field D behind the obstacle map. D is a matrix of the same size as

the occupancy grid.

Notes

• The distance field at a point encodes its distance from the goal, small distance is
dark, a large distance is bright. Obstacles are encoded as red.

Navigation.rand
Uniformly distributed random number

R = N.rand() return a uniformly distributed random number from a private random
number stream.

R = N.rand(m) as above but return a matrix (m×m) of random numbers.

R = N.rand(L,m) as above but return a matrix (L×m) of random numbers.

Robotics Toolbox 9.10 for MATLAB
R©

140 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Accepts the same arguments as rand().

• Seed is provided to Navigation constructor.

• Provides an independent sequence of random numbers that does not interfere
with any other randomised algorithms that might be used.

See also

Navigation.randi, Navigation.randn, rand, randstream

Navigation.randi
Integer random number

i = N.randi(rm) returns a uniformly distributed random integer in the range 1 to rm
from a private random number stream.

i = N.randi(rm, m) as above but returns a matrix (m×m) of random integers.

i = N.randn(rm, L,m) as above but returns a matrix (L×m) of random integers.

Notes

• Accepts the same arguments as randn().

• Seed is provided to Navigation constructor.

• Provides an independent sequence of random numbers that does not interfere
with any other randomised algorithms that might be used.

See also

Navigation.rand, Navigation.randn, randi, randstream

Navigation.randn
Normally distributed random number

R = N.randn() returns a normally distributed random number from a private random
number stream.

R = N.randn(m) as above but returns a matrix (m×m) of random numbers.

Robotics Toolbox 9.10 for MATLAB
R©

141 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

R = N.randn(L,m) as above but returns a matrix (L×m) of random numbers.

Notes

• Accepts the same arguments as randn().

• Seed is provided to Navigation constructor.

• Provides an independent sequence of random numbers that does not interfere
with any other randomised algorithms that might be used.

See also

Navigation.rand, Navigation.randi, randn, randstream

Navigation.spinner
Update progress spinner

N.spinner() displays a simple ASCII progress spinner, a rotating bar.

Navigation.verbosity
Set verbosity

N.verbosity(v) set verbosity to v, where 0 is silent and greater values display more
information.

numcols
Number of columns in matrix

nc = numcols(m) is the number of columns in the matrix m.

Notes

• Readable shorthand for SIZE(m,2);

Robotics Toolbox 9.10 for MATLAB
R©

142 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

numrows, size

numrows
Number of rows in matrix

nr = numrows(m) is the number of rows in the matrix m.

Notes

• Readable shorthand for SIZE(m,1);

See also

numcols, size

oa2r
Convert orientation and approach vectors to rotation matrix

R = oa2r(o, a) is an SO(3) rotation matrix (3 × 3) for the specified orientation and
approach vectors (3× 1) formed from 3 vectors such that R = [N o a] and N = o x a.

Notes

• The submatrix is guaranteed to be orthonormal so long as o and a are not parallel.

• The vectors o and a are parallel to the Y- and Z-axes of the coordinate frame.

References

• Robot manipulators: mathematis, programming and control Richard Paul, MIT
Press, 1981.

Robotics Toolbox 9.10 for MATLAB
R©

143 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rpy2r, eul2r, oa2tr

oa2tr
Convert orientation and approach vectors to homogeneous
transformation

T = oa2tr(o, a) is an SE(3) homogeneous tranformation (4 × 4) for the specified ori-
entation and approach vectors (3× 1) formed from 3 vectors such that R = [N o a] and
N = o x a.

Notes

• The rotation submatrix is guaranteed to be orthonormal so long as o and a are
not parallel.

• The translational part is zero.

• The vectors o and a are parallel to the Y- and Z-axes of the coordinate frame.

References

• Robot manipulators: mathematis, programming and control Richard Paul, MIT
Press, 1981.

See also

rpy2tr, eul2tr, oa2r

ParticleFilter
Particle filter class

Monte-carlo based localisation for estimating vehicle pose based on odometry and ob-
servations of known landmarks.

Robotics Toolbox 9.10 for MATLAB
R©

144 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

run run the particle filter
plot xy display estimated vehicle path
plot pdf display particle distribution

Properties

robot reference to the robot object
sensor reference to the sensor object
history vector of structs that hold the detailed information from each time step
nparticles number of particles used
x particle states; nparticles x 3
weight particle weights; nparticles x 1
x est mean of the particle population
std standard deviation of the particle population
Q covariance of noise added to state at each step
L covariance of likelihood model
w0 offset in likelihood model
dim maximum xy dimension

Example

Create a landmark map

map = Map(20);

and a vehicle with odometry covariance and a driver

W = diag([0.1, 1*pi/180].ˆ2);
veh = Vehicle(W);
veh.add_driver(RandomPath(10));

and create a range bearing sensor

R = diag([0.005, 0.5*pi/180].ˆ2);
sensor = RangeBearingSensor(veh, map, R);

For the particle filter we need to define two covariance matrices. The first is is the
covariance of the random noise added to the particle states at each iteration to represent
uncertainty in configuration.

Q = diag([0.1, 0.1, 1*pi/180]).ˆ2;

and the covariance of the likelihood function applied to innovation

L = diag([0.1 0.1]);

Now construct the particle filter

pf = ParticleFilter(veh, sensor, Q, L, 1000);

which is configured with 1000 particles. The particles are initially uniformly dis-
tributed over the 3-dimensional configuration space.

We run the simulation for 1000 time steps

Robotics Toolbox 9.10 for MATLAB
R©

145 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

pf.run(1000);

then plot the map and the true vehicle path

map.plot();
veh.plot_xy(’b’);

and overlay the mean of the particle cloud

pf.plot_xy(’r’);

We can plot the standard deviation against time

plot(pf.std(1:100,:))

The particles are a sampled approximation to the PDF and we can display this as

pf.plot_pdf()

Acknowledgement

Based on code by Paul Newman, Oxford University, http://www.robots.ox.ac.uk/ pnew-
man

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

Vehicle, RandomPath, RangeBearingSensor, Map, EKF

ParticleFilter.ParticleFilter
Particle filter constructor

pf = ParticleFilter(vehicle, sensor, q, L, np, options) is a particle filter that estimates
the state of the vehicle with a landmark sensor sensor. q is the covariance of the noise
added to the particles at each step (diffusion), L is the covariance used in the sensor
likelihood model, and np is the number of particles.

Robotics Toolbox 9.10 for MATLAB
R©

146 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘verbose’ Be verbose.
‘private’ Use private random number stream.
‘reset’ Reset random number stream.
‘seed’, S Set the initial state of the random number stream. S must be a proper random number

generator state such as saved in the seed0 property of an earlier run.
‘nohistory’ Don’t save history.
‘x0’ Initial particle states (N × 3)

Notes

• ParticleFilter subclasses Handle, so it is a reference object.

• If initial particle states not given they are set to a uniform distribution over the
map, essentially the kidnapped robot problem which is quite unrealistic.

• Initial particle weights are always set to unity.

• The ‘private’ option creates a private random number stream for the methods
rand, randn and randi. If not given the global stream is used.

See also

Vehicle, Sensor, RangeBearingSensor, Map

ParticleFilter.char
Convert to string

PF.char() is a string representing the state of the ParticleFilter object in human-
readable form.

See also

ParticleFilter.display

ParticleFilter.display
Display status of particle filter object

PF.display() displays the state of the ParticleFilter object in human-readable form.

Robotics Toolbox 9.10 for MATLAB
R©

147 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a ParticleFilter object and the command has no trailing semicolon.

See also

ParticleFilter.char

ParticleFilter.init
Initialize the particle filter

PF.init() initializes the particle distribution and clears the history.

Notes

• If initial particle states were given to the constructor the states are set to this
value, else a random distribution over the map is used.

• Invoked by the run() method.

ParticleFilter.plot pdf
Plot particles as a PDF

PF.plot pdf() plots a sparse PDF as a series of vertical line segments of height equal to
particle weight.

ParticleFilter.plot xy
Plot vehicle position

PF.plot xy() plots the estimated vehicle path in the xy-plane.

PF.plot xy(ls) as above but the optional line style arguments ls are passed to plot.

Robotics Toolbox 9.10 for MATLAB
R©

148 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

ParticleFilter.run
Run the particle filter

PF.run(n, options) runs the filter for n time steps.

Options

‘noplot’ Do not show animation.

Notes

• All previously estimated states and estimation history is cleared.

peak
Find peaks in vector

yp = peak(y, options) are the values of the maxima in the vector y.

[yp,i] = peak(y, options) as above but also returns the indices of the maxima in the
vector y.

[yp,xp] = peak(y, x, options) as above but also returns the corresponding x-coordinates
of the maxima in the vector y. x is the same length as y and contains the corresponding
x-coordinates.

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal range +/- S points.
‘interp’, M Order of interpolation polynomial (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• A maxima is defined as an element that larger than its two neighbours. The first
and last element will never be returned as maxima.

• To find minima, use peak(-V).

Robotics Toolbox 9.10 for MATLAB
R©

149 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The interp options fits points in the neighbourhood about the peak with an M’th
order polynomial and its peak position is returned. Typically choose M to be
odd. In this case xp will be non-integer.

See also

peak2

peak2
Find peaks in a matrix

zp = peak2(z, options) are the peak values in the 2-dimensional signal z.

[zp,ij] = peak2(z, options) as above but also returns the indices of the maxima in the
matrix z. Use SUB2IND to convert these to row and column coordinates

Options

‘npeaks’, N Number of peaks to return (default all)
‘scale’, S Only consider as peaks the largest value in the horizontal and vertical range +/- S

points.
‘interp’ Interpolate peak (default no interpolation)
‘plot’ Display the interpolation polynomial overlaid on the point data

Notes

• A maxima is defined as an element that larger than its eight neighbours. Edges
elements will never be returned as maxima.

• To find minima, use peak2(-V).

• The interp options fits points in the neighbourhood about the peak with a paraboloid
and its peak position is returned. In this case ij will be non-integer.

See also

peak, sub2ind

Robotics Toolbox 9.10 for MATLAB
R©

150 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph
Graph class

g = PGraph() create a 2D, planar embedded, directed graph
g = PGraph(n) create an n-d, embedded, directed graph

Provides support for graphs that:

• are directed

• are embedded in a coordinate system

• have symmetric cost edges (A to B is same cost as B to A)

• have no loops (edges from A to A)

• have vertices that are represented by integers VID

• have edges that are represented by integers EID

Methods

Constructing the graph

g.add node(coord) add vertex, return vid
g.add edge(v1, v2) add edge from v1 to v2, return eid
g.setcost(e, c) set cost for edge e
g.setdata(v, u) set user data for vertex v
g.data(v) get user data for vertex v
g.clear() remove all vertices and edges from the graph

Information from graph

g.edges(v) list of edges for vertex v
g.cost(e) cost of edge e
g.neighbours(v) neighbours of vertex v
g.component(v) component id for vertex v
g.connectivity() number of edges for all vertices

Display

g.plot() set goal vertex for path planning
g.highlight node(v) highlight vertex v
g.highlight edge(e) highlight edge e
g.highlight component(c) highlight all nodes in component c
g.highlight path(p) highlight nodes and edge along path p

g.pick(coord) vertex closest to coord

Robotics Toolbox 9.10 for MATLAB
R©

151 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

g.char() convert graph to string
g.display() display summary of graph

Matrix representations

g.adjacency() adjacency matrix
g.incidence() incidence matrix
g.degree() degree matrix
g.laplacian() Laplacian matrix

Planning paths through the graph

g.Astar(s, g) shortest path from s to g
g.goal(v) set goal vertex, and plan paths
g.path(v) list of vertices from v to goal

Graph and world points

g.coord(v) coordinate of vertex v
g.distance(v1, v2) distance between v1 and v2
g.distances(coord) return sorted distances from coord to all vertices
g.closest(coord) vertex closest to coord

Object properties (read only)

g.n number of vertices
g.ne number of edges
g.nc number of components

Examples

g = PGraph();
g.add_node([1 2]’); % add node 1
g.add_node([3 4]’); % add node 1
g.add_node([1 3]’); % add node 1
g.add_edge(1, 2); % add edge 1-2
g.add_edge(2, 3); % add edge 2-3
g.add_edge(1, 3); % add edge 1-3
g.plot()

Notes

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

Robotics Toolbox 9.10 for MATLAB
R©

152 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Nodes and edges cannot be deleted.

• Support for edge direction is rudimentary.

PGraph.PGraph
Graph class constructor

g=PGraph(d, options) is a graph object embedded in d dimensions.

Options

‘distance’, M Use the distance metric M for path planning which is either ‘Euclidean’ (default) or
‘SE2’.

‘verbose’ Specify verbose operation

Notes

• Number of dimensions is not limited to 2 or 3.

• The distance metric ‘SE2’ is the sum of the squares of the difference in position
and angle modulo 2pi.

• To use a different distance metric create a subclass of PGraph and override the
method distance metric().

PGraph.add edge
Add an edge

E = G.add edge(v1, v2) adds a directed edge from vertex id v1 to vertex id v2, and
returns the edge id E. The edge cost is the distance between the vertices.

E = G.add edge(v1, v2, C) as above but the edge cost is C.

Notes

• Distance is computed according to the metric specified in the constructor.

• Graph connectivity is maintained by a labeling algorithm and this is updated
every time an edge is added.

Robotics Toolbox 9.10 for MATLAB
R©

153 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.add node, PGraph.edgedir

PGraph.add node
Add a node

v = G.add node(x) adds a node/vertex with coordinate x (D×1) and returns the integer
node id v.

v = G.add node(x, v2) as above but connected by a directed edge from vertex v to
vertex v2 with cost equal to the distance between the vertices.

v = G.add node(x, v2, C) as above but the added edge has cost C.

Notes

• Distance is computed according to the metric specified in the constructor.

See also

PGraph.add edge, PGraph.data, PGraph.getdata

PGraph.adjacency
Adjacency matrix of graph

a = G.adjacency() is a matrix (N ×N) where element a(i,j) is the cost of moving from
vertex i to vertex j.

Notes

• Matrix is symmetric.

• Eigenvalues of a are real and are known as the spectrum of the graph.

• The element a(I,J) can be considered the number of walks of one edge from
vertex I to vertex J (either zero or one). The element (I,J) of aN are the number
of walks of length N from vertex I to vertex J.

Robotics Toolbox 9.10 for MATLAB
R©

154 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.degree, PGraph.incidence, PGraph.laplacian

PGraph.Astar
path finding

path = G.Astar(v1, v2) is the lowest cost path from vertex v1 to vertex v2. path is a
list of vertices starting with v1 and ending v2.

[path,C] = G.Astar(v1, v2) as above but also returns the total cost of traversing path.

Notes

• Uses the efficient A* search algorithm.

References

• Correction to “A Formal Basis for the Heuristic Determination of Minimum Cost
Paths”. Hart, P. E.; Nilsson, N. J.; Raphael, B. SIGART Newsletter 37: 28-29,
1972.

See also

PGraph.goal, PGraph.path

PGraph.char
Convert graph to string

s = G.char() is a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

PGraph.clear
Clear the graph

G.clear() removes all vertices, edges and components.

Robotics Toolbox 9.10 for MATLAB
R©

155 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.closest
Find closest vertex

v = G.closest(x) is the vertex geometrically closest to coordinate x.

[v,d] = G.closest(x) as above but also returns the distance d.

See also

PGraph.distances

PGraph.component
Graph component

C = G.component(v) is the id of the graph component that contains vertex v.

PGraph.connectivity
Graph connectivity

C = G.connectivity() is a vector (N × 1) with the number of edges per vertex.

The average vertex connectivity is

mean(g.connectivity())

and the minimum vertex connectivity is

min(g.connectivity())

PGraph.coord
Coordinate of node

x = G.coord(v) is the coordinate vector (D × 1) of vertex id v.

Robotics Toolbox 9.10 for MATLAB
R©

156 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.cost
Cost of edge

C = G.cost(E) is the cost of edge id E.

PGraph.data
Get user data for node

u = G.data(v) gets the user data of vertex v which can be of any type such as a number,
struct, object or cell array.

See also

PGraph.setdata

PGraph.degree
Degree matrix of graph

d = G.degree() is a diagonal matrix (N × N) where element d(i,i) is the number of
edges connected to vertex id i.

See also

PGraph.adjacency, PGraph.incidence, PGraph.laplacian

PGraph.display
Display graph

G.display() displays a compact human readable representation of the state of the graph
including the number of vertices, edges and components.

See also

PGraph.char

Robotics Toolbox 9.10 for MATLAB
R©

157 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.distance
Distance between vertices

d = G.distance(v1, v2) is the geometric distance between the vertices v1 and v2.

See also

PGraph.distances

PGraph.distances
Distances from point to vertices

d = G.distances(x) is a vector (1×N) of geometric distance from the point x (d× 1)
to every other vertex sorted into increasing order.

[d,w] = G.distances(p) as above but also returns w (1 × N) with the corresponding
vertex id.

Notes

• Distance is computed according to the metric specified in the constructor.

See also

PGraph.closest

PGraph.edgedir
Find edge direction

d = G.edgedir(v1, v2) is the direction of the edge from vertex id v1 to vertex id v2.

If we add an edge from vertex 3 to vertex 4

g.add_edge(3, 4)

then

g.edgedir(3, 4)

is positive, and

g.edgedir(4, 3)

Robotics Toolbox 9.10 for MATLAB
R©

158 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

is negative.

See also

PGraph.add node, PGraph.add edge

PGraph.edges
Find edges given vertex

E = G.edges(v) is a vector containing the id of all edges connected to vertex id v.

See also

PGraph.edgedir

PGraph.get.n
Number of vertices

G.n is the number of vertices in the graph.

See also

PGraph.ne

PGraph.get.nc
Number of components

G.nc is the number of components in the graph.

See also

PGraph.component

Robotics Toolbox 9.10 for MATLAB
R©

159 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.get.ne
Number of edges

G.ne is the number of edges in the graph.

See also

PGraph.n

PGraph.goal
Set goal node

G.goal(vg) computes the cost of reaching every vertex in the graph connected to the
goal vertex vg.

Notes

• Combined with G.path performs a breadth-first search for paths to the goal.

See also

PGraph.path, PGraph.Astar, astar

PGraph.highlight component
Highlight a graph component

G.highlight component(C, options) highlights the vertices that belong to graph com-
ponent C.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

Robotics Toolbox 9.10 for MATLAB
R©

160 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.highlight edge
Highlight a node

G.highlight edge(v1, v2) highlights the edge between vertices v1 and v2.

G.highlight edge(E) highlights the edge with id E.

Options

‘EdgeColor’, C Edge edge color (default black)
‘EdgeThickness’, T Edge thickness (default 1.5)

See also

PGraph.highlight node, PGraph.highlight path, PGraph.highlight component

PGraph.highlight node
Highlight a node

G.highlight node(v, options) highlights the vertex v with a yellow marker. If v is a
list of vertices then all are highlighted.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)

See also

PGraph.highlight edge, PGraph.highlight path, PGraph.highlight component

Robotics Toolbox 9.10 for MATLAB
R©

161 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.highlight path
Highlight path

G.highlight path(p, options) highlights the path defined by vector p which is a list of
vertex ids comprising the path.

Options

‘NodeSize’, S Size of vertex circle (default 12)
‘NodeFaceColor’, C Node circle color (default yellow)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘EdgeColor’, C Node circle edge color (default black)

See also

PGraph.highlight node, PGraph.highlight edge, PGraph.highlight component

PGraph.incidence
Incidence matrix of graph

in = G.incidence() is a matrix (N ×NE) where element in(i,j) is non-zero if vertex id
i is connected to edge id j.

See also

PGraph.adjacency, PGraph.degree, PGraph.laplacian

PGraph.laplacian
Laplacian matrix of graph

L = G.laplacian() is the Laplacian matrix (N ×N) of the graph.

Notes

• L is always positive-semidefinite.

• L has at least one zero eigenvalue.

Robotics Toolbox 9.10 for MATLAB
R©

162 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The number of zero eigenvalues is the number of connected components in the
graph.

See also

PGraph.adjacency, PGraph.incidence, PGraph.degree

PGraph.neighbours
Neighbours of a vertex

n = G.neighbours(v) is a vector of ids for all vertices which are directly connected
neighbours of vertex v.

[n,C] = G.neighbours(v) as above but also returns a vector C whose elements are the
edge costs of the paths corresponding to the vertex ids in n.

PGraph.neighbours d
Directed neighbours of a vertex

n = G.neighbours d(v) is a vector of ids for all vertices which are directly connected
neighbours of vertex v. Elements are positive if there is a link from v to the node, and
negative if the link is from the node to v.

[n,C] = G.neighbours d(v) as above but also returns a vector C whose elements are
the edge costs of the paths corresponding to the vertex ids in n.

PGraph.path
Find path to goal node

p = G.path(vs) is a vector of vertex ids that form a path from the starting vertex vs to
the previously specified goal. The path includes the start and goal vertex id.

To compute path to goal vertex 5

g.goal(5);

then the path, starting from vertex 1 is

p1 = g.path(1);

and the path starting from vertex 2 is

p2 = g.path(2);

Robotics Toolbox 9.10 for MATLAB
R©

163 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Pgraph.goal must have been invoked first.

• Can be used repeatedly to find paths from different starting points to the goal
specified to Pgraph.goal().

See also

PGraph.goal, PGraph.Astar

PGraph.pick
Graphically select a vertex

v = G.pick() is the id of the vertex closest to the point clicked by the user on a plot of
the graph.

See also

PGraph.plot

PGraph.plot
Plot the graph

G.plot(opt) plots the graph in the current figure. Nodes are shown as colored circles.

Options

‘labels’ Display vertex id (default false)
‘edges’ Display edges (default true)
‘edgelabels’ Display edge id (default false)
‘NodeSize’, S Size of vertex circle (default 8)
‘NodeFaceColor’, C Node circle color (default blue)
‘NodeEdgeColor’, C Node circle edge color (default blue)
‘NodeLabelSize’, S Node label text sizer (default 16)
‘NodeLabelColor’, C Node label text color (default blue)
‘EdgeColor’, C Edge color (default black)
‘EdgeLabelSize’, S Edge label text size (default black)
‘EdgeLabelColor’, C Edge label text color (default black)
‘componentcolor’ Node color is a function of graph component

Robotics Toolbox 9.10 for MATLAB
R©

164 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PGraph.setcost
Set cost of edge

G.setcost(E, C) set cost of edge id E to C.

PGraph.setdata
Set user data for node

G.setdata(v, u) sets the user data of vertex v to u which can be of any type such as a
number, struct, object or cell array.

See also

PGraph.data

PGraph.vertices
Find vertices given edge

v = G.vertices(E) return the id of the vertices that define edge E.

plot2
Plot trajectories

plot2(p) plots a line with coordinates taken from successive rows of p. p can be N × 2
or N × 3.

If p has three dimensions, ie. N × 2 ×M or N × 3 ×M then the M trajectories are
overlaid in the one plot.

plot2(p, ls) as above but the line style arguments ls are passed to plot.

Robotics Toolbox 9.10 for MATLAB
R©

165 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot

plot arrow
Draw an arrow

plot arrow(p, options) draws an arrow from P1 to P2 where p=[P1; P2].

Options

All options are passed through to arrow3. Pass in a single character MATLAB color-
spec (eg. ‘r’) to set the color.

See also

arrow3

plot box
a box

plot box(b, ls) draws a box defined by b=[XL XR; YL YR] on the current plot with
optional MATLAB linestyle options ls.

plot box(x1,y1, x2,y2, ls) draws a box with corners at (x1,y1) and (x2,y2), and optional
MATLAB linestyle options ls.

plot box(’centre’, P, ‘size’, W, ls) draws a box with center at P=[X,Y] and with dimen-
sions W=[WIDTH HEIGHT].

plot box(’topleft’, P, ‘size’, W, ls) draws a box with top-left at P=[X,Y] and with di-
mensions W=[WIDTH HEIGHT].

Notes

• The box is added to the current plot.

• Additional options ls are MATLAB LineSpec options and are passed to PLOT.

Robotics Toolbox 9.10 for MATLAB
R©

166 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

plot poly, plot circle, plot ellipse

plot circle
Draw a circle

plot circle(C, R, options) draws a circle on the current plot with centre C=[X,Y] and
radius R. If C=[X,Y,Z] the circle is drawn in the XY-plane at height Z.

H = plot circle(C, R, options) as above but return handles. For multiple circles H is a
vector of handles, one per circle.

If C (2×N) then N circles are drawn and H is N × 1. If R (1× 1) then all circles have
the same radius or else R (1×N) to specify the radius of each circle.

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid
‘alter’, H alter existing circles with handle H

For an unfilled ellipse any MATLAB LineProperty options can be given, for a filled
ellipse any MATLAB PatchProperty options can be given.

Notes

• The circle(s) is added to the current plot.

See also

plot ellipse, plot box, plot poly

Robotics Toolbox 9.10 for MATLAB
R©

167 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

plot ellipse
Draw an ellipse or ellipsoid

plot ellipse(a, options) draws an ellipse defined by X’AX = 0 on the current plot,
centred at the origin.

plot ellipse(a, C, options) as above but centred at C=[X,Y]. If C=[X,Y,Z] the ellipse
is parallel to the XY plane but at height Z.

H = plot ellipse(a, C, options) as above but return graphic handle.

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid
‘alter’, H alter existing circles with handle H

Notes

• If a (2× 2) draw an ellipse, else if a(3× 3) draw an ellipsoid.

• The ellipse is added to the current plot.

See also

plot ellipse inv, plot circle, plot box, plot poly

plot ellipse inv
Draw an ellipse or ellipsoid

plot ellipse inv(a, options) draws an ellipse defined by X’.inv(a).X = 0 on the current
plot, centred at the origin.

plot ellipse inv(a, C, options) as above but centred at C=[X,Y]. If C=[X,Y,Z] the
ellipse is parallel to the XY plane but at height Z.

H = plot ellipse inv(a, C, options) as above but return graphic handle.

Robotics Toolbox 9.10 for MATLAB
R©

168 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘edgecolor’ the color of the circle’s edge, Matlab color spec
‘fillcolor’ the color of the circle’s interior, Matlab color spec
‘alpha’ transparency of the filled circle: 0=transparent, 1=solid
‘alter’, H alter existing circles with handle H

Notes

• For the case where the inverse of ellipse parameters are known, perhaps an in-
verse covariance matrix.

• If a (2× 2) draw an ellipse, else if a(3× 3) draw an ellipsoid.

• The ellipse is added to the current plot.

See also

plot ellipse, plot circle, plot box, plot poly

plot homline
Draw a homogeneous

plot homline(L, ls) draws a line in the current plot L.X = 0 where L (3 × 1). The
current axis limits are used to determine the endpoints of the line. MATLAB line
specification ls can be set. If L (3×N) then N lines are drawn, one per column.

H = plot homline(L, ls) as above but returns a vector of graphics handles for the lines.

Notes

• The line(s) is added to the current plot.

See also

plot box, plot poly, homline

Robotics Toolbox 9.10 for MATLAB
R©

169 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

plot point
a feature point

plot point(p, options) adds point markers to the current plot, where p (2 × N) and
each column is the point coordinate.

Options

‘textcolor’, colspec Specify color of text
‘textsize’, size Specify size of text
‘bold’ Text in bold font.
‘printf’, {fmt, data} Label points according to printf format string and corresponding element of data
‘sequence’ Label points sequentially

Additional options are passed through to PLOT for creating the marker.

Examples

Simple point plot

P = rand(2,4);
plot_point(P);

Plot points with markers

plot_point(P, ’*’);

Plot points with square markers and labels 1 to 4

plot_point(P, ’sequence’, ’s’);

Plot points with circles and annotations P1 to P4

data = [1 2 4 8];
plot_point(P, ’printf’, {’ P%d’, data}, ’o’);

Notes

• The point(s) is added to the current plot.

• 2D points only.

See also

plot, text

Robotics Toolbox 9.10 for MATLAB
R©

170 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

plot poly
Draw a polygon

plot poly(p, options) draws a polygon defined by columns of p (2×N), in the current
plot.

options

‘fill’, F the color of the circle’s interior, MATLAB color spec
‘alpha’, A transparency of the filled circle: 0=transparent, 1=solid.

Notes

• If p (3×N) the polygon is drawn in 3D

• The line(s) is added to the current plot.

See also

plot box, patch, Polygon

plot sphere
Draw sphere

plot sphere(C, R, ls) draws spheres in the current plot. C is the centre of the sphere
(3 × 1), R is the radius and ls is an optional MATLAB color spec, either a letter or a
3-vector.

H = plot sphere(C, R, color) as above but returns the handle(s) for the spheres.

H = plot sphere(C, R, color, alpha) as above but alpha specifies the opacity of the
sphere were 0 is transparant and 1 is opaque. The default is 1.

If C (3 ×N) then N sphhere are drawn and H is N × 1. If R (1 × 1) then all spheres
have the same radius or else R (1×N) to specify the radius of each sphere.

Robotics Toolbox 9.10 for MATLAB
R©

171 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Example

Create four spheres

plot_sphere(mkgrid(2, 1), .2, ’b’)

and now turn on a full lighting model

lighting gouraud
light

NOTES

• The sphere is always added, irrespective of figure hold state.

• The number of vertices to draw the sphere is hardwired.

plot vehicle
Draw ground vehicle pose

plot vehicle(x,options) draws a representation of ground robot as an oriented triangle
with pose x (1× 3) = [x,y,theta] or x (3× 3) as an SE(2) homogeneous transform.

Options

‘scale’, S Draw vehicle with length S x maximum axis dimension (default 1/60)
‘size’, S Draw vehicle with length S

See also

Vehicle.plot

plotbotopt
Define default options for robot plotting

A user provided function that returns a cell array of default plot options for the Seri-
alLink.plot method.

Robotics Toolbox 9.10 for MATLAB
R©

172 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.plot

plotp
Plot trajectories

plotp(p) plots a set of points p, which by Toolbox convention are stored one per col-
umn. p can be N × 2 or N × 3. By default a linestyle of ‘bx’ is used.

plotp(p, ls) as above but the line style arguments ls are passed to plot.

See also

plot, plot2

polydiff
Differentiate a polynomial

pd = polydiff(p) is a vector of coefficients of a polynomial (1 × N -1) which is the
derivative of the polynomial p (1×N).

See also

polyval

Polygon
Polygon class

A general class for manipulating polygons and vectors of polygons.

Robotics Toolbox 9.10 for MATLAB
R©

173 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot Plot polygon
area Area of polygon
moments Moments of polygon
centroid Centroid of polygon
perimeter Perimter of polygon
transform Transform polygon
inside Test if points are inside polygon
intersection Intersection of two polygons
difference Difference of two polygons
union Union of two polygons
xor Exclusive or of two polygons
display print the polygon in human readable form
char convert the polgyon to human readable string

Properties

vertices List of polygon vertices, one per column
extent Bounding box [minx maxx; miny maxy]
n Number of vertices

Notes

• This is reference class object

• Polygon objects can be used in vectors and arrays

Acknowledgement

The methods: inside, intersection, difference, union, and xor are based on code written
by:

Kirill K. Pankratov, kirill@plume.mit.edu, http://puddle.mit.edu/ glenn/kirill/saga.html

and require a licence. However the author does not respond to email regarding the
licence, so use with care, and modify with acknowledgement.

Polygon.Polygon
Polygon class constructor

p = Polygon(v) is a polygon with vertices given by v, one column per vertex.

p = Polygon(C, wh) is a rectangle centred at C with dimensions wh=[WIDTH, HEIGHT].

Robotics Toolbox 9.10 for MATLAB
R©

174 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.area
Area of polygon

a = P.area() is the area of the polygon.

See also

Polygon.moments

Polygon.centroid
Centroid of polygon

x = P.centroid() is the centroid of the polygon.

See also

Polygon.moments

Polygon.char
String representation

s = P.char() is a compact representation of the polgyon in human readable form.

Polygon.difference
Difference of polygons

d = P.difference(q) is polygon P minus polygon q.

Notes

• If polygons P and q are not intersecting, returns coordinates of P.

• If the result d is not simply connected or consists of several polygons, resulting
vertex list will contain NaNs.

Robotics Toolbox 9.10 for MATLAB
R©

175 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.display
Display polygon

P.display() displays the polygon in a compact human readable form.

See also

Polygon.char

Polygon.inside
Test if points are inside polygon

in = p.inside(p) tests if points given by columns of p (2 ×N) are inside the polygon.
The corresponding elements of in (1×N) are either true or false.

Polygon.intersect
Intersection of polygon with list of polygons

i = P.intersect(plist) indicates whether or not the Polygon P intersects with

i(j) = 1 if p intersects polylist(j), else 0.

Polygon.intersect line
Intersection of polygon and line segment

i = P.intersect line(L) is the intersection points of a polygon P with the line segment
L=[x1 x2; y1 y2]. i (2×N) has one column per intersection, each column is [x y]’.

Polygon.intersection
Intersection of polygons

i = P.intersection(q) is a Polygon representing the intersection of polygons P and q.

Robotics Toolbox 9.10 for MATLAB
R©

176 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If these polygons are not intersecting, returns empty polygon.

• If intersection consist of several disjoint polygons (for non-convex P or q) then
vertices of i is the concatenation of the vertices of these polygons.

Polygon.moments
Moments of polygon

a = P.moments(p, q) is the pq’th moment of the polygon.

See also

Polygon.area, Polygon.centroid, mpq poly

Polygon.perimeter
Perimeter of polygon

L = P.perimeter() is the perimeter of the polygon.

Polygon.plot
Draw polygon

P.plot() draws the polygon P in the current plot.

P.plot(ls) as above but pass the arguments ls to plot.

Notes

• The polygon is added to the current plot.

Robotics Toolbox 9.10 for MATLAB
R©

177 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Polygon.transform
Transform polygon vertices

p2 = P.transform(T) is a new Polygon object whose vertices have been transformed
by the SE(2) homgoeneous transformation T (3× 3).

Polygon.union
Union of polygons

i = P.union(q) is a polygon representing the union of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Polygon.xor
Exclusive or of polygons

i = P.union(q) is a polygon representing the exclusive-or of polygons P and q.

Notes

• If these polygons are not intersecting, returns a polygon with vertices of both
polygons separated by NaNs.

• If the result P is not simply connected (such as a polygon with a “hole”) the re-
sulting contour consist of counter- clockwise “outer boundary” and one or more
clock-wise “inner boundaries” around “holes”.

Robotics Toolbox 9.10 for MATLAB
R©

178 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Prismatic
Robot manipulator prismatic link class

A subclass of the Link class: holds all information related to a prismatic (sliding)
robot link such as kinematics parameters, rigid-body inertial parameters, motor and
transmission parameters.

Notes

• This is reference class object

• Link class objects can be used in vectors and arrays

References

• Robotics, Vision & Control, Chap 7 P. Corke, Springer 2011.

See also

Link, Revolute, SerialLink

PrismaticMDH
Robot manipulator prismatic link class for MDH convention

A subclass of the Link class: holds all information related to a prismatic (sliding)
robot link such as kinematics parameters, rigid-body inertial parameters, motor and
transmission parameters.

Notes

• This is reference class object

• Link class objects can be used in vectors and arrays

• Modified Denavit-Hartenberg parameters are used

References

• Robotics, Vision & Control, Chap 7 P. Corke, Springer 2011.

Robotics Toolbox 9.10 for MATLAB
R©

179 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Link, Prismatic, RevoluteMDH, SerialLink

PRM
Probabilistic RoadMap navigation class

A concrete subclass of the abstract Navigation class that implements the probabilistic
roadmap navigation algorithm over an occupancy grid. This performs goal independent
planning of roadmaps, and at the query stage finds paths between specific start and goal
points.

Methods

plan Compute the roadmap
path Compute a path to the goal
visualize Display the obstacle map (deprecated)
plot Display the obstacle map
display Display the parameters in human readable form
char Convert to string

Example

load map1 % load map
goal = [50,30]; % goal point
start = [20, 10]; % start point
prm = PRM(map); % create navigation object
prm.plan() % create roadmaps
prm.path(start, goal) % animate path from this start location

References

• Probabilistic roadmaps for path planning in high dimensional configuration spaces,
L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, IEEE Transactions on
Robotics and Automation, vol. 12, pp. 566-580, Aug 1996.

• Robotics, Vision & Control, Section 5.2.4, P. Corke, Springer 2011.

See also

Navigation, DXform, Dstar, PGraph

Robotics Toolbox 9.10 for MATLAB
R©

180 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PRM.PRM
Create a PRM navigation object

p = PRM(map, options) is a probabilistic roadmap navigation object, and map is an
occupancy grid, a representation of a planar world as a matrix whose elements are 0
(free space) or 1 (occupied).

Options

‘npoints’, N Number of sample points (default 100)
‘distthresh’, D Distance threshold, edges only connect vertices closer than D (default 0.3

max(size(occgrid)))

Other options are supported by the Navigation superclass.

See also

Navigation.Navigation

PRM.char
Convert to string

P.char() is a string representing the state of the PRM object in human-readable form.

See also

PRM.display

PRM.path
Find a path between two points

P.path(start, goal) finds and displays a path from start to goal which is overlaid on
the occupancy grid.

x = P.path(start) returns the path (2×M) from start to goal.

Robotics Toolbox 9.10 for MATLAB
R©

181 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

PRM.plan
Create a probabilistic roadmap

P.plan() creates the probabilistic roadmap by randomly sampling the free space in the
map and building a graph with edges connecting close points. The resulting graph is
kept within the object.

PRM.plot
Visualize navigation environment

P.plot() displays the occupancy grid with an optional distance field.

Options

‘goal’ Superimpose the goal position if set
‘nooverlay’ Don’t overlay the PRM graph

qplot
plot robot joint angles

qplot(q) is a convenience function to plot joint angle trajectories (M × 6) for a 6-axis
robot, where each row represents one time step.

The first three joints are shown as solid lines, the last three joints (wrist) are shown as
dashed lines. A legend is also displayed.

qplot(T, q) as above but displays the joint angle trajectory versus time given the time
vector T (M × 1).

See also

jtraj, plot

Robotics Toolbox 9.10 for MATLAB
R©

182 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion
Quaternion class

A quaternion is a compact method of representing a 3D rotation that has computational
advantages including speed and numerical robustness. A quaternion has 2 parts, a
scalar s, and a vector v and is typically written: q = s <vx, vy, vz>.

A unit-quaternion is one for which s2+vx2+vy2+vz2 = 1. It can be considered as a
rotation by an angle theta about a unit-vector V in space where

q = cos (theta/2) < v sin(theta/2)>

q = quaternion(x) is a unit-quaternion equivalent to x which can be any of:

• orthonormal rotation matrix.

• homogeneous transformation matrix (rotation part only).

• rotation angle and vector

Methods

inv inverse of quaterion
norm norm of quaternion
unit unitized quaternion
plot same options as trplot()
interp interpolation (slerp) between q and q2, 0<=s<=1
scale interpolation (slerp) between identity and q, 0<=s<=1
dot derivative of quaternion with angular velocity w
R equivalent 3× 3 rotation matrix
T equivalent 4× 4 homogeneous transform matrix
double quaternion elements as 4-vector
inner inner product of two quaternions

Overloaded operators

q1==q2 test for quaternion equality
q1 =q2 test for quaternion inequality
q+q2 elementwise sum of quaternions
q-q2 elementwise difference of quaternions
q*q2 quaternion product
q*v rotate vector by quaternion, v is 3× 1
s*q elementwise multiplication of quaternion by scalar
q/q2 q*q2.inv
qn q to power n (integer only)

Robotics Toolbox 9.10 for MATLAB
R©

183 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read only)

s real part
v vector part

Notes

• quaternion objects can be used in vectors and arrays.

References

• Animating rotation with quaternion curves, K. Shoemake, in Proceedings of
ACM SIGGRAPH, (San Fran cisco), pp. 245-254, 1985.

• On homogeneous transforms, quaternions, and computational efficiency, J. Funda,
R. Taylor, and R. Paul, IEEE Transactions on Robotics and Automation, vol. 6,
pp. 382-388, June 1990.

• Robotics, Vision & Control, P. Corke, Springer 2011.

See also

trinterp, trplot

Quaternion.Quaternion
Constructor for quaternion objects

Construct a quaternion from various other orientation representations.

q = Quaternion() is the identitity unit-quaternion 1<0,0,0> representing a null rota-
tion.

q = Quaternion(q1) is a copy of the quaternion q1

q = Quaternion([S V1 V2 V3]) is a quaternion formed by specifying directly its 4
elements

q = Quaternion(s) is a quaternion formed from the scalar s and zero vector part:
s<0,0,0>

q = Quaternion(v) is a pure quaternion with the specified vector part: 0<v>

q = Quaternion(th, v) is a unit-quaternion corresponding to rotation of th about the
vector v.

q = Quaternion(R) is a unit-quaternion corresponding to the SO(3) orthonormal rota-
tion matrix R (3 × 3). If R (3 × 3 × N) is a sequence then q (N × 1) is a vector of
Quaternions corresponding to the elements of R.

Robotics Toolbox 9.10 for MATLAB
R©

184 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

q = Quaternion(T) is a unit-quaternion equivalent to the rotational part of the SE(3)
homogeneous transform T (4× 4). If T (4× 4×N) is a sequence then q (N × 1) is a
vector of Quaternions corresponding to the elements of T.

Quaternion.char
Convert to string

s = Q.char() is a compact string representation of the quaternion’s value as a 4-tuple.
If Q is a vector then s has one line per element.

Quaternion.display
Display quaternion

Q.display() displays a compact string representation of the quaternion’s value as a 4-
tuple. If Q is a vector then S has one line per element.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Quaternion object and the command has no trailing semicolon.

See also

Quaternion.char

Quaternion.dot
Quaternion derivative

qd = Q.dot(omega) is the rate of change of a frame with attitude Q and angular velocity
OMEGA (1× 3) expressed as a quaternion.

Robotics Toolbox 9.10 for MATLAB
R©

185 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.double
Convert a quaternion to a 4-element vector

v = Q.double() is a 4-vector comprising the quaternion elements [s vx vy vz].

Quaternion.eq
Test quaternion equality

Q1==Q2 is true if the quaternions Q1 and Q2 are equal.

Notes

• Overloaded operator ‘==’.

• Note that for unit Quaternions Q and -Q are the equivalent rotation, so non-
equality does not mean rotations are not equivalent.

• If Q1 is a vector of quaternions, each element is compared to Q2 and the result
is a logical array of the same length as Q1.

• If Q2 is a vector of quaternions, each element is compared to Q1 and the result
is a logical array of the same length as Q2.

• If Q1 and Q2 are vectors of the same length, then the result is a logical array of
the same length.

See also

Quaternion.ne

Quaternion.inner
Quaternion inner product

v = Q1.inner(q2) is the inner (dot) product of two vectors (1 × 4), comprising the
elements of Q1 and q2 respectively.

Notes

• Q1.inner(Q1) is the same as Q1.norm().

Robotics Toolbox 9.10 for MATLAB
R©

186 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Quaternion.norm

Quaternion.interp
Interpolate quaternions

qi = Q1.interp(q2, s) is a unit-quaternion that interpolates a rotation between Q1 for
s=0 and q2 for s=1.

If s is a vector qi is a vector of quaternions, each element corresponding to sequential
elements of s.

Notes

• This is a spherical linear interpolation (slerp) that can be interpretted as interpo-
lation along a great circle arc on a sphere.

• The value of s is clipped to the interval 0 to 1.

References

• Animating rotation with quaternion curves, K. Shoemake, in Proceedings of
ACM SIGGRAPH, (San Fran cisco), pp. 245-254, 1985.

See also

Quaternion.scale, ctraj

Quaternion.inv
Invert a unit-quaternion

qi = Q.inv() is a quaternion object representing the inverse of Q.

Quaternion.minus
Subtract quaternions

Q1-Q2 is the element-wise difference of quaternion elements.

Robotics Toolbox 9.10 for MATLAB
R©

187 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Overloaded operator ‘-’

• The result is not guaranteed to be a unit-quaternion.

See also

Quaternion.plus, Quaternion.mtimes

Quaternion.mpower
Raise quaternion to integer power

QN is the quaternion Q raised to the integer power N.

Notes

• Overloaded operator ‘ˆ’

• Computed by repeated multiplication.

• If the argument is a unit-quaternion, the result will be a unit quaternion.

See also

Quaternion.mrdivide, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Quaternion.mrdivide
Quaternion quotient.

Q1/Q2 is a quaternion formed by Hamilton product of Q1 and inv(Q2).
Q/S is the element-wise division of quaternion elements by the scalar S.

Notes

• Overloaded operator ‘/’

• If the dividend and divisor are unit-quaternions, the quotient will be a unit quater-
nion.

Robotics Toolbox 9.10 for MATLAB
R©

188 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Quaternion.mtimes, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Quaternion.mtimes
Multiply a quaternion object

Q1*Q2 is a quaternion formed by the Hamilton product of two quaternions.
Q*V is a vector formed by rotating the vector V by the quaternion Q.
Q*S is the element-wise multiplication of quaternion elements by the scalar S.

Notes

• Overloaded operator ‘*’

• If the two multiplicands are unit-quaternions, the product will be a unit quater-
nion.

See also

Quaternion.mrdivide, Quaternion.mpower, Quaternion.plus, Quaternion.minus

Quaternion.ne
Test quaternion inequality

Q1 =Q2 is true if the quaternions Q1 and Q2 are not equal.

Notes

• Overloaded operator ‘ =’

• Note that for unit Quaternions Q and -Q are the equivalent rotation, so non-
equality does not mean rotations are not equivalent.

• If Q1 is a vector of quaternions, each element is compared to Q2 and the result
is a logical array of the same length as Q1.

• If Q2 is a vector of quaternions, each element is compared to Q1 and the result
is a logical array of the same length as Q2.

• If Q1 and Q2 are vectors of the same length, then the result is a logical array of
the same length.

Robotics Toolbox 9.10 for MATLAB
R©

189 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Quaternion.eq

Quaternion.norm
Quaternion magnitude

qn = q.norm(q) is the scalar norm or magnitude of the quaternion q.

Notes

• This is the Euclidean norm of the quaternion written as a 4-vector.

• A unit-quaternion has a norm of one.

See also

Quaternion.inner, Quaternion.unit

Quaternion.plot
Plot a quaternion object

Q.plot(options) plots the quaternion as an oriented coordinate frame.

Options

Options are passed to trplot and include:

‘color’, C The color to draw the axes, MATLAB colorspec C
‘frame’, F The frame is named {F} and the subscript on the axis labels is F.
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame

See also

trplot

Robotics Toolbox 9.10 for MATLAB
R©

190 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Quaternion.plus
Add quaternions

Q1+Q2 is the element-wise sum of quaternion elements.

Notes

• Overloaded operator ‘+’

• The result is not guaranteed to be a unit-quaternion.

See also

Quaternion.minus, Quaternion.mtimes

Quaternion.R
Convert to orthonormal rotation matrix

R = Q.R() is the equivalent SO(3) orthonormal rotation matrix (3× 3). If Q represents
a sequence (N × 1) then R is 3× 3×N .

Quaternion.scale
Interpolate rotations expressed by quaternion objects

qi = Q.scale(s) is a unit-quaternion that interpolates between a null rotation (identity
quaternion) for s=0 to Q for s=1. This is a spherical linear interpolation (slerp) that can
be interpretted as interpolation along a great circle arc on a sphere.

If s is a vector qi is a vector of quaternions, each element corresponding to sequential
elements of s.

Notes

• This is a spherical linear interpolation (slerp) that can be interpretted as interpo-
lation along a great circle arc on a sphere.

Robotics Toolbox 9.10 for MATLAB
R©

191 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Quaternion.interp, ctraj

Quaternion.T
Convert to homogeneous transformation matrix

T = Q.T() is the equivalent SE(3) homogeneous transformation matrix

(4× 4). If Q represents a sequence (N × 1) then T is 4× 4×N .

Notes:

• Has a zero translational component.

Quaternion.unit
Unitize a quaternion

qu = Q.unit() is a unit-quaternion representing the same orientation as Q.

See also

Quaternion.norm

r2t
Convert rotation matrix to a homogeneous transform

T = r2t(R) is an SE(2) or SE(3) homogeneous transform equivalent to an SO(2) or
SO(3) orthonormal rotation matrix R with a zero translational component.

Notes

• Works for T in either SE(2) or SE(3)

– if R is 2× 2 then T is 3× 3, or

– if R is 3× 3 then T is 4× 4.

Robotics Toolbox 9.10 for MATLAB
R©

192 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Translational component is zero.

• For a rotation matrix sequence returns a homogeneous transform sequence.

See also

t2r

randinit
Reset random number generator

RANDINIT resets the defaul random number stream.

See also

randstream

RandomPath
Vehicle driver class

Create a “driver” object capable of steering a Vehicle object through random waypoints
within a rectangular region and at constant speed.

The driver object is connected to a Vehicle object by the latter’s add driver() method.
The driver’s demand() method is invoked on every call to the Vehicle’s step() method.

Methods

init reset the random number generator
demand return speed and steer angle to next waypoint
display display the state and parameters in human readable form
char convert to string

Robotics Toolbox 9.10 for MATLAB
R©

193 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

goal current goal/waypoint coordinate
veh the Vehicle object being controlled
dim dimensions of the work space (2× 1) [m]
speed speed of travel [m/s]
closeenough proximity to waypoint at which next is chosen [m]

Example

veh = Vehicle(V);
veh.add_driver(RandomPath(20, 2));

Notes

• It is possible in some cases for the vehicle to move outside the desired region, for
instance if moving to a waypoint near the edge, the limited turning circle may
cause the vehicle to temporarily move outside.

• The vehicle chooses a new waypoint when it is closer than property closeenough
to the current waypoint.

• Uses its own random number stream so as to not influence the performance of
other randomized algorithms such as path planning.

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

See also

Vehicle

RandomPath.RandomPath
Create a driver object

d = RandomPath(dim, options) returns a “driver” object capable of driving a Vehicle
object through random waypoints. The waypoints are positioned inside a rectangular
region bounded by +/- dim in the x- and y-directions.

Robotics Toolbox 9.10 for MATLAB
R©

194 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘speed’, S Speed along path (default 1m/s).
‘dthresh’, d Distance from goal at which next goal is chosen.

See also

Vehicle

RandomPath.char
Convert to string

s = R.char() is a string showing driver parameters and state in in a compact human
readable format.

RandomPath.demand
Compute speed and heading to waypoint

[speed,steer] = R.demand() returns the speed and steer angle to drive the vehicle to-
ward the next waypoint. When the vehicle is within R.closeenough a new waypoint is
chosen.

See also

Vehicle

RandomPath.display
Display driver parameters and state

R.display() displays driver parameters and state in compact human readable form.

See also

RandomPath.char

Robotics Toolbox 9.10 for MATLAB
R©

195 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RandomPath.init
Reset random number generator

R.init() resets the random number generator used to create the waypoints. This enables
the sequence of random waypoints to be repeated.

See also

randstream

RangeBearingSensor
Range and bearing sensor class

A concrete subclass of the Sensor class that implements a range and bearing angle
sensor that provides robot-centric measurements of point features in the world. To
enable this it has references to a map of the world (Map object) and a robot moving
through the world (Vehicle object).

Methods

reading range/bearing observation of random feature
h range/bearing observation of specific feature
Hx Jacobian matrix dh/dxv
Hxf Jacobian matrix dh/dxf
Hw Jacobian matrix dh/dw
g feature position given vehicle pose and observation
Gx Jacobian matrix dg/dxv
Gz Jacobian matrix dg/dz

Properties (read/write)

W measurement covariance matrix (2× 2)
interval valid measurements returned every interval’th call to reading()

Reference

Robotics, Vision & Control, Chap 6, Peter Corke, Springer 2011

Robotics Toolbox 9.10 for MATLAB
R©

196 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Sensor, Vehicle, Map, EKF

RangeBearingSensor.RangeBearingSensor
Range and bearing sensor constructor

s = RangeBearingSensor(vehicle, map, w, options) is an object representing a range
and bearing angle sensor mounted on the Vehicle object vehicle and observing an envi-
ronment of known landmarks represented by the map object map. The sensor covari-
ance is w (2× 2) representing range and bearing covariance.

Options

‘range’, xmax maximum range of sensor
‘range’, [xmin xmax] minimum and maximum range of sensor
‘angle’, TH detection for angles betwen -TH to +TH
‘angle’, [THMIN THMAX] detection for angles betwen THMIN and THMAX
‘skip’, I return a valid reading on every I’th call
‘fail’, [TMIN TMAX] sensor simulates failure between timesteps TMIN and TMAX

See also

options for sensor constructor

See also

Sensor.Sensor, Vehicle, Map, EKF

RangeBearingSensor.g
Compute landmark location

p = S.g(xv, z) is the world coordinate (1× 2) of a feature given the sensor observation
z (1× 2) and vehicle state xv (3× 1).

See also

RangeBearingSensor.Gx, RangeBearingSensor.Gz

Robotics Toolbox 9.10 for MATLAB
R©

197 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RangeBearingSensor.Gx
Jacobian dg/dx

J = S.Gx(xv, z) is the Jacobian dg/dxv (2× 3) at the vehicle state xv (3× 1) for sensor
observation z (2× 1).

See also

RangeBearingSensor.g

RangeBearingSensor.Gz
Jacobian dg/dz

J = S.Gz(xv, z) is the Jacobian dg/dz (2 × 2) at the vehicle state xv (3 × 1) for sensor
observation z (2× 1).

See also

RangeBearingSensor.g

RangeBearingSensor.h
Landmark range and bearing

z = S.h(xv, k) is a sensor observation (1× 2), range and bearing, from vehicle at pose
xv (1× 3) to the k’th map feature.

z = S.h(xv, xf) as above but compute range and bearing to a feature at coordinate xf.

z = s.h(xv) as above but computes range and bearing to all map features. z has one row
per feature.

Notes

• Noise with covariance W (propertyW) is added to each row of z.

• Supports vectorized operation where xv (N × 3) and z (N × 2).

Robotics Toolbox 9.10 for MATLAB
R©

198 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RangeBearingSensor.Hx, RangeBearingSensor.Hw, RangeBearingSensor.Hxf

RangeBearingSensor.Hw
Jacobian dh/dv

J = S.Hw(xv, k) is the Jacobian dh/dv (2 × 2) at the vehicle state xv (3 × 1) for map
feature k.

See also

RangeBearingSensor.h

RangeBearingSensor.Hx
Jacobian dh/dxv

J = S.Hx(xv, k) returns the Jacobian dh/dxv (2× 3) at the vehicle state xv (3× 1) for
map feature k.

J = S.Hx(xv, xf) as above but for a feature at coordinate xf.

See also

RangeBearingSensor.h

RangeBearingSensor.Hxf
Jacobian dh/dxf

J = S.Hxf(xv, k) is the Jacobian dh/dxv (2× 2) at the vehicle state xv (3× 1) for map
feature k.

J = S.Hxf(xv, xf) as above but for a feature at coordinate xf (1× 2).

See also

RangeBearingSensor.h

Robotics Toolbox 9.10 for MATLAB
R©

199 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RangeBearingSensor.reading
Landmark range and bearing

[z,k] = S.reading() is an observation of a random landmark where z=[R,THETA] is the
range and bearing with additive Gaussian noise of covariance W (property W). k is the
index of the map feature that was observed. If no valid measurement, ie. no features
within range, interval subsampling enabled or simulated failure the return is z=[] and
k=NaN.

See also

RangeBearingSensor.h

Revolute
Robot manipulator Revolute link class

A subclass of the Link class: holds all information related to a robot link such as kine-
matics parameters, rigid-body inertial parameters, motor and transmission parameters.

Notes

• This is reference class object

• Link class objects can be used in vectors and arrays

References

• Robotics, Vision & Control, Chap 7 P. Corke, Springer 2011.

See also

Link, Prismatic, SerialLink

Robotics Toolbox 9.10 for MATLAB
R©

200 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RevoluteMDH
Robot manipulator Revolute link class for MDH convention

A subclass of the Link class: holds all information related to a robot link such as kine-
matics parameters, rigid-body inertial parameters, motor and transmission parameters.

Notes

• This is reference class object

• Link class objects can be used in vectors and arrays

• Modified Denavit-Hartenberg parameters are used

References

• Robotics, Vision & Control, Chap 7 P. Corke, Springer 2011.

See also

Link, Prismatic, SerialLink

See also

Link, PrismaticMDH, Revolute, SerialLink

RobotArm
Serial-link robot arm class

A subclass of SerialLink than includes an interface to a physical robot.

Methods

plot display graphical representation of robot
teach drive the physical and graphical robots
mirror use the robot as a slave to drive graphics
jmove joint space motion of the physical robot
cmove Cartesian space motion of the physical robot

plus all other methods of SerialLink

Robotics Toolbox 9.10 for MATLAB
R©

201 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties

as per SerialLink class

Note

• the interface to a physical robot, the machine, should be an abstract

superclass but right now it isn’t

• RobotArm is a subclass of SerialLink.

• RobotArm is a reference (handle subclass) object.

• RobotArm objects can be used in vectors and arrays

Reference

• http://www.petercorke.com/doc/robotarm.pdf

• Robotics, Vision & Control, Chaps 7-9, P. Corke, Springer 2011.

• Robot, Modeling & Control, M.Spong, S. Hutchinson & M. Vidyasagar, Wiley
2006.

See also

Machine, SerialLink, Link, DHFactor

RobotArm.RobotArm
Construct a RobotArm object

ra = RobotArm(L, m, options) is a robot object defined by a vector of Link objects L
with a physical robot interface m represented by an object of class Machine.

Options

‘name’, name set robot name property
‘comment’, comment set robot comment property
‘manufacturer’, manuf set robot manufacturer property
‘base’, base set base transformation matrix property
‘tool’, tool set tool transformation matrix property
‘gravity’, g set gravity vector property
‘plotopt’, po set plotting options property

Robotics Toolbox 9.10 for MATLAB
R©

202 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.SerialLink, Arbotix.Arbotix

RobotArm.cmove
Cartesian space move

RA.cmove(T) moves the robot arm to the pose specified by the homogeneous transfor-
mation (4× 4).

Notes

• A joint-space trajectory is computed from the current configuration to QD using
the jmove() method.

• If the robot is 6-axis with a spherical wrist inverse kinematics are computed using
ikine6s() otherwise numerically using ikine().

See also

RobotArm.jmove, Arbotix.setpath

RobotArm.delete
Destroy the RobotArm object

RA.delete() closes and destroys the machine interface object and the RobotArm ob-
ject.

RobotArm.getq
Get the robot joint angles

q = RA.getq() is a vector (1×N) of robot joint angles.

Notes

• If the robot has a gripper, its value is not included in this vector.

Robotics Toolbox 9.10 for MATLAB
R©

203 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RobotArm.gripper
Control the robot gripper

RA.gripper(C) sets the robot gripper according to C which is 0 for closed and 1 for
open.

Notes

• Not all robots have a gripper.

• The gripper is assumed to be the last servo motor in the chain.

RobotArm.jmove
Joint space move

RA.jmove(qd) moves the robot arm to the configuration specified by the joint angle
vector qd (1×N).

RA.jmove(qd, T) as above but the total move takes T seconds.

Notes

• A joint-space trajectory is computed from the current configuration to qd.

See also

RobotArm.cmove, Arbotix.setpath

RobotArm.mirror
Mirror the robot pose to graphics

RA.mirror() places the robot arm in relaxed mode, and as it is moved by hand the
graphical animation follows.

See also

SerialLink.teach, SerialLink.plot

Robotics Toolbox 9.10 for MATLAB
R©

204 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RobotArm.teach
Teach the robot

RA.teach() invokes a simple GUI to allow joint space motion, as well as showing an
animation of the robot on screen.

See also

SerialLink.teach, SerialLink.plot

rot2
SO(2) Rotation matrix

R = rot2(theta) is an SO(2) rotation matrix representing a rotation of theta radians.

R = rot2(theta, ‘deg’) as above but theta is in degrees.

See also

trot2, rotx, roty, rotz

rotx
Rotation about X axis

R = rotx(theta) is an SO(3) rotation matrix (3 × 3) representing a rotation of theta
radians about the x-axis.

R = rotx(theta, ‘deg’) as above but theta is in degrees.

See also

roty, rotz, angvec2r, rot2

Robotics Toolbox 9.10 for MATLAB
R©

205 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

roty
Rotation about Y axis

R = roty(theta) is an SO(3) rotation matrix (3 × 3) representing a rotation of theta
radians about the y-axis.

R = roty(theta, ‘deg’) as above but theta is in degrees.

See also

rotx, rotz, angvec2r, rot2

rotz
Rotation about Z axis

R = rotz(theta) is an SO(3) rotation matrix (3 × 3) representing a rotation of theta
radians about the z-axis.

R = rotz(theta, ‘deg’) as above but theta is in degrees.

See also

rotx, roty, angvec2r, rot2

rpy2jac
Jacobian from RPY angle rates to angular velocity

J = rpy2jac(eul) is a Jacobian matrix (3 × 3) that maps roll-pitch-yaw angle rates to
angular velocity at the operating point RPY=[R,P,Y].

J = rpy2jac(R, p, y) as above but the roll-pitch-yaw angles are passed as separate
arguments.

Robotics Toolbox 9.10 for MATLAB
R©

206 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Used in the creation of an analytical Jacobian.

See also

eul2jac, SerialLink.JACOBN

rpy2r
Roll-pitch-yaw angles to rotation matrix

R = rpy2r(roll, pitch, yaw, options) is an SO(3) orthonornal rotation matrix (3 × 3)
equivalent to the specified roll, pitch, yaw angles angles. These correspond to rotations
about the X, Y, Z axes respectively. If roll, pitch, yaw are column vectors (N × 1)
then they are assumed to represent a trajectory and R is a three-dimensional matrix
(3× 3×N), where the last index corresponds to rows of roll, pitch, yaw.

R = rpy2r(rpy, options) as above but the roll, pitch, yaw angles angles angles are
taken from consecutive columns of the passed matrix rpy = [roll, pitch, yaw]. If rpy
is a matrix (N × 3) then they are assumed to represent a trajectory and R is a three-
dimensional matrix (3×3×N), where the last index corresponds to rows of rpy which
are assumed to be [roll, pitch, yaw].

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Note

• In previous releases (<8) the angles corresponded to rotations about ZYX. Many
texts (Paul, Spong) use the rotation order ZYX. This old behaviour can be en-
abled by passing the option ‘zyx’

See also

tr2rpy, eul2tr

Robotics Toolbox 9.10 for MATLAB
R©

207 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

rpy2tr
Roll-pitch-yaw angles to homogeneous transform

T = rpy2tr(roll, pitch, yaw, options) is an SE(3) homogeneous transformation matrix
(4 × 4) equivalent to the specified roll, pitch, yaw angles angles. These correspond to
rotations about the X, Y, Z axes respectively. If roll, pitch, yaw are column vectors
(N × 1) then they are assumed to represent a trajectory and R is a three-dimensional
matrix (4× 4×N), where the last index corresponds to rows of roll, pitch, yaw.

T = rpy2tr(rpy, options) as above but the roll, pitch, yaw angles angles angles are
taken from consecutive columns of the passed matrix rpy = [roll, pitch, yaw]. If rpy
is a matrix (N × 3) then they are assumed to represent a trajectory and T is a three-
dimensional matrix (4×4×N), where the last index corresponds to rows of rpy which
are assumed to be [roll, pitch, yaw].

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Note

• In previous releases (<8) the angles corresponded to rotations about ZYX. Many
texts (Paul, Spong) use the rotation order ZYX. This old behaviour can be en-
abled by passing the option ‘zyx’

See also

tr2rpy, rpy2r, eul2tr

RRT
Class for rapidly-exploring random tree navigation

A concrete subclass of the abstract Navigation class that implements the rapidly ex-
ploring random tree (RRT) algorithm. This is a kinodynamic planner that takes into
account the motion constraints of the vehicle.

Robotics Toolbox 9.10 for MATLAB
R©

208 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plan Compute the tree
path Compute a path
plot Display the tree
display Display the parameters in human readable form
char Convert to string

Example

goal = [0,0,0];
start = [0,2,0];
veh = Vehicle([], ’stlim’, 1.2);
rrt = RRT([], veh, ’goal’, goal, ’range’, 5);
rrt.plan() % create navigation tree
rrt.path(start, goal) % animate path from this start location

Robotics, Vision & Control compatability mode:

goal = [0,0,0];
start = [0,2,0];
rrt = RRT(); % create navigation object
rrt.plan() % create navigation tree
rrt.path(start, goal) % animate path from this start location

References

• Randomized kinodynamic planning, S. LaValle and J. Kuffner, International
Journal of Robotics Research vol. 20, pp. 378-400, May 2001.

• Probabilistic roadmaps for path planning in high dimensional configuration spaces,
L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, IEEE Transactions on
Robotics and Automation, vol. 12, pp. 566-580, Aug 1996.

• Robotics, Vision & Control, Section 5.2.5, P. Corke, Springer 2011.

See also

Navigation, PRM, DXform, Dstar, PGraph

RRT.RRT
Create an RRT navigation object

R = RRT.RRT(map, veh, options) is a rapidly exploring tree navigation object for a
region with obstacles defined by the map object map.

R = RRT.RRT() as above but internally creates a Vehicle class object and does not
support any map or options. For compatibility with RVC book.

Robotics Toolbox 9.10 for MATLAB
R©

209 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘npoints’, N Number of nodes in the tree (default 500)
‘time’, T Interval over which to simulate dynamic model toward random point (default 0.5s)
‘range’, R Specify rectangular bounds

• R scalar; X: -R to +R, Y: -R to +R

• R (1× 2); X: -R(1) to +R(1), Y: -R(2) to +R(2)

• R (1× 4); X: R(1) to R(2), Y: R(3) to R(4)

‘goal’, P Goal position (1× 2) or pose (1× 3) in workspace
‘speed’, S Speed of vehicle [m/s] (default 1)
‘steermax’, S Steering angle of vehicle in the range -S to +S [rad] (default 1.2)

Notes

• Does not (yet) support obstacles, ie. map is ignored but must be given.

• ‘steermax’ selects the range of steering angles that the vehicle will be asked to
track. If not given the steering angle range of the vehicle object will be used.

• There is no check that the steering range or speed is within the limits of the
vehicle object.

Reference

• Robotics, Vision & Control Peter Corke, Springer 2011. p102.

See also

Vehicle

RRT.char
Convert to string

R.char() is a string representing the state of the RRT object in human-readable form.

RRT.path
Find a path between two points

x = R.path(start, goal) finds a path (N×3) from state start (1×3) to the goal (1×3).

Robotics Toolbox 9.10 for MATLAB
R©

210 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

R.path(start, goal) as above but plots the path in 3D. The nodes are shown as circles
and the line segments are blue for forward motion and red for backward motion.

Notes

• The path starts at the vertex closest to the start state, and ends at the vertex
closest to the goal state. If the tree is sparse this might be a poor approximation
to the desired start and end.

See also

RRT.plot

RRT.plan
Create a rapidly exploring tree

R.plan(options) creates the tree roadmap by driving the vehicle model toward random
goal points. The resulting graph is kept within the object.

Options

‘goal’, P Goal pose (1× 3)
‘ntrials’, N Number of path trials (default 50)
‘noprogress’ Don’t show the progress bar
‘samples’ Show progress in a plot of the workspace

• ‘.’ for each random point x rand

• ‘o’ for the nearest point which is added to the tree

• red line for the best path

Notes

• At each iteration we need to find a vehicle path/control that moves it from a
random point towards a point on the graph. We sample ntrials of random steer
angles and velocities and choose the one that gets us closest (computationally
slow, since each path has to be integrated over time).

Robotics Toolbox 9.10 for MATLAB
R©

211 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

RRT.plot
Visualize navigation environment

R.plot() displays the navigation tree in 3D.

rt2tr
Convert rotation and translation to homogeneous transform

TR = rt2tr(R, t) is a homogeneous transformation matrix (M × M) formed from
an orthonormal rotation matrix R (N × N) and a translation vector t (N × 1) where
M=N+1.

For a sequence R (N ×N ×K) and t (N ×K) results in a transform sequence (M ×
M ×K).

Notes

• Works for R in SO(2) or SO(3)

– If R is 2× 2 and t is 2× 1, then TR is 3× 3

– If R is 3× 3 and t is 3× 1, then TR is 4× 4

• The validity of R is not checked

See also

t2r, r2t, tr2rt

rtbdemo
Robot toolbox demonstrations

rtbdemo displays a menu of toolbox demonstration scripts that illustrate:

• homogeneous transformations

• trajectories

Robotics Toolbox 9.10 for MATLAB
R©

212 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• forward kinematics

• inverse kinematics

• robot animation

• inverse dynamics

• forward dynamics

rtbdemo(T) as above but waits for T seconds after every statement, no need to push
the enter key periodically.

Notes

• By default the scripts require the user to periodically hit <Enter> in order to
move through the explanation.

runscript
Run an M-file in interactive fashion

runscript(fname, options) runs the M-file fname and pauses after every executable
line in the file until a key is pressed. Comment lines are shown without any delay
between lines.

Options

‘delay’, D Don’t wait for keypress, just delay of D seconds (default 0)
‘cdelay’, D Pause of D seconds after each comment line (default 0)
‘begin’ Start executing the file after the comment line %%begin (default false)
‘dock’ Cause the figures to be docked when created
‘path’, P Look for the file fname in the folder P (default .)
‘dock’ Dock figures within GUI

Notes

• If no file extension is given in fname, .m is assumed.

• If the executable statement has comments immediately afterward (no blank lines)
then the pause occurs after those comments are displayed.

• A simple ‘-’ prompt indicates when the script is paused, hit enter.

• If the function cprintf() is in your path, the display is more colorful, you can get
this file from MATLAB Central.

Robotics Toolbox 9.10 for MATLAB
R©

213 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• If the file has a lot of boilerplate, you can skip over and not display it by giving
the ‘begin’ option which searchers for the first line starting with %%begin and
commences execution at the line after that.

See also

eval

rvcpath
Install location of RVC tools

p = RVCPATH is the path of the top level folder for the installed RVC tools.

se2
Create planar translation and rotation transformation

T = se2(x, y, theta) is an SE(2) homogeneous transformation (3 × 3) representing
translation x and y, and rotation theta in the plane.

T = se2(xy) as above where xy=[x,y] and rotation is zero

T = se2(xy, theta) as above where xy=[x,y]

T = se2(xyt) as above where xyt=[x,y,theta]

See also

transl2, rot2, ishomog2, isrot2, trplot2

Robotics Toolbox 9.10 for MATLAB
R©

214 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

se3
Lift SE(2) transform to SE(3)

t3 = se3(t2) returns a homogeneous transform (4 × 4) that represents the same X,Y
translation and Z rotation as does t2 (3× 3).

See also

se2, transl, rotx

Sensor
Sensor superclass

A superclass to represent robot navigation sensors.

Methods

plot plot a line from robot to map feature
display print the parameters in human readable form
char convert to string

Properties

robot The Vehicle object on which the sensor is mounted
map The Map object representing the landmarks around the robot

Reference

Robotics, Vision & Control, Peter Corke, Springer 2011

See also

rangebearing, EKF, Vehicle, Map

Robotics Toolbox 9.10 for MATLAB
R©

215 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Sensor.Sensor
Sensor object constructor

s = Sensor(vehicle, map, options) is a sensor mounted on a vehicle described by the
Vehicle class object vehicle and observing landmarks in a map described by the Map
class object map.

Options

‘animate’ animate the action of the laser scanner
‘ls’, LS laser scan lines drawn with style ls (default ‘r-’)
‘skip’, I return a valid reading on every I’th call
‘fail’, T sensor simulates failure between timesteps T=[TMIN,TMAX]

Sensor.char
Convert sensor parameters to a string

s = S.char() is a string showing sensor parameters in a compact human readable format.

Sensor.display
Display status of sensor object

S.display() displays the state of the sensor object in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Sensor object and the command has no trailing semicolon.

See also

Sensor.char

Robotics Toolbox 9.10 for MATLAB
R©

216 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Sensor.plot
Plot sensor reading

S.plot(J) draws a line from the robot to the J’th map feature.

Notes

• The line is drawn using the linestyle given by the property ls

• There is a delay given by the property delay

SerialLink
Serial-link robot class

A concrete class that represents a serial-link arm-type robot. The mechanism is de-
scribed using Denavit-Hartenberg parameters, one set per joint.

Robotics Toolbox 9.10 for MATLAB
R©

217 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

plot display graphical representation of robot
plot3d display 3D graphical model of robot
teach drive the graphical robot
getpos get position of graphical robot
jtraj a joint space trajectory
edit display and edit kinematic and dynamic parameters
isspherical test if robot has spherical wrist
islimit test if robot at joint limit
isconfig test robot joint configuration
fkine forward kinematics
A link transforms
trchain forward kinematics as a chain of elementary transforms
ikine6s inverse kinematics for 6-axis spherical wrist revolute robot
ikine inverse kinematics using iterative numerical method
ikunc inverse kinematics using optimisation
ikcon inverse kinematics using optimisation with joint limits
ikine sym analytic inverse kinematics obtained symbolically
jacob0 Jacobian matrix in world frame
jacobn Jacobian matrix in tool frame
jacob dot Jacobian derivative
maniplty manipulability
vellipse display velocity ellipsoid
fellipse display force ellipsoid
qmincon null space motion to centre joints between limits
accel joint acceleration
coriolis Coriolis joint force
dyn show dynamic properties of links
friction friction force
gravload gravity joint force
inertia joint inertia matrix
cinertia Cartesian inertia matrix
nofriction set friction parameters to zero
rne inverse dynamics
fdyn forward dynamics
payload add a payload in end-effector frame
perturb randomly perturb link dynamic parameters
gravjac gravity load and Jacobian
paycap payload capacity
pay payload effect
sym a symbolic version of the object
gencoords symbolic generalized coordinates
genforces symbolic generalized forces
issym test if object is symbolic

Robotics Toolbox 9.10 for MATLAB
R©

218 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read/write)

links vector of Link objects (1×N)
gravity direction of gravity [gx gy gz]
base pose of robot’s base (4× 4 homog xform)
tool robot’s tool transform, T6 to tool tip (4× 4 homog xform)
qlim joint limits, [qmin qmax] (N × 2)
offset kinematic joint coordinate offsets (N × 1)
name name of robot, used for graphical display
manuf annotation, manufacturer’s name
comment annotation, general comment
plotopt options for plot() method (cell array)
fast use MEX version of RNE. Can only be set true if the mex file exists. Default is true.

Properties (read only)

n number of joints
config joint configuration string, eg. ‘RRRRRR’
mdh kinematic convention boolean (0=DH, 1=MDH)
theta kinematic: joint angles (1×N)
d kinematic: link offsets (1×N)
a kinematic: link lengths (1×N)
alpha kinematic: link twists (1×N)

Overloaded operators

R1*R2 concatenate two SerialLink manipulators R1 and R2

Note

• SerialLink is a reference object.

• SerialLink objects can be used in vectors and arrays

Reference

• Robotics, Vision & Control, Chaps 7-9, P. Corke, Springer 2011.

• Robot, Modeling & Control, M.Spong, S. Hutchinson & M. Vidyasagar, Wiley
2006.

See also

Link, DHFactor

Robotics Toolbox 9.10 for MATLAB
R©

219 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.SerialLink
Create a SerialLink robot object

R = SerialLink(links, options) is a robot object defined by a vector of Link class
objects which can be instances of Link, Revolute, Prismatic, RevoluteMDH or Pris-
maticMDH.

R = SerialLink(options) is a null robot object with no links.

R = SerialLink([R1 R2 ...], options) concatenate robots, the base of R2 is attached to
the tip of R1. Can also be written R1*R2 etc.

R = SerialLink(R1, options) is a deep copy of the robot object R1, with all the same
properties.

R = SerialLink(dh, options) is a robot object with kinematics defined by the matrix
dh which has one row per joint and each row is [theta d a alpha] and joints are as-
sumed revolute. An optional fifth column sigma indicate revolute (sigma=0, default)
or prismatic (sigma=1).

Options

‘name’, NAME set robot name property to NAME
‘comment’, COMMENT set robot comment property to COMMENT
‘manufacturer’, MANUF set robot manufacturer property to MANUF
‘base’, T set base transformation matrix property to T
‘tool’, T set tool transformation matrix property to T
‘gravity’, G set gravity vector property to G
‘plotopt’, P set default options for .plot() to P
‘plotopt3d’, P set default options for .plot3d() to P
‘nofast’ don’t use RNE MEX file

Examples

Create a 2-link robot

L(1) = Link([0 0 a1 pi/2], ’standard’);
L(2) = Link([0 0 a2 0], ’standard’);
twolink = SerialLink(L, ’name’, ’two link’);

Create a 2-link robot (most descriptive)

L(1) = Revolute(’d’, 0, ’a’, a1, ’alpha’, pi/2);
L(2) = Revolute(’d’, 0, ’a’, a2, ’alpha’, 0);
twolink = SerialLink(L, ’name’, ’two link’);

Create a 2-link robot (least descriptive)

twolink = SerialLink([0 0 a1 0; 0 0 a2 0], ’name’, ’two link’);

Robot objects can be concatenated in two ways

Robotics Toolbox 9.10 for MATLAB
R©

220 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

R = R1 * R2;
R = SerialLink([R1 R2]);

Note

• SerialLink is a reference object, a subclass of Handle object.

• SerialLink objects can be used in vectors and arrays

• Link subclass elements passed in must be all standard, or all modified, dh pa-
rameters.

• When robots are concatenated (either syntax) the intermediate base and tool
transforms are removed since general constant transforms cannot be represented
in Denavit-Hartenberg notation.

See also

Link, Revolute, Prismatic, RevoluteMDH, PrismaticMDH, SerialLink.plot

SerialLink.A
Link transformation matrices

s = R.A(J, qj) is an SE(3) homogeneous transform (4 × 4) that transforms from link
frame {J-1} to frame {J} which is a function of the J’th joint variable qj.

s = R.A(jlist, q) as above but is a composition of link transform matrices given in the
list JLIST, and the joint variables are taken from the corresponding elements of Q.

Exmaples

For example, the link transform for joint 4 is

robot.A(4, q4)

The link transform for joints 3 through 6 is

robot.A([3 4 5 6], q)

where q is 1× 6 and the elements q(3) .. q(6) are used.

Notes

• base and tool transforms are not applied.

Robotics Toolbox 9.10 for MATLAB
R©

221 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.accel
Manipulator forward dynamics

qdd = R.accel(q, qd, torque) is a vector (N × 1) of joint accelerations that result from
applying the actuator force/torque to the manipulator robot R in state q and qd, and N
is the number of robot joints.

If q, qd, torque are matrices (K ×N) then qdd is a matrix (K ×N) where each row
is the acceleration corresponding to the equivalent rows of q, qd, torque.

qdd = R.accel(x) as above but x=[q,qd,torque] (1× 3N).

Note

• Useful for simulation of manipulator dynamics, in conjunction with a numerical
integration function.

• Uses the method 1 of Walker and Orin to compute the forward dynamics.

• Featherstone’s method is more efficient for robots with large numbers of joints.

• Joint friction is considered.

References

• Efficient dynamic computer simulation of robotic mechanisms, M. W. Walker
and D. E. Orin, ASME Journa of Dynamic Systems, Measurement and Control,
vol. 104, no. 3, pp. 205-211, 1982.

See also

SerialLink.rne, SerialLink, ode45

SerialLink.animate
Update a robot animation

R.animate(q) updates an existing animation for the robot R. This will have been cre-
ated using R.plot(). Updates graphical instances of this robot in all figures.

Notes

• Called by plot() and plot3d() to actually move the arm models.

• Used for Simulink robot animation.

Robotics Toolbox 9.10 for MATLAB
R©

222 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.plot

SerialLink.char
Convert to string

s = R.char() is a string representation of the robot’s kinematic parameters, showing
DH parameters, joint structure, comments, gravity vector, base and tool transform.

SerialLink.cinertia
Cartesian inertia matrix

m = R.cinertia(q) is the N × N Cartesian (operational space) inertia matrix which
relates Cartesian force/torque to Cartesian acceleration at the joint configuration q, and
N is the number of robot joints.

See also

SerialLink.inertia, SerialLink.rne

SerialLink.collisions
Perform collision checking

C = R.collisions(q, model) is true if the SerialLink object R at pose q (1 × N) in-
tersects the solid model model which belongs to the class CollisionModel. The model
comprises a number of geometric primitives and associate pose.

C = R.collisions(q, model, dynmodel, tdyn) as above but also checks dynamic colli-
sion model dynmodel whose elements are at pose tdyn. tdyn is an array of transfor-
mation matrices (4× 4× P), where P = length(dynmodel.primitives). The P’th plane
of tdyn premultiplies the pose of the P’th primitive of dynmodel.

C = R.collisions(q, model, dynmodel) as above but assumes tdyn is the robot’s tool
frame.

Robotics Toolbox 9.10 for MATLAB
R©

223 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Trajectory operation

If q is M × N it is taken as a pose sequence and C is M × 1 and the collision value
applies to the pose of the corresponding row of q. tdyn is 4x4xMxP.

Notes

• Requires the pHRIWARE package which defines CollisionModel class. Avail-
able from: https://code.google.com/p/phriware/ .

• The robot is defined by a point cloud, given by its points property.

• The function does not currently check the base of the SerialLink object.

• If model is [] then no static objects are assumed.

Author

Bryan Moutrie

See also

collisionmodel, SerialLink

SerialLink.coriolis
Coriolis matrix

C = R.coriolis(q, qd) is the Coriolis/centripetal matrix (N ×N) for the robot in con-
figuration q and velocity qd, where N is the number of joints. The product C*qd is
the vector of joint force/torque due to velocity coupling. The diagonal elements are
due to centripetal effects and the off-diagonal elements are due to Coriolis effects. This
matrix is also known as the velocity coupling matrix, since it describes the disturbance
forces on any joint due to velocity of all other joints.

If q and qd are matrices (K ×N), each row is interpretted as a joint state vector, and
the result (N ×N ×K) is a 3d-matrix where each plane corresponds to a row of q and
qd.

C = R.coriolis(qqd) as above but the matrix qqd (1× 2N) is [q qd].

Notes

• Joint viscous friction is also a joint force proportional to velocity but it is elimi-
nated in the computation of this value.

Robotics Toolbox 9.10 for MATLAB
R©

224 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Computationally slow, involves N2/2 invocations of RNE.

See also

SerialLink.rne

SerialLink.display
Display parameters

R.display() displays the robot parameters in human-readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a SerialLink object and the command has no trailing semicolon.

See also

SerialLink.char, SerialLink.dyn

SerialLink.dyn
Print inertial properties

R.dyn() displays the inertial properties of the SerialLink object in a multi-line format.
The properties shown are mass, centre of mass, inertia, gear ratio, motor inertia and
motor friction.

R.dyn(J) as above but display parameters for joint J only.

See also

Link.dyn

Robotics Toolbox 9.10 for MATLAB
R©

225 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.edit
Edit kinematic and dynamic parameters of a seriallink manip-
ulator

R.edit displays the kinematic parameters of the robot as an editable table in a new
figure.

R.edit(’dyn’) as above but also displays the dynamic parameters.

Notes

• The ‘Save’ button copies the values from the table to the SerialLink manipulator
object.

• To exit the editor without updating the object just kill the figure window.

SerialLink.fdyn
Integrate forward dynamics

[T,q,qd] = R.fdyn(T, torqfun) integrates the dynamics of the robot over the time in-
terval 0 to T and returns vectors of time T, joint position q and joint velocity qd. The
initial joint position and velocity are zero. The torque applied to the joints is computed
by the user-supplied control function torqfun:

TAU = TORQFUN(T, Q, QD)

where q and qd are the manipulator joint coordinate and velocity state respectively,
and T is the current time.

[ti,q,qd] = R.fdyn(T, torqfun, q0, qd0) as above but allows the initial joint position
and velocity to be specified.

[T,q,qd] = R.fdyn(T1, torqfun, q0, qd0, ARG1, ARG2, ...) allows optional arguments
to be passed through to the user-supplied control function:

TAU = TORQFUN(T, Q, QD, ARG1, ARG2, ...)

For example, if the robot was controlled by a PD controller we can define a function to
compute the control

function tau = mytorqfun(t, q, qd, qstar, P, D)

tau = P*(qstar-q) + D*qd;

and then integrate the robot dynamics with the control

[t,q] = robot.fdyn(10, @mytorqfun, qstar, P, D);

Robotics Toolbox 9.10 for MATLAB
R©

226 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• This function performs poorly with non-linear joint friction, such as Coulomb
friction. The R.nofriction() method can be used to set this friction to zero.

• If torqfun is not specified, or is given as 0 or [], then zero torque is applied to
the manipulator joints.

• The builtin integration function ode45() is used.

See also

SerialLink.accel, SerialLink.nofriction, SerialLink.rne, ode45

SerialLink.fkine
Forward kinematics

T = R.fkine(q, options) is the pose of the robot end-effector as an SE(3) homogeneous
transformation (4× 4) for the joint configuration q (1×N).

If q is a matrix (K × N) the rows are interpreted as the generalized joint coordinates
for a sequence of points along a trajectory. q(i,j) is the j’th joint parameter for the i’th
trajectory point. In this case T is a 3d matrix (4 × 4 ×K) where the last subscript is
the index along the path.

[T,all] = R.fkine(q) as above but all (4× 4×N) is the pose of the link frames 1 to N,
such that all(:,:,k) is the pose of link frame k.

Options

‘deg’ Assume that revolute joint coordinates are in degrees not radians

Note

• The robot’s base or tool transform, if present, are incorporated into the result.

• Joint offsets, if defined, are added to q before the forward kinematics are com-
puted.

See also

SerialLink.ikine, SerialLink.ikine6s

Robotics Toolbox 9.10 for MATLAB
R©

227 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.friction
Friction force

tau = R.friction(qd) is the vector of joint friction forces/torques for the robot moving
with joint velocities qd.

The friction model includes:

• Viscous friction which is a linear function of velocity.

• Coulomb friction which is proportional to sign(qd).

See also

Link.friction

SerialLink.gencoords
Vector of symbolic generalized coordinates

q = R.gencoords() is a vector (1×N) of symbols [q1 q2 ... qN].

[q,qd] = R.gencoords() as above but qd is a vector (1 × N) of symbols [qd1 qd2 ...
qdN].

[q,qd,qdd] = R.gencoords() as above but qdd is a vector (1 × N) of symbols [qdd1
qdd2 ... qddN].

SerialLink.genforces
Vector of symbolic generalized forces

q = R.genforces() is a vector (1×N) of symbols [Q1 Q2 ... QN].

SerialLink.getpos
Get joint coordinates from graphical display

q = R.getpos() returns the joint coordinates set by the last plot or teach operation on
the graphical robot.

Robotics Toolbox 9.10 for MATLAB
R©

228 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.plot, SerialLink.teach

SerialLink.gravjac
Fast gravity load and Jacobian

[tau,jac0] = R.gravjac(q) is the generalised joint force/torques due to gravity (1×N)
and the manipulator Jacobian in the base frame (6×N) for robot pose q (1×N), where
N is the number of robot joints.

[tau,jac0] = R.gravjac(q,grav) as above but gravity is given explicitly by grav (3×1).

Trajectory operation

If q is M×N where N is the number of robot joints then a trajectory is assumed where
each row of q corresponds to a pose. tau (M × N) is the generalised joint torque,
each row corresponding to an input pose, and jac0 (6 ×N ×M) where each plane is
a Jacobian corresponding to an input pose.

Notes

• The gravity vector is defined by the SerialLink property if not explicitly given.

• Does not use inverse dynamics function RNE.

• Faster than computing gravity and Jacobian separately.

Author

Bryan Moutrie

See also

SerialLink.pay, SerialLink, SerialLink.gravload, SerialLink.jacob0

Robotics Toolbox 9.10 for MATLAB
R©

229 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.gravload
Gravity load on joints

taug = R.gravload(q) is the joint gravity loading (1 × N) for the robot R in the joint
configuration q (1×N), where N is the number of robot joints. Gravitational acceler-
ation is a property of the robot object.

If q is a matrix (M ×N) each row is interpreted as a joint configuration vector, and the
result is a matrix (M ×N) each row being the corresponding joint torques.

taug = R.gravload(q, grav) as above but the gravitational acceleration vector grav is
given explicitly.

See also

SerialLink.rne, SerialLink.itorque, SerialLink.coriolis

SerialLink.ikcon
Numerical inverse kinematics with joint limits

q = R.ikcon(T) are the joint coordinates (1×N) corresponding to the robot end-effector
pose T (4× 4) which is a homogenenous transform.

[q,err] = robot.ikcon(T) as above but also returns err which is the scalar final value of
the objective function.

[q,err,exitflag] = robot.ikcon(T) as above but also returns the status exitflag from
fmincon.

[q,err,exitflag] = robot.ikcon(T, q0) as above but specify the initial joint coordinates
q0 used for the minimisation.

[q,err,exitflag] = robot.ikcon(T, q0, options) as above but specify the options for
fmincon to use.

Trajectory operation

In all cases if T is 4 × 4 ×M it is taken as a homogeneous transform sequence and
R.ikcon() returns the joint coordinates corresponding to each of the transforms in the
sequence. q is M ×N where N is the number of robot joints. The initial estimate of q
for each time step is taken as the solution from the previous time step.

err and exitflag are also M × 1 and indicate the results of optimisation for the corre-
sponding trajectory step.

Robotics Toolbox 9.10 for MATLAB
R©

230 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Requires fmincon from the Optimization Toolbox.

• Joint limits are considered in this solution.

• Can be used for robots with arbitrary degrees of freedom.

• In the case of multiple feasible solutions, the solution returned depends on the
initial choice of q0.

• Works by minimizing the error between the forward kinematics of the joint angle
solution and the end-effector frame as an optimisation. The objective function
(error) is described as:

sumsqr((inv(T)*robot.fkine(q) - eye(4)) * omega)

Where omega is some gain matrix, currently not modifiable.

Author

Bryan Moutrie

See also

SerialLink.ikunc, fmincon, SerialLink.ikine, SerialLink.fkine

SerialLink.ikine
Numerical inverse kinematics

q = R.ikine(T) are the joint coordinates (1×N) corresponding to the robot end-effector
pose T (4× 4) which is a homogenenous transform.

q = R.ikine(T, q0, options) specifies the initial estimate of the joint coordinates.

This method can be used for robots with 6 or more degrees of freedom.

Underactuated robots

For the case where the manipulator has fewer than 6 DOF the solution space has more
dimensions than can be spanned by the manipulator joint coordinates.

q = R.ikine(T, q0, m, options) similar to above but where m is a mask vector (1× 6)
which specifies the Cartesian DOF (in the wrist coordinate frame) that will be ignored
in reaching a solution. The mask vector has six elements that correspond to translation
in X, Y and Z, and rotation about X, Y and Z respectively. The value should be 0 (for
ignore) or 1. The number of non-zero elements should equal the number of manipulator
DOF.

Robotics Toolbox 9.10 for MATLAB
R©

231 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

For example when using a 3 DOF manipulator rotation orientation might be unimpor-
tant in which case m = [1 1 1 0 0 0].

For robots with 4 or 5 DOF this method is very difficult to use since orientation is
specified by T in world coordinates and the achievable orientations are a function of
the tool position.

Trajectory operation

In all cases if T is 4 × 4 × m it is taken as a homogeneous transform sequence and
R.ikine() returns the joint coordinates corresponding to each of the transforms in the
sequence. q is m×N where N is the number of robot joints. The initial estimate of q
for each time step is taken as the solution from the previous time step.

Options

‘pinv’ use pseudo-inverse instead of Jacobian transpose (default)
‘ilimit’, L set the maximum iteration count (default 1000)
‘tol’, T set the tolerance on error norm (default 1e-6)
‘alpha’, A set step size gain (default 1)
‘varstep’ enable variable step size if pinv is false
‘verbose’ show number of iterations for each point
‘verbose=2’ show state at each iteration
‘plot’ plot iteration state versus time

References

• Robotics, Vision & Control, Section 8.4, P. Corke, Springer 2011.

Notes

• Solution is computed iteratively.

• Solution is sensitive to choice of initial gain. The variable step size logic (enabled
by default) does its best to find a balance between speed of convergence and
divergence.

• Some experimentation might be required to find the right values of tol, ilimit and
alpha.

• The pinv option leads to much faster convergence (default)

• The tolerance is computed on the norm of the error between current and desired
tool pose. This norm is computed from distances and angles without any kind of
weighting.

• The inverse kinematic solution is generally not unique, and depends on the initial
guess q0 (defaults to 0).

Robotics Toolbox 9.10 for MATLAB
R©

232 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The default value of q0 is zero which is a poor choice for most manipulators (eg.
puma560, twolink) since it corresponds to a kinematic singularity.

• Such a solution is completely general, though much less efficient than specific
inverse kinematic solutions derived symbolically, like ikine6s or ikine3.

• This approach allows a solution to be obtained at a singularity, but the joint
angles within the null space are arbitrarily assigned.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

• Joint limits are not considered in this solution.

See also

SerialLink.ikcon, SerialLink.ikunc, SerialLink.fkine, SerialLink.ikine6s

SerialLink.ikine3
Inverse kinematics for 3-axis robot with no wrist

q = R.ikine3(T) is the joint coordinates corresponding to the robot end-effector pose
T represented by the homogenenous transform. This is a analytic solution for a 3-axis
robot (such as the first three joints of a robot like the Puma 560).

q = R.ikine3(T, config) as above but specifies the configuration of the arm in the form
of a string containing one or more of the configuration codes:

‘l’ arm to the left (default)
‘r’ arm to the right
‘u’ elbow up (default)
‘d’ elbow down

Notes

• The same as IKINE6S without the wrist.

• The inverse kinematic solution is generally not unique, and depends on the con-
figuration string.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

Reference

Inverse kinematics for a PUMA 560 based on the equations by Paul and Zhang From
The International Journal of Robotics Research Vol. 5, No. 2, Summer 1986, p. 32-44

Robotics Toolbox 9.10 for MATLAB
R©

233 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Author

Robert Biro with Gary Von McMurray, GTRI/ATRP/IIMB, Georgia Institute of Tech-
nology 2/13/95

See also

SerialLink.FKINE, SerialLink.IKINE

SerialLink.ikine6s
Analytical inverse kinematics

q = R.ikine6s(T) is the joint coordinates (1 × N) corresponding to the robot end-
effector pose T represented by an SE(3) homogenenous transform (4 × 4). This is a
analytic solution for a 6-axis robot with a spherical wrist (the most common form for
industrial robot arms).

If T represents a trajectory (4 × 4 ×M) then the inverse kinematics is computed for
all M poses resulting in q (M ×N) with each row representing the joint angles at the
corresponding pose.

q = R.IKINE6S(T, config) as above but specifies the configuration of the arm in the
form of a string containing one or more of the configuration codes:

‘l’ arm to the left (default)
‘r’ arm to the right
‘u’ elbow up (default)
‘d’ elbow down
‘n’ wrist not flipped (default)
‘f’ wrist flipped (rotated by 180 deg)

Notes

• Treats a number of specific cases:

– Robot with no shoulder offset

– Robot with a shoulder offset (has lefty/righty configuration)

– Robot with a shoulder offset and a prismatic third joint (like Stanford arm)

– The Puma 560 arms with shoulder and elbow offsets (4 lengths parameters)

– The Kuka KR5 with many offsets (7 length parameters)

• The inverse kinematic solution is generally not unique, and depends on the con-
figuration string.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

Robotics Toolbox 9.10 for MATLAB
R©

234 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• Only applicable for standard Denavit-Hartenberg parameters

Reference

• Inverse kinematics for a PUMA 560, Paul and Zhang, The International Journal
of Robotics Research, Vol. 5, No. 2, Summer 1986, p. 32-44

Author

• The Puma560 case: Robert Biro with Gary Von McMurray, GTRI/ATRP/IIMB,
Georgia Institute of Technology, 2/13/95

• Kuka KR5 case: Gautam Sinha, Autobirdz Systems Pvt. Ltd., SIDBI Office,
Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh.

See also

SerialLink.FKINE, SerialLink.IKINE

SerialLink.ikine sym
Symbolic inverse kinematics

q = R.IKINE SYM(k, options) is a cell array (C×1) of inverse kinematic solutions of
the SerialLink object ROBOT. The cells of q represent the different possible configu-
rations. Each cell of q is a vector (N × 1), and element J is the symbolic expressions
for the J’th joint angle. The solution is in terms of the desired end-point pose of the
robot which is represented by the symbolic matrix (3× 4) with elements

nx ox ax tx
ny oy ay ty
nz oz az tz

where the first three columns specify orientation and the last column specifies transla-
tion.

k <= N can have only specific values:

• 2 solve for translation tx and ty

• 3 solve for translation tx, ty and tz

• 6 solve for translation and orientation

Options

‘file’, F Write the solution to an m-file named F

Robotics Toolbox 9.10 for MATLAB
R©

235 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Example

mdl_planar2
sol = p2.ikine_sym(2);
length(sol)
ans =

2 % there are 2 solutions

s1 = sol{1} % is one solution
q1 = s1(1); % the expression for q1
q2 = s1(2); % the expression for q2

Notes

• Requires the Symbolic Toolbox for MATLAB.

• This code is experimental and has a lot of diagnostic prints.

• Based on the classical approach using Pieper’s method.

SerialLink.ikinem
Numerical inverse kinematics by minimization

q = R.ikinem(T) is the joint coordinates corresponding to the robot end-effector pose
T which is a homogenenous transform.

q = R.ikinem(T, q0, options) specifies the initial estimate of the joint coordinates.

In all cases if T is 4 × 4 ×M it is taken as a homogeneous transform sequence and
R.ikinem() returns the joint coordinates corresponding to each of the transforms in the
sequence. q is M ×N where N is the number of robot joints. The initial estimate of q
for each time step is taken as the solution from the previous time step.

Options

‘pweight’, P weighting on position error norm compared to rotation error (default 1)
‘stiffness’, S Stiffness used to impose a smoothness contraint on joint angles, useful when N is large

(default 0)
‘qlimits’ Enforce joint limits
‘ilimit’, L Iteration limit (default 1000)
‘nolm’ Disable Levenberg-Marquadt

Notes

• PROTOTYPE CODE UNDER DEVELOPMENT, intended to do numerical in-
verse kinematics with joint limits

Robotics Toolbox 9.10 for MATLAB
R©

236 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The inverse kinematic solution is generally not unique, and depends on the initial
guess q0 (defaults to 0).

• The function to be minimized is highly nonlinear and the solution is often trapped
in a local minimum, adjust q0 if this happens.

• The default value of q0 is zero which is a poor choice for most manipulators (eg.
puma560, twolink) since it corresponds to a kinematic singularity.

• Such a solution is completely general, though much less efficient than specific
inverse kinematic solutions derived symbolically, like ikine6s or ikine3.% - Uses
Levenberg-Marquadt minimizer LMFsolve if it can be found, if ‘nolm’ is not
given, and ‘qlimits’ false

• The error function to be minimized is computed on the norm of the error between
current and desired tool pose. This norm is computed from distances and angles
and ‘pweight’ can be used to scale the position error norm to be congruent with
rotation error norm.

• This approach allows a solution to obtained at a singularity, but the joint angles
within the null space are arbitrarily assigned.

• Joint offsets, if defined, are added to the inverse kinematics to generate q.

• Joint limits become explicit contraints if ‘qlimits’ is set.

See also

fminsearch, fmincon, SerialLink.fkine, SerialLink.ikine, tr2angvec

SerialLink.ikunc
Numerical inverse manipulator without joint limits

q = R.ikunc(T) are the joint coordinates (1×N) corresponding to the robot end-effector
pose T (4×4) which is a homogenenous transform, and N is the number of robot joints.

[q,err] = robot.ikunc(T) as above but also returns err which is the scalar final value of
the objective function.

[q,err,exitflag] = robot.ikunc(T) as above but also returns the status exitflag from
fminunc.

[q,err,exitflag] = robot.ikunc(T, q0) as above but specify the initial joint coordinates
q0 used for the minimisation.

[q,err,exitflag] = robot.ikunc(T, q0, options) as above but specify the options for
fminunc to use.

Robotics Toolbox 9.10 for MATLAB
R©

237 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Trajectory operation

In all cases if T is 4 × 4 ×M it is taken as a homogeneous transform sequence and
R.ikunc() returns the joint coordinates corresponding to each of the transforms in the
sequence. q is M ×N where N is the number of robot joints. The initial estimate of q
for each time step is taken as the solution from the previous time step.

err and exitflag are also M × 1 and indicate the results of optimisation for the corre-
sponding trajectory step.

Notes

• Requires fminunc from the Optimization Toolbox.

• Joint limits are not considered in this solution.

• Can be used for robots with arbitrary degrees of freedom.

• In the case of multiple feasible solutions, the solution returned depends on the
initial choice of q0

• Works by minimizing the error between the forward kinematics of the joint angle
solution and the end-effector frame as an optimisation. The objective function
(error) is described as:

sumsqr((inv(T)*robot.fkine(q) - eye(4)) * omega)

Where omega is some gain matrix, currently not modifiable.

Author

Bryan Moutrie

See also

SerialLink.ikcon, fmincon, SerialLink.ikine, SerialLink.fkine

SerialLink.inertia
Manipulator inertia matrix

i = R.inertia(q) is the symmetric joint inertia matrix (N × N) which relates joint
torque to joint acceleration for the robot at joint configuration q.

If q is a matrix (K ×N), each row is interpretted as a joint state vector, and the result
is a 3d-matrix (N × N × K) where each plane corresponds to the inertia for the
corresponding row of q.

Robotics Toolbox 9.10 for MATLAB
R©

238 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The diagonal elements i(J,J) are the inertia seen by joint actuator J.

• The off-diagonal elements i(J,K) are coupling inertias that relate acceleration on
joint J to force/torque on joint K.

• The diagonal terms include the motor inertia reflected through the gear ratio.

See also

SerialLink.RNE, SerialLink.CINERTIA, SerialLink.ITORQUE

SerialLink.isconfig
Test for particular joint configuration

R.isconfig(s) is true if the robot has the joint configuration string given by the string s.

Example:

robot.isconfig(’RRRRRR’);

See also

SerialLink.config

SerialLink.islimit
Joint limit test

v = R.islimit(q) is a vector of boolean values, one per joint, false (0) if q(i) is within
the joint limits, else true (1).

Notes

• Joint limits are purely advisory and are not used in any other function. Just
seemed like a useful thing to include...

See also

Link.islimit

Robotics Toolbox 9.10 for MATLAB
R©

239 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.isspherical
Test for spherical wrist

R.isspherical() is true if the robot has a spherical wrist, that is, the last 3 axes are
revolute and their axes intersect at a point.

See also

SerialLink.ikine6s

SerialLink.issym
Check if SerialLink object is a symbolic model

res = R.issym() is true if the SerialLink manipulator R has symbolic parameters

Authors

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

SerialLink.itorque
Inertia torque

taui = R.itorque(q, qdd) is the inertia force/torque vector (1×N) at the specified joint
configuration q (1 × N) and acceleration qdd (1 × N), and N is the number of robot
joints. taui = INERTIA(q)*qdd.

If q and qdd are matrices (K ×N), each row is interpretted as a joint state vector, and
the result is a matrix (K ×N) where each row is the corresponding joint torques.

Note

• If the robot model contains non-zero motor inertia then this will included in the
result.

See also

SerialLink.inertia, SerialLink.rne

Robotics Toolbox 9.10 for MATLAB
R©

240 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.jacob0
Jacobian in world coordinates

j0 = R.jacob0(q, options) is the Jacobian matrix (6×N) for the robot in pose q (1×N),
and N is the number of robot joints. The manipulator Jacobian matrix maps joint
velocity to end-effector spatial velocity V = j0*QD expressed in the world-coordinate
frame.

Options

‘rpy’ Compute analytical Jacobian with rotation rate in terms of roll-pitch-yaw angles
‘eul’ Compute analytical Jacobian with rotation rates in terms of Euler angles
‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Note

• The Jacobian is computed in the end-effector frame and transformed to the world
frame.

• The default Jacobian returned is often referred to as the geometric Jacobian, as
opposed to the analytical Jacobian.

See also

SerialLink.jacobn, jsingu, deltatr, tr2delta, jsingu

SerialLink.jacob dot
Derivative of Jacobian

jdq = R.jacob dot(q, qd) is the product (6×1) of the derivative of the Jacobian (in the
world frame) and the joint rates.

Notes

• Useful for operational space control XDD = J(q)QDD + JDOT(q)qd

• Written as per the reference and not very efficient.

Robotics Toolbox 9.10 for MATLAB
R©

241 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

References

• Fundamentals of Robotics Mechanical Systems (2nd ed) J. Angleles, Springer
2003.

See also

SerialLink.jacob0, diff2tr, tr2diff

SerialLink.jacobn
Jacobian in end-effector frame

jn = R.jacobn(q, options) is the Jacobian matrix (6×N) for the robot in pose q, and
N is the number of robot joints. The manipulator Jacobian matrix maps joint velocity
to end-effector spatial velocity V = jn*QD in the end-effector frame.

Options

‘trans’ Return translational submatrix of Jacobian
‘rot’ Return rotational submatrix of Jacobian

Notes

• This Jacobian is often referred to as the geometric Jacobian.

References

• Differential Kinematic Control Equations for Simple Manipulators, Paul, Shi-
mano, Mayer, IEEE SMC 11(6) 1981, pp. 456-460

See also

SerialLink.jacob0, jsingu, delta2tr, tr2delta

Robotics Toolbox 9.10 for MATLAB
R©

242 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.jtraj
Joint space trajectory

q = R.jtraj(T1, t2, k, options) is a joint space trajectory (k × N) where the joint
coordinates reflect motion from end-effector pose T1 to t2 in k steps with default zero
boundary conditions for velocity and acceleration. The trajectory q has one row per
time step, and one column per joint, where N is the number of robot joints.

Options

‘ikine’, F A handle to an inverse kinematic method, for example F = @p560.ikunc. Default is
ikine6s() for a 6-axis spherical wrist, else ikine().

Additional options are passed as trailing arguments to the inverse kinematic function.

See also

jtraj, SerialLink.ikine, SerialLink.ikine6s

SerialLink.maniplty
Manipulability measure

m = R.maniplty(q, options) is the manipulability index (scalar) for the robot at the
joint configuration q (1 × N) where N is the number of robot joints. It indicates
dexterity, that is, how isotropic the robot’s motion is with respect to the 6 degrees
of Cartesian motion. The measure is high when the manipulator is capable of equal
motion in all directions and low when the manipulator is close to a singularity.

If q is a matrix (m×N) then m (m× 1) is a vector of manipulability indices for each
joint configuration specified by a row of q.

[m,ci] = R.maniplty(q, options) as above, but for the case of the Asada measure re-
turns the Cartesian inertia matrix ci.

Two measures can be computed:

• Yoshikawa’s manipulability measure is based on the shape of the velocity ellip-
soid and depends only on kinematic parameters.

• Asada’s manipulability measure is based on the shape of the acceleration ellip-
soid which in turn is a function of the Cartesian inertia matrix and the dynamic
parameters. The scalar measure computed here is the ratio of the smallest/largest
ellipsoid axis. Ideally the ellipsoid would be spherical, giving a ratio of 1, but in
practice will be less than 1.

Robotics Toolbox 9.10 for MATLAB
R©

243 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘T’ manipulability for transational motion only (default)
‘R’ manipulability for rotational motion only
‘all’ manipulability for all motions
‘dof’, D D is a vector (1×6) with non-zero elements if the corresponding DOF is to be included

for manipulability
‘yoshikawa’ use Yoshikawa algorithm (default)
‘asada’ use Asada algorithm

Notes

• The ‘all’ option includes rotational and translational dexterity, but this involves
adding different units. It can be more useful to look at the translational and
rotational manipulability separately.

• Examples in the RVC book can be replicated by using the ‘all’ option

References

• Analysis and control of robot manipulators with redundancy, T. Yoshikawa, Robotics
Research: The First International Symposium (m. Brady and R. Paul, eds.), pp.
735-747, The MIT press, 1984.

• A geometrical representation of manipulator dynamics and its application to arm
design, H. Asada, Journal of Dynamic Systems, Measurement, and Control, vol.
105, p. 131, 1983.

See also

SerialLink.inertia, SerialLink.jacob0

SerialLink.mtimes
Concatenate robots

R = R1 * R2 is a robot object that is equivalent to mechanically attaching robot R2 to
the end of robot R1.

Notes

• If R1 has a tool transform or R2 has a base transform these are discarded since
DH convention does not allow for arbitrary intermediate transformations.

Robotics Toolbox 9.10 for MATLAB
R©

244 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.nofriction
Remove friction

rnf = R.nofriction() is a robot object with the same parameters as R but with non-linear
(Coulomb) friction coefficients set to zero.

rnf = R.nofriction(’all’) as above but viscous and Coulomb friction coefficients set to
zero.

rnf = R.nofriction(’viscous’) as above but viscous friction coefficients are set to zero.

Notes

• Non-linear (Coulomb) friction can cause numerical problems when integrating
the equations of motion (R.fdyn).

• The resulting robot object has its name string prefixed with ‘NF/’.

See also

SerialLink.fdyn, Link.nofriction

SerialLink.pay
Joint forces due to payload

tau = R.PAY(w, J) returns the generalised joint force/torques due to a payload wrench
w (1 × 6) and where the manipulator Jacobian is J (6 × N), and N is the number of
robot joints.

tau = R.PAY(q, w, f) as above but the Jacobian is calculated at pose q (1 ×N) in the
frame given by f which is ‘0’ for world frame, ‘n’ for end-effector frame.

Uses the formula tau = J’w, where w is a wrench vector applied at the end effector, w
= [Fx Fy Fz Mx My Mz]’.

Trajectory operation

In the case q is M ×N or J is 6×N ×M then tau is M ×N where each row is the
generalised force/torque at the pose given by corresponding row of q.

Robotics Toolbox 9.10 for MATLAB
R©

245 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Wrench vector and Jacobian must be from the same reference frame.

• Tool transforms are taken into consideration when f = ‘n’.

• Must have a constant wrench - no trajectory support for this yet.

Author

Bryan Moutrie

See also

SerialLink.paycap, SerialLink.jacob0, SerialLink.jacobn

SerialLink.paycap
Static payload capacity of a robot

[wmax,J] = R.paycap(q, w, f, tlim) returns the maximum permissible payload wrench
wmax (1 × 6) applied at the end-effector, and the index of the joint J which hits its
force/torque limit at that wrench. q (1 × N) is the manipulator pose, w the payload
wrench (1 × 6), f the wrench reference frame (either ‘0’ or ‘n’) and tlim (2 ×N) is a
matrix of joint forces/torques (first row is maximum, second row minimum).

Trajectory operation

In the case q is M × N then wmax is M × 6 and J is M × 1 where the rows are the
results at the pose given by corresponding row of q.

Notes

• Wrench vector and Jacobian must be from the same reference frame

• Tool transforms are taken into consideration for f = ‘n’.

Author

Bryan Moutrie

Robotics Toolbox 9.10 for MATLAB
R©

246 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.pay, SerialLink.gravjac, SerialLink.gravload

SerialLink.payload
Add payload mass

R.payload(m, p) adds a payload with point mass m at position p in the end-effector
coordinate frame.

Notes

• An added payload will affect the inertia, Coriolis and gravity terms.

See also

SerialLink.rne, SerialLink.gravload

SerialLink.perturb
Perturb robot parameters

rp = R.perturb(p) is a new robot object in which the dynamic parameters (link mass
and inertia) have been perturbed. The perturbation is multiplicative so that values are
multiplied by random numbers in the interval (1-p) to (1+p). The name string of the
perturbed robot is prefixed by ‘p/’.

Useful for investigating the robustness of various model-based control schemes. For
example to vary parameters in the range +/- 10 percent is:

r2 = p560.perturb(0.1);

SerialLink.plot
Graphical display and animation

R.plot(q, options) displays a graphical animation of a robot based on the kinematic
model. A stick figure polyline joins the origins of the link coordinate frames. The
robot is displayed at the joint angle q (1 × N), or if a matrix (M × N) it is animated
as the robot moves along the M-point trajectory.

Robotics Toolbox 9.10 for MATLAB
R©

247 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘workspace’, W Size of robot 3D workspace, W = [xmn, xmx ymn ymx zmn zmx]
‘floorlevel’, L Z-coordinate of floor (default -1)
‘delay’, D Delay betwen frames for animation (s)
‘fps’, fps Number of frames per second for display, inverse of ‘delay’ option
‘[no]loop’ Loop over the trajectory forever
‘[no]raise’ Autoraise the figure
‘movie’, M Save frames as files in the folder M
‘trail’, L Draw a line recording the tip path, with line style L
‘scale’, S Annotation scale factor
‘zoom’, Z Reduce size of auto-computed workspace by Z, makes robot look bigger
‘ortho’ Orthographic view
‘perspective’ Perspective view (default)
‘view’, V Specify view V=’x’, ‘y’, ‘top’ or [az el] for side elevations, plan view, or general view

by azimuth and elevation angle.
‘top’ View from the top.
‘[no]shading’ Enable Gouraud shading (default true)
‘lightpos’, L Position of the light source (default [0 0 20])
‘[no]name’ Display the robot’s name
‘[no]wrist’ Enable display of wrist coordinate frame
‘xyz’ Wrist axis label is XYZ
‘noa’ Wrist axis label is NOA
‘[no]arrow’ Display wrist frame with 3D arrows
‘[no]tiles’ Enable tiled floor (default true)
‘tilesize’, S Side length of square tiles on the floor (default 0.2)
‘tile1color’, C Color of even tiles [r g b] (default [0.5 1 0.5] light green)
‘tile2color’, C Color of odd tiles [r g b] (default [1 1 1] white)
‘[no]shadow’ Enable display of shadow (default true)
‘shadowcolor’, C Colorspec of shadow, [r g b]
‘shadowwidth’, W Width of shadow line (default 6)
‘[no]jaxes’ Enable display of joint axes (default false)
‘[no]jvec’ Enable display of joint axis vectors (default false)
‘[no]joints’ Enable display of joints
‘jointcolor’, C Colorspec for joint cylinders (default [0.7 0 0])
‘jointdiam’, D Diameter of joint cylinder in scale units (default 5)
‘linkcolor’, C Colorspec of links (default ‘b’)
‘[no]base’ Enable display of base ‘pedestal’
‘basecolor’, C Color of base (default ‘k’)
‘basewidth’, W Width of base (default 3)

The options come from 3 sources and are processed in order:

• Cell array of options returned by the function PLOTBOTOPT (if it exists)

• Cell array of options given by the ‘plotopt’ option when creating the SerialLink
object.

• List of arguments in the command line.

Many boolean options can be enabled or disabled with the ‘no’ prefix. The various
option sources can toggle an option, the last value is taken.

Robotics Toolbox 9.10 for MATLAB
R©

248 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Graphical annotations and options

The robot is displayed as a basic stick figure robot with annotations such as:

• shadow on the floor

• XYZ wrist axes and labels

• joint cylinders and axes

which are controlled by options.

The size of the annotations is determined using a simple heuristic from the workspace
dimensions. This dimension can be changed by setting the multiplicative scale factor
using the ‘mag’ option.

Figure behaviour

• If no figure exists one will be created and the robot drawn in it.

• If no robot of this name is currently displayed then a robot will be drawn in the
current figure. If hold is enabled (hold on) then the robot will be added to the
current figure.

• If the robot already exists then that graphical model will be found and moved.

Multiple views of the same robot

If one or more plots of this robot already exist then these will all be moved according
to the argument q. All robots in all windows with the same name will be moved.

Create a robot in figure 1

figure(1)
p560.plot(qz);

Create a robot in figure 2

figure(2)
p560.plot(qz);

Now move both robots

p560.plot(qn)

Multiple robots in the same figure

Multiple robots can be displayed in the same plot, by using “hold on” before calls to
robot.plot().

Create a robot in figure 1

figure(1)
p560.plot(qz);

Make a clone of the robot named bob

Robotics Toolbox 9.10 for MATLAB
R©

249 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

bob = SerialLink(p560, ’name’, ’bob’);

Draw bob in this figure

hold on
bob.plot(qn)

To animate both robots so they move together:

qtg = jtraj(qr, qz, 100);
for q=qtg’

p560.plot(q’);
bob.plot(q’);

end

Making an animation movie

• The ‘movie’ options saves frames as files NNNN.png into the specified folder

• The specified folder will be created

• To convert frames to a movie use a command like:

ffmpeg -r 10 -i %04d.png out.avi

Notes

• The options are processed when the figure is first drawn, to make different op-
tions come into effect it is neccessary to clear the figure.

• The link segments do not neccessarily represent the links of the robot, they are a
pipe network that joins the origins of successive link coordinate frames.

• Delay betwen frames can be eliminated by setting option ‘delay’, 0 or ‘fps’, Inf.

• By default a quite detailed plot is generated, but turning off labels, axes, shadows
etc. will speed things up.

• Each graphical robot object is tagged by the robot’s name and has UserData that
holds graphical handles and the handle of the robot object.

• The graphical state holds the last joint configuration

• The size of the plot volume is determined by a heuristic for an all-revolute robot.
If a prismatic joint is present the ‘workspace’ option is required. The ‘zoom’
option can reduce the size of this workspace.

See also

SerialLink.plot3d, plotbotopt, SerialLink.animate, SerialLink.teach, SerialLink.fkine

Robotics Toolbox 9.10 for MATLAB
R©

250 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

SerialLink.plot3d
Graphical display and animation of solid model robot

R.plot3d(q, options) displays and animates a solid model of the robot. The robot is
displayed at the joint angle q (1 × N), or if a matrix (M × N) it is animated as the
robot moves along the M-point trajectory.

Options

‘color’, C A cell array of color names, one per link. These are mapped to RGB using color-
name(). If not given, colors come from the axis ColorOrder property.

‘alpha’, A Set alpha for all links, 0 is transparant, 1 is opaque (default 1)
‘path’, P Overide path to folder containing STL model files
‘workspace’, W Size of robot 3D workspace, W = [xmn, xmx ymn ymx zmn zmx]
‘floorlevel’, L Z-coordinate of floor (default -1)
‘delay’, D Delay betwen frames for animation (s)
‘fps’, fps Number of frames per second for display, inverse of ‘delay’ option
‘[no]loop’ Loop over the trajectory forever
‘[no]raise’ Autoraise the figure
‘movie’, M Save frames as files in the folder M
‘scale’, S Annotation scale factor
‘ortho’ Orthographic view (default)
‘perspective’ Perspective view
‘view’, V Specify view V=’x’, ‘y’, ‘top’ or [az el] for side elevations, plan view, or general view

by azimuth and elevation angle.
‘[no]wrist’ Enable display of wrist coordinate frame
‘xyz’ Wrist axis label is XYZ
‘noa’ Wrist axis label is NOA
‘[no]arrow’ Display wrist frame with 3D arrows
‘[no]tiles’ Enable tiled floor (default true)
‘tilesize’, S Side length of square tiles on the floor (default 0.2)
‘tile1color’, C Color of even tiles [r g b] (default [0.5 1 0.5] light green)
‘tile2color’, C Color of odd tiles [r g b] (default [1 1 1] white)
‘[no]jaxes’ Enable display of joint axes (default true)
‘[no]joints’ Enable display of joints
‘[no]base’ Enable display of base shape

Notes

• Solid models of the robot links are required as STL ascii format files, with ex-
tensions .stl

• Suitable STL files can be found in the package ARTE: A ROBOTICS TOOL-
BOX FOR EDUCATION by Arturo Gil, https://arvc.umh.es/arte

Robotics Toolbox 9.10 for MATLAB
R©

251 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

• The root of the solid models is an installation of ARTE with an empty file called
arte.m at the top level

• Each STL model is called ‘linkN’.stl where N is the link number 0 to N

• The specific folder to use comes from the SerialLink.model3d property

• The path of the folder containing the STL files can be specified using the ‘path’
option

• The height of the floor is set in decreasing priority order by:

– ‘workspace’ option, the fifth element of the passed vector

– ‘floorlevel’ option

– the lowest z-coordinate in the link1.stl object

Authors

• Peter Corke, based on existing code for plot()

• Bryan Moutrie, demo code on the Google Group for connecting ARTE and RTB

• Don Riley, function rndread() extracted from cad2matdemo (MATLAB File Ex-
change)

See also

SerialLink.plot, plotbotopt3d, SerialLink.animate, SerialLink.teach, SerialLink.fkine

SerialLink.qmincon
Use redundancy to avoid joint limits

qs = R.qmincon(q) exploits null space motion and returns a set of joint angles qs
(1×N) that result in the same end-effector pose but are away from the joint coordinate
limits. N is the number of robot joints.

[q,err] = R.qmincon(q) as above but also returns err which is the scalar final value of
the objective function.

[q,err,exitflag] = R.qmincon(q) as above but also returns the status exitflag from fmin-
con.

Trajectory operation

In all cases if q is M ×N it is taken as a pose sequence and R.qmincon() returns the
adjusted joint coordinates (M×N) corresponding to each of the poses in the sequence.

Robotics Toolbox 9.10 for MATLAB
R©

252 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

err and exitflag are also M × 1 and indicate the results of optimisation for the corre-
sponding trajectory step.

Notes

• Requires fmincon from the Optimization Toolbox.

• Robot must be redundant.

Author

Bryan Moutrie

See also

SerialLink.ikcon, SerialLink.ikunc, SerialLink.jacob0

SerialLink.rne
Inverse dynamics

tau = R.rne(q, qd, qdd) is the joint torque required for the robot R to achieve the
specified joint position q (1×N), velocity qd (1×N) and acceleration qdd (1×N),
where N is the number of robot joints.

tau = R.rne(q, qd, qdd, grav) as above but overriding the gravitational acceleration
vector (3× 1) in the robot object R.

tau = R.rne(q, qd, qdd, grav, fext) as above but specifying a wrench acting on the end
of the manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

tau = R.rne(x) as above where x=[q,qd,qdd] (1× 3N).

tau = R.rne(x, grav) as above but overriding the gravitational acceleration vector in
the robot object R.

tau = R.rne(x, grav, fext) as above but specifying a wrench acting on the end of the
manipulator which is a 6-vector [Fx Fy Fz Mx My Mz].

[tau,wbase] = R.rne(x, grav, fext) as above but the extra output is the wrench on the
base.

Trajectory operation

If q,qd and qdd (M × N), or x (M × 3N) are matrices with M rows representing a
trajectory then tau (M × N) is a matrix with rows corresponding to each trajectory
step.

Robotics Toolbox 9.10 for MATLAB
R©

253 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

MEX file operation

This algorithm is relatively slow, and a MEX file can provide better performance. The
MEX file is executed if:

• the robot is not symbolic, and

• the SerialLink property fast is true, and

• the MEX file frne.mexXXX exists in the subfolder rvctools/robot/mex.

Notes

• The robot base transform is ignored.

• Currently the MEX-file version does not compute wbase.

• The torque computed contains a contribution due to armature inertia and joint
friction.

• See the README file in the mex folder for details on how to configure MEX-file
operation.

• The M-file is a wrapper which calls either RNE DH or RNE MDH depending
on the kinematic conventions used by the robot object, or the MEX file.

See also

SerialLink.accel, SerialLink.gravload, SerialLink.inertia

SerialLink.teach
Graphical teach pendant

R.teach(q, options) allows the user to “drive” a graphical robot by means of a graphical
slider panel. If no graphical robot exists one is created in a new window. Otherwise all
current instances of the graphical robot are driven. The robots are set to the initial joint
angles q.

R.teach(options) as above but with options and the initial joint angles are taken from
the pose of an existing graphical robot, or if that doesn’t exist then zero.

Robotics Toolbox 9.10 for MATLAB
R©

254 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘eul’ Display tool orientation in Euler angles (default)
‘rpy’ Display tool orientation in roll/pitch/yaw angles
‘approach’ Display tool orientation as approach vector (z-axis)
‘[no]deg’ Display angles in degrees (default true)
‘callback’, CB Set a callback function, called with robot object and joint angle vector: CB(R, q)

Example

To display the velocity ellipsoid for a Puma 560

p560.teach(’callback’, @(r,q) r.vellipse(q));

GUI

• The specified callback function is invoked every time the joint configuration
changes. the joint coordinate vector.

• The Quit (red X) button destroys the teach window.

Notes

• If the robot is displayed in several windows, only one has the teach panel added.

• The slider limits are derived from the joint limit properties. If not set then for

– a revolute joint they are assumed to be [-pi, +pi]

– a prismatic joint they are assumed unknown and an error occurs.

See also

SerialLink.plot, SerialLink.getpos

SerialLink.trchain
Convert to elementary transform sequence

s = R.TRCHAIN(options) is a sequence of elementary transforms that describe the
kinematics of the serial link robot arm. The string s comprises a number of tokens of
the form X(ARG) where X is one of Tx, Ty, Tz, Rx, Ry, or Rz. ARG is a joint variable,
or a constant angle or length dimension.

For example:

Robotics Toolbox 9.10 for MATLAB
R©

255 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

>> mdl_puma560
>> p560.trchain
ans =
Rz(q1)Rx(90)Rz(q2)Tx(0.431800)Rz(q3)Tz(0.150050)Tx(0.020300)Rx(-90)
Rz(q4)Tz(0.431800)Rx(90)Rz(q5)Rx(-90)Rz(q6)

Options

‘[no]deg’ Express angles in degrees rather than radians (default deg)
‘sym’ Replace length parameters by symbolic values L1, L2 etc.

See also

trchain, trotx, troty, trotz, transl

simulinkext
Return file extension of Simulink block diagrams.

str = simulinkext() is either

• ‘.mdl’ if Simulink version number is less than 8

• ‘.slx’ if Simulink version numberis larger or equal to 8

Notes

The file extension for Simulink block diagrams has changed from Matlab 2011b to
Matlab 2012a. This function is used for backwards compatibility.

Author

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

symexpr2slblock, doesblockexist, distributeblocks

Robotics Toolbox 9.10 for MATLAB
R©

256 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

skew
Create skew-symmetric matrix

s = skew(v) is a skew-symmetric matrix formed from v (3× 1).

| 0 -vz vy|
| vz 0 -vx|
|-vy vx 0 |

See also

vex

startup rtb
Initialize MATLAB paths for Robotics Toolbox

Adds demos, examples to the MATLAB path, and adds also to Java class path.

symexpr2slblock
Create symbolic embedded MATLAB Function block

symexpr2slblock(varargin) creates an Embedded MATLAB Function block from a
symbolic expression. The input arguments are just as used with the functions emlBlock
or matlabFunctionBlock.

Notes

• In Symbolic Toolbox versions prior to V5.7 (2011b) the function to create Em-
bedded Matlab Function blocks from symbolic expressions is ‘emlBlock’.

• Since V5.7 (2011b) there is another function named ‘matlabFunctionBlock’ which
replaces the old function.

• symexpr2slblock is a wrapper around both functions, which checks for the in-
stalled Symbolic Toolbox version and calls the required function accordingly.

Robotics Toolbox 9.10 for MATLAB
R©

257 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Authors

Joern Malzahn, (joern.malzahn@tu-dortmund.de)

See also

emlblock, matlabfunctionblock

t2r
Rotational submatrix

R = t2r(T) is the orthonormal rotation matrix component of homogeneous transforma-
tion matrix T. Works for T in SE(2) or SE(3)

• If T is 4× 4, then R is 3× 3.

• If T is 3× 3, then R is 2× 2.

Notes

• For a homogeneous transform sequence returns a rotation matrix sequence

• The validity of rotational part is not checked

See also

r2t, tr2rt, rt2tr

tb optparse
Standard option parser for Toolbox functions

optout = tb optparse(opt, arglist) is a generalized option parser for Toolbox func-
tions. opt is a structure that contains the names and default values for the options, and
arglist is a cell array containing option parameters, typically it comes from VARAR-
GIN. It supports options that have an assigned value, boolean or enumeration types
(string or int).

The software pattern is:

Robotics Toolbox 9.10 for MATLAB
R©

258 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

function(a, b, c, varargin)
opt.foo = false;
opt.bar = true;
opt.blah = [];
opt.choose = {’this’, ’that’, ’other’};
opt.select = {’#no’, ’#yes’};
opt = tb_optparse(opt, varargin);

Optional arguments to the function behave as follows:

‘foo’ sets opt.foo := true
‘nobar’ sets opt.foo := false
‘blah’, 3 sets opt.blah := 3
‘blah’, {x,y} sets opt.blah := {x,y}
‘that’ sets opt.choose := ‘that’
‘yes’ sets opt.select := (the second element)

and can be given in any combination.

If neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose := ‘this’. Alternatively
if:

opt.choose = {[], ’this’, ’that’, ’other’};

then if neither of ‘this’, ‘that’ or ‘other’ are specified then opt.choose := []

If neither of ‘no’ or ‘yes’ are specified then opt.select := 1.

Note:

• That the enumerator names must be distinct from the field names.

• That only one value can be assigned to a field, if multiple values are required
they must placed in a cell array.

• To match an option that starts with a digit, prefix it with ‘d ’, so the field ‘d 3d’
matches the option ‘3d’.

• opt can be an object, rather than a structure, in which case the passed options are
assigned to properties.

The return structure is automatically populated with fields: verbose and debug. The
following options are automatically parsed:

‘verbose’ sets opt.verbose := true
‘verbose=2’ sets opt.verbose := 2 (very verbose)
‘verbose=3’ sets opt.verbose := 3 (extremeley verbose)
‘verbose=4’ sets opt.verbose := 4 (ridiculously verbose)
‘debug’, N sets opt.debug := N
‘showopt’ displays opt and arglist
‘setopt’, S sets opt := S, if S.foo=4, and opt.foo is present, then opt.foo is set to 4.

The allowable options are specified by the names of the fields in the structure opt. By
default if an option is given that is not a field of opt an error is declared.

[optout,args] = tb optparse(opt, arglist) as above but returns all the unassigned op-
tions, those that don’t match anything in opt, as a cell array of all unassigned arguments
in the order given in arglist.

Robotics Toolbox 9.10 for MATLAB
R©

259 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

[optout,args,ls] = tb optparse(opt, arglist) as above but if any unmatched option
looks like a MATLAB LineSpec (eg. ‘r:’) it is placed in ls rather than in args.

tpoly
Generate scalar polynomial trajectory

[s,sd,sdd] = tpoly(s0, sf, m) is a scalar trajectory (m× 1) that varies smoothly from s0
to sf in m steps using a quintic (5th order) polynomial. Velocity and acceleration can
be optionally returned as sd (m× 1) and sdd (m× 1).

tpoly(s0, sf, m) as above but plots s, sd and sdd versus time in a single figure.

[s,sd,sdd] = tpoly(s0, sf, T) as above but specifies the trajectory in terms of the length
of the time vector T (m× 1).

Reference:

Robotics, Vision & Control Chap 3 Springer 2011

See also

lspb, jtraj

tr2angvec
Convert rotation matrix to angle-vector form

[theta,v] = tr2angvec(R, options) is rotation expressed in terms of an angle theta
(1×1) about the axis v (1×3) equivalent to the orthonormal rotation matrix R (3×3).

[theta,v] = tr2angvec(T, options) as above but uses the rotational part of the homoge-
neous transform T (4× 4).

If R (3×3×K) or T (4×4×K) represent a sequence then theta (K×1)is a vector of
angles for corresponding elements of the sequence and v (K×3) are the corresponding
axes, one per row.

Options

‘deg’ Return angle in degrees

Robotics Toolbox 9.10 for MATLAB
R©

260 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If no output arguments are specified the result is displayed.

See also

angvec2r, angvec2tr

tr2delta
Convert homogeneous transform to differential motion

d = tr2delta(T0, T1) is the differential motion (6× 1) corresponding to infinitessimal
motion from pose T0 to T1 which are homogeneous transformations (4×4). d=(dx, dy,
dz, dRx, dRy, dRz) and is an approximation to the average spatial velocity multiplied
by time.

d = tr2delta(T) is the differential motion corresponding to the infinitessimal relative
pose T expressed as a homogeneous transformation.

Notes

• d is only an approximation to the motion T, and assumes that T0≈T1 or T≈eye(4,4).

See also

delta2tr, skew

tr2eul
Convert homogeneous transform to Euler angles

eul = tr2eul(T, options) are the ZYZ Euler angles (1 × 3) corresponding to the rota-
tional part of a homogeneous transform T (4×4). The 3 angles eul=[PHI,THETA,PSI]
correspond to sequential rotations about the Z, Y and Z axes respectively.

eul = tr2eul(R, options) as above but the input is an orthonormal rotation matrix R
(3× 3).

Robotics Toolbox 9.10 for MATLAB
R©

261 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

If R (3×3×K) or T (4×4×K) represent a sequence then each row of eul corresponds
to a step of the sequence.

Options

‘deg’ Compute angles in degrees (radians default)
‘flip’ Choose first Euler angle to be in quadrant 2 or 3.

Notes

• There is a singularity for the case where THETA=0 in which case PHI is arbi-
trarily set to zero and PSI is the sum (PHI+PSI).

See also

eul2tr, tr2rpy

tr2jac
Jacobian for differential motion

J = tr2jac(T) is a Jacobian matrix (6 × 6) that maps spatial velocity or differential
motion from the world frame to the frame represented by the homogeneous transform
T (4× 4).

See also

wtrans, tr2delta, delta2tr

tr2rpy
Convert a homogeneous transform to roll-pitch-yaw angles

rpy = tr2rpy(T, options) are the roll-pitch-yaw angles (1 × 3) corresponding to the
rotation part of a homogeneous transform T. The 3 angles rpy=[R,P,Y] correspond to
sequential rotations about the X, Y and Z axes respectively.

Robotics Toolbox 9.10 for MATLAB
R©

262 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

rpy = tr2rpy(R, options) as above but the input is an orthonormal rotation matrix R
(3× 3).

If R (3×3×K) or T (4×4×K) represent a sequence then each row of rpy corresponds
to a step of the sequence.

Options

‘deg’ Compute angles in degrees (radians default)
‘zyx’ Return solution for sequential rotations about Z, Y, X axes (Paul book)

Notes

• There is a singularity for the case where P=pi/2 in which case R is arbitrarily set
to zero and Y is the sum (R+Y).

• Note that textbooks (Paul, Spong) use the rotation order ZYX.

See also

rpy2tr, tr2eul

tr2rt
Convert homogeneous transform to rotation and translation

[R,t] = tr2rt(TR) splits a homogeneous transformation matrix (N × N) into an or-
thonormal rotation matrix R (M × M) and a translation vector t (M × 1), where
N=M+1.

Works for TR in SE(2) or SE(3)

• If TR is 4× 4, then R is 3× 3 and T is 3× 1.

• If TR is 3× 3, then R is 2× 2 and T is 2× 1.

A homogeneous transform sequence TR (N × N × K) is split into rotation matrix
sequence R (M ×M ×K) and a translation sequence t (K ×M).

Notes

• The validity of R is not checked.

Robotics Toolbox 9.10 for MATLAB
R©

263 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rt2tr, r2t, t2r

tranimate
Animate a coordinate frame

tranimate(p1, p2, options) animates a 3D coordinate frame moving from pose X1 to
pose X2. Poses X1 and X2 can be represented by:

• homogeneous transformation matrices (4× 4)

• orthonormal rotation matrices (3× 3)

• Quaternion

tranimate(x, options) animates a coordinate frame moving from the identity pose to
the pose x represented by any of the types listed above.

tranimate(xseq, options) animates a trajectory, where xseq is any of

• homogeneous transformation matrix sequence (4× 4×N)

• orthonormal rotation matrix sequence (3× 3×N)

• Quaternion vector (N × 1)

Options

‘fps’, fps Number of frames per second to display (default 10)
‘nsteps’, n The number of steps along the path (default 50)
‘axis’, A Axis bounds [xmin, xmax, ymin, ymax, zmin, zmax]
‘movie’, M Save frames as files in the folder M

Additional options are passed through to TRPLOT.

Notes

• Uses the Animate helper class to record the frames.

• Poses X1 and X2 must both be of the same type

• The ‘movie’ options saves frames as files NNNN.png.

• To convert frames to a movie use a command like:

ffmpeg -r 10 -i %04d.png out.avi

Robotics Toolbox 9.10 for MATLAB
R©

264 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

trplot, Animate

transl
Create or unpack an SE3 translational transform

Create a translational transformation matrix

T = transl(x, y, z) is an SE(3) homogeneous transform (4 × 4) representing a pure
translation of x, y and z.

T = transl(p) is an SE(3) homogeneous transform (4× 4) representing a translation of
p=[x,y,z]. If p (M × 3) it represents a sequence and T (4 × 4 ×M) is a sequence of
homogeneous transforms such that T(:,:,i) corresponds to the i’th row of p.

Unpack the translational part of a transformation matrix

p = transl(T) is the translational part of a homogeneous transform T as a 3-element
column vector. If T (4 × 4 × M) is a homogeneous transform sequence the rows
of p (M × 3) are the translational component of the corresponding transform in the
sequence.

[x,y,z] = transl(T) is the translational part of a homogeneous transform T as three
components. If T (4×4×M) is a homogeneous transform sequence then x,y,z (1×M)
are the translational components of the corresponding transform in the sequence.

Notes

• Somewhat unusually this function performs a function and its inverse. An his-
torical anomaly.

See also

ctraj

Robotics Toolbox 9.10 for MATLAB
R©

265 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

transl2
Create or unpack an SE2 translational transform

Create a translational transformation matrix

T = transl2(x, y) is an SE2 homogeneous transform (3× 3) representing a pure trans-
lation.

T = transl2(p) is a homogeneous transform representing a translation or point p=[x,y].
If p (M × 2) it represents a sequence and T (3× 3×M) is a sequence of homogenous
transforms such that T(:,:,i) corresponds to the i’th row of p.

Unpack the translational part of a transformation matrix

p = transl2(T) is the translational part of a homogeneous transform as a 2-element
column vector. If T (3 × 3 × M) is a homogeneous transform sequence the rows
of p (M × 2) are the translational component of the corresponding transform in the
sequence.

Notes

• Somewhat unusually this function performs a function and its inverse. An his-
torical anomaly.

See also

transl

trchain
Chain 3D transforms from string

T = trchain(s, q) is a homogeneous transform (4 × 4) that results from compounding
a number of elementary transformations defined by the string s. The string s comprises
a number of tokens of the form X(ARG) where X is one of Tx, Ty, Tz, Rx, Ry, or Rz.
ARG is the name of a variable in MATLAB workspace or qJ where J is an integer in
the range 1 to N that selects the variable from the Jth column of the vector q (1×N).

For example:

trchain(’Rx(q1)Tx(a1)Ry(q2)Ty(a3)Rz(q3)’, [1 2 3])

Robotics Toolbox 9.10 for MATLAB
R©

266 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

is equivalent to computing:

trotx(1) * transl(a1,0,0) * troty(2) * transl(0,a3,0) * trotz(3)

Notes

• The string can contain spaces between elements or on either side of ARG.

• Works for symbolic variables in the workspace and/or passed in via the vector q.

• For symbolic operations that involve use of the value pi, make sure you define it
first in the workspace: pi = sym(’pi’);

See also

trchain2, trotx, troty, trotz, transl, SerialLink.trchain, ets

trchain2
Chain 2D transforms from string

T = trchain2(s, q) is a homogeneous transform (3× 3) that results from compounding
a number of elementary transformations defined by the string s. The string s comprises
a number of tokens of the form X(ARG) where X is one of Tx, Ty or R. ARG is the
name of a variable in MATLAB workspace or qJ where J is an integer in the range 1 to
N that selects the variable from the Jth column of the vector q (1×N).

For example:

trchain(’R(q1)Tx(a1)R(q2)Ty(a3)R(q3)’, [1 2 3])

is equivalent to computing:

trot2(1) * transl2(a1,0) * trot2(2) * transl2(0,a3) * trot2(3)

Notes

• The string can contain spaces between elements or on either side of ARG.

• Works for symbolic variables in the workspace and/or passed in via the vector q.

• For symbolic operations that involve use of the value pi, make sure you define it
first in the workspace: pi = sym(’pi’);

Robotics Toolbox 9.10 for MATLAB
R©

267 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

trchain, trot2, transl2

trinterp
Interpolate homogeneous transformations

T = trinterp(T0, T1, s) is a homogeneous transform (4 × 4) interpolated between T0
when s=0 and T1 when s=1. T0 and T1 are both homogeneous transforms (4 × 4).
Rotation is interpolated using quaternion spherical linear interpolation (slerp). If s
(N × 1) then T (4× 4×N) is a sequence of homogeneous transforms corresponding
to the interpolation values in s.

T = trinterp(T1, s) as above but interpolated between the identity matrix when s=0 to
T1 when s=1.

See also

ctraj, quaternion

trnorm
Normalize a rotation matrix

rn = trnorm(R) is guaranteed to be a proper orthogonal matrix rotation matrix (3× 3)
which is “close” to the non-orthogonal matrix R (3 × 3). If R = [N,O,A] the O and A
vectors are made unit length and the normal vector is formed from N = O x A, and then
we ensure that O and A are orthogonal by O = A x N.

tn = trnorm(T) as above but the rotational submatrix of the homogeneous transforma-
tion T (4× 4) is normalised while the translational part is passed unchanged.

If R (3× 3×K) or T (4× 4×K) represent a sequence then rn and tn have the same
dimension and normalisation is performed on each plane.

Robotics Toolbox 9.10 for MATLAB
R©

268 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Only the direction of A (the z-axis) is unchanged.

• Used to prevent finite word length arithmetic causing transforms to become ‘un-
normalized’.

See also

oa2tr

trot2
SE2 rotation matrix

T = trot2(theta) is a homogeneous transformation (3 × 3) representing a rotation of
theta radians.

T = trot2(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

See also

rot2, transl2, trotx, troty, trotz

trotx
Rotation about X axis

T = trotx(theta) is a homogeneous transformation (4 × 4) representing a rotation of
theta radians about the x-axis.

T = trotx(theta, ‘deg’) as above but theta is in degrees.

Robotics Toolbox 9.10 for MATLAB
R©

269 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Translational component is zero.

See also

rotx, troty, trotz, trot2

troty
Rotation about Y axis

T = troty(theta) is a homogeneous transformation (4 × 4) representing a rotation of
theta radians about the y-axis.

T = troty(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

See also

roty, trotx, trotz, trot2

trotz
Rotation about Z axis

T = trotz(theta) is a homogeneous transformation (4 × 4) representing a rotation of
theta radians about the z-axis.

T = trotz(theta, ‘deg’) as above but theta is in degrees.

Notes

• Translational component is zero.

Robotics Toolbox 9.10 for MATLAB
R©

270 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

rotz, trotx, troty, trot2

trplot
Draw a coordinate frame

trplot(T, options) draws a 3D coordinate frame represented by the homogeneous trans-
form T (4× 4).

H = trplot(T, options) as above but returns a handle.

trplot(H, T) moves the coordinate frame described by the handle H to the pose T
(4× 4).

trplot(R, options) as above but the coordinate frame is rotated about the origin accord-
ing to the orthonormal rotation matrix R (3× 3).

H = trplot(R, options) as above but returns a handle.

trplot(H, R) moves the coordinate frame described by the handle H to the orientation
R.

Options

‘color’, C The color to draw the axes, MATLAB colorspec C
‘noaxes’ Don’t display axes on the plot
‘axis’, A Set dimensions of the MATLAB axes to A=[xmin xmax ymin ymax zmin zmax]
‘frame’, F The coordinate frame is named {F} and the subscript on the axis labels is F.
‘text opts’, opt A cell array of MATLAB text properties
‘handle’, H Draw in the MATLAB axes specified by the axis handle H
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame
‘length’, s Length of the coordinate frame arms (default 1)
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips (default 1)
‘thick’, t Thickness of lines (default 0.5)
‘3d’ Plot in 3D using anaglyph graphics
‘anaglyph’, A Specify anaglyph colors for ‘3d’ as 2 characters for left and right (default colors ‘rc’):

chosen from r)ed, g)reen, b)lue, c)yan, m)agenta.
‘dispar’, D Disparity for 3d display (default 0.1)
‘text’ Enable display of X,Y,Z labels on the frame
‘labels’, L Label the X,Y,Z axes with the 1st, 2nd, 3rd character of the string L
‘rgb’ Display X,Y,Z axes in colors red, green, blue respectively
‘rviz’ Display chunky rviz style axes

Robotics Toolbox 9.10 for MATLAB
R©

271 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Examples

trplot(T, ’frame’, ’A’)
trplot(T, ’frame’, ’A’, ’color’, ’b’)
trplot(T1, ’frame’, ’A’, ’text_opts’, {’FontSize’, 10, ’FontWeight’, ’bold’})
trplot(T1, ’labels’, ’NOA’);

h = trplot(T, ’frame’, ’A’, ’color’, ’b’);
trplot(h, T2);

3D anaglyph plot

trplot(T, ’3d’);

Notes

• The ‘rviz’ option is equivalent to ‘rgb’, ‘notext’, ‘noarrow’, ‘thick’, 5.

• The arrow option requires the third party package arrow3 from File Exchange.

• The handle H is an hgtransform object.

• When using the form trplot(H, ...) to animate a frame it is best to set the axis
bounds.

• The ‘3d’ option requires that the plot is viewed with anaglyph glasses.

• You cannot specify ‘color’ and ‘3d’ at the same time.

See also

trplot2, tranimate

trplot2
Plot a planar transformation

trplot2(T, options) draws a 2D coordinate frame represented by the SE(2) homoge-
neous transform T (3× 3).

H = trplot2(T, options) as above but returns a handle.

trplot2(H, T) moves the coordinate frame described by the handle H to the SE(2) pose
T (3× 3).

Robotics Toolbox 9.10 for MATLAB
R©

272 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘axis’, A Set dimensions of the MATLAB axes to A=[xmin xmax ymin ymax]
‘color’, c The color to draw the axes, MATLAB colorspec
‘noaxes’ Don’t display axes on the plot
‘frame’, F The frame is named {F} and the subscript on the axis labels is F.
‘text opts’, opt A cell array of Matlab text properties
‘handle’, h Draw in the MATLAB axes specified by h
‘view’, V Set plot view parameters V=[az el] angles, or ‘auto’ for view toward origin of coordi-

nate frame
‘length’, s Length of the coordinate frame arms (default 1)
‘arrow’ Use arrows rather than line segments for the axes
‘width’, w Width of arrow tips

Examples

trplot2(T, ’frame’, ’A’)
trplot2(T, ’frame’, ’A’, ’color’, ’b’)
trplot2(T1, ’frame’, ’A’, ’text_opts’, {’FontSize’, 10, ’FontWeight’, ’bold’})

Notes

• The arrow option requires the third party package arrow3 from File Exchange.

• When using the form TRPLOT(H, ...) to animate a frame it is best to set the axis
bounds.

See also

trplot

trprint
Compact display of homogeneous transformation

trprint(T, options) displays the homogoneous transform in a compact single-line for-
mat. If T is a homogeneous transform sequence then each element is printed on a
separate line.

s = trprint(T, options) as above but returns the string.

trprint T is the command line form of above, and displays in RPY format.

Robotics Toolbox 9.10 for MATLAB
R©

273 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Options

‘rpy’ display with rotation in roll/pitch/yaw angles (default)
‘euler’ display with rotation in ZYX Euler angles
‘angvec’ display with rotation in angle/vector format
‘radian’ display angle in radians (default is degrees)
‘fmt’, f use format string f for all numbers, (default %g)
‘label’, l display the text before the transform

Examples

>> trprint(T2)
t = (0,0,0), RPY = (-122.704,65.4084,-8.11266) deg

>> trprint(T1, ’label’, ’A’)

A:t = (0,0,0), RPY = (-0,0,-0) deg

See also

tr2eul, tr2rpy, tr2angvec

trscale
Homogeneous transformation for pure scale

T = trscale(s) is a homogeneous transform (4×4) corresponding to a pure scale change.
If s is a scalar the same scale factor is used for x,y,z, else it can be a 3-vector specifying
scale in the x-, y- and z-directions.

unit
Unitize a vector

vn = unit(v) is a unit-vector parallel to v.

Robotics Toolbox 9.10 for MATLAB
R©

274 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Note

• Reports error for the case where norm(v) is zero.

Vehicle
Car-like vehicle class

This class models the kinematics of a car-like vehicle (bicycle model) on a plane that
moves in SE(2). For given steering and velocity inputs it updates the true vehicle state
and returns noise-corrupted odometry readings.

Methods

init initialize vehicle state
f predict next state based on odometry
step move one time step and return noisy odometry
control generate the control inputs for the vehicle
update update the vehicle state
run run for multiple time steps
Fx Jacobian of f wrt x
Fv Jacobian of f wrt odometry noise
gstep like step() but displays vehicle
plot plot/animate vehicle on current figure
plot xy plot the true path of the vehicle
add driver attach a driver object to this vehicle
display display state/parameters in human readable form
char convert to string

Class methods

plotv plot/animate a pose on current figure

Robotics Toolbox 9.10 for MATLAB
R©

275 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Properties (read/write)

x true vehicle state: x, y, theta (3× 1)
V odometry covariance (2× 2)
odometry distance moved in the last interval (2× 1)
rdim dimension of the robot (for drawing)
L length of the vehicle (wheelbase)
alphalim steering wheel limit
maxspeed maximum vehicle speed
T sample interval
verbose verbosity
x hist history of true vehicle state (N × 3)
driver reference to the driver object
x0 initial state, restored on init()

Examples

Create a vehicle with odometry covariance

v = Vehicle(diag([0.1 0.01].ˆ2);

and display its initial state

v

now apply a speed (0.2m/s) and steer angle (0.1rad) for 1 time step

odo = v.update([0.2, 0.1])

where odo is the noisy odometry estimate, and the new true vehicle state

v

We can add a driver object

v.add_driver(RandomPath(10))

which will move the vehicle within the region -10<x<10, -10<y<10 which we can
see by

v.run(1000)

which shows an animation of the vehicle moving for 1000 time steps between randomly
selected wayoints.

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

Reference

Robotics, Vision & Control, Chap 6 Peter Corke, Springer 2011

Robotics Toolbox 9.10 for MATLAB
R©

276 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

RandomPath, EKF

Vehicle.Vehicle
Vehicle object constructor

v = Vehicle(v act, options) creates a Vehicle object with actual odometry covariance
v act (2× 2) matrix corresponding to the odometry vector [dx dtheta].

Options

‘stlim’, A Steering angle limited to -A to +A (default 0.5 rad)
‘vmax’, S Maximum speed (default 5m/s)
‘L’, L Wheel base (default 1m)
‘x0’, x0 Initial state (default (0,0,0))
‘dt’, T Time interval
‘rdim’, R Robot size as fraction of plot window (default 0.2)
‘verbose’ Be verbose

Notes

• Subclasses the MATLAB handle class which means that pass by reference se-
mantics apply.

Vehicle.add driver
Add a driver for the vehicle

V.add driver(d) connects a driver object d to the vehicle. The driver object has one
public method:

[speed, steer] = D.demand();

that returns a speed and steer angle.

Notes

• The Vehicle.step() method invokes the driver if one is attached.

Robotics Toolbox 9.10 for MATLAB
R©

277 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Vehicle.step, RandomPath

Vehicle.char
Convert to a string

s = V.char() is a string showing vehicle parameters and state in a compact human
readable format.

See also

Vehicle.display

Vehicle.control
Compute the control input to vehicle

u = V.control(speed, steer) is a control input (1×2) = [speed,steer] based on provided
controls speed,steer to which speed and steering angle limits have been applied.

u = V.control() as above but demand originates with a “driver” object if one is attached,
the driver’s DEMAND() method is invoked. If no driver is attached then speed and steer
angle are assumed to be zero.

See also

Vehicle.step, RandomPath

Vehicle.display
Display vehicle parameters and state

V.display() displays vehicle parameters and state in compact human readable form.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a Vehicle object and the command has no trailing semicolon.

Robotics Toolbox 9.10 for MATLAB
R©

278 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

Vehicle.char

Vehicle.f
Predict next state based on odometry

xn = V.f(x, odo) is the predicted next state xn (1 × 3) based on current state x (1 × 3)
and odometry odo (1× 2) = [distance, heading change].

xn = V.f(x, odo, w) as above but with odometry noise w.

Notes

• Supports vectorized operation where x and xn (N × 3).

Vehicle.Fv
Jacobian df/dv

J = V.Fv(x, odo) is the Jacobian df/dv (3 × 2) at the state x, for odometry input odo
(1× 2) = [distance, heading change].

See also

Vehicle.F, Vehicle.Fx

Vehicle.Fx
Jacobian df/dx

J = V.Fx(x, odo) is the Jacobian df/dx (3 × 3) at the state x, for odometry input odo
(1× 2) = [distance, heading change].

See also

Vehicle.f, Vehicle.Fv

Robotics Toolbox 9.10 for MATLAB
R©

279 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.init
Reset state of vehicle object

V.init() sets the state V.x := V.x0, initializes the driver object (if attached) and clears
the history.

V.init(x0) as above but the state is initialized to x0.

Vehicle.plot
Plot vehicle

V.plot(options) plots the vehicle on the current axes at a pose given by the current state.
If the vehicle has been previously plotted its pose is updated. The vehicle is depicted
as a narrow triangle that travels “point first” and has a length V.rdim.

V.plot(x, options) plots the vehicle on the current axes at the pose x.

H = V.plotv(x, options) draws a representation of a ground robot as an oriented triangle
with pose x (1× 3) [x,y,theta]. H is a graphics handle.

V.plotv(H, x) as above but updates the pose of the graphic represented by the handle
H to pose x.

Options

‘scale’, S Draw vehicle with length S x maximum axis dimension
‘size’, S Draw vehicle with length S
‘color’, C Color of vehicle.
‘fill’ Filled

See also

Vehicle.plotv

Vehicle.plot xy
Plots true path followed by vehicle

V.plot xy() plots the true xy-plane path followed by the vehicle.

V.plot xy(ls) as above but the line style arguments ls are passed to plot.

Robotics Toolbox 9.10 for MATLAB
R©

280 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• The path is extracted from the x hist property.

Vehicle.plotv
Plot ground vehicle pose

H = Vehicle.plotv(x, options) draws a representation of a ground robot as an oriented
triangle with pose x (1× 3) [x,y,theta]. H is a graphics handle. If x (N × 3) is a matrix
it is considered to represent a trajectory in which case the vehicle graphic is animated.

Vehicle.plotv(H, x) as above but updates the pose of the graphic represented by the
handle H to pose x.

Options

‘scale’, S Draw vehicle with length S x maximum axis dimension
‘size’, S Draw vehicle with length S
‘color’, C Color of vehicle.
‘fill’ Filled with solid color as per ‘color’ option
‘fps’, F Frames per second in animation mode (default 10)

Example

Generate some path 3×N

p = PRM.plan(start, goal);

Set the axis dimensions to stop them rescaling for every point on the path

axis([-5 5 -5 5]);

Now invoke the static method

Vehicle.plotv(p);

Notes

• This is a class method.

See also

Vehicle.plot

Robotics Toolbox 9.10 for MATLAB
R©

281 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Vehicle.run
Run the vehicle simulation

V.run(n) runs the vehicle model for n timesteps and plots the vehicle pose at each step.

p = V.run(n) runs the vehicle simulation for n timesteps and return the state history
(n× 3) without plotting. Each row is (x,y,theta).

See also

Vehicle.step

Vehicle.run2
run the vehicle simulation with control inputs

p = V.run2(T, x0, speed, steer) runs the vehicle model for a time T with speed speed
and steering angle steer. p (N × 3) is the path followed and each row is (x,y,theta).

Notes

• Faster and more specific version of run() method.

• Used by the RRT planner.

See also

Vehicle.run, Vehicle.step, RRT

Vehicle.step
Advance one timestep

odo = V.step(speed, steer) updates the vehicle state for one timestep of motion at
specified speed and steer angle, and returns noisy odometry.

odo = V.step() updates the vehicle state for one timestep of motion and returns noisy
odometry. If a “driver” is attached then its DEMAND() method is invoked to compute
speed and steer angle. If no driver is attached then speed and steer angle are assumed
to be zero.

Robotics Toolbox 9.10 for MATLAB
R©

282 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• Noise covariance is the property V.

See also

Vehicle.control, Vehicle.update, Vehicle.add driver

Vehicle.update
Update the vehicle state

odo = V.update(u) is the true odometry value for motion with u=[speed,steer].

Notes

• Appends new state to state history property x hist.

• Odometry is also saved as property odometry.

Vehicle.verbosity
Set verbosity

V.verbosity(a) set verbosity to a. a=0 means silent.

vex
Convert skew-symmetric matrix to vector

v = vex(s) is the vector (3× 1) which has the skew-symmetric matrix s (3× 3)

| 0 -vz vy|
| vz 0 -vx|
|-vy vx 0 |

Robotics Toolbox 9.10 for MATLAB
R©

283 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This is the inverse of the function SKEW().

• No checking is done to ensure that the matrix is actually skew-symmetric.

• The function takes the mean of the two elements that correspond to each unique
element of the matrix, ie. vx = 0.5*(s(3,2)-s(2,3))

See also

skew

VREP
V-REP simulator communications object

A VREP object holds all information related to the state of a connection to an instance
of the V-REP simulator running on this or a networked computer. Allows the creation
of references to other objects/models in V-REP which can be manipulated in MATLAB.

This class handles the interface to the simulator and low-level object handle operations.

Methods throw exception if an error occurs.

Robotics Toolbox 9.10 for MATLAB
R©

284 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Methods

gethandle get handle to named object
getchildren get children belonging to handle
getobjname get names of objects
object return a VREP obj object for named object
arm return a VREP arm object for named robot
camera return a VREP camera object for named vosion sensor
hokuyo return a VREP hokuyo object for named Hokuyo scanner
getpos return position of object given handle
setpos set position of object given handle
getorient return orientation of object given handle
setorient set orientation of object given handle
getpose return pose of object given handle
setpose set pose of object given handle
setobjparam bool set object boolean parameter
setobjparam int set object integer parameter
setobjparam float set object float parameter
getobjparam bool get object boolean parameter
getobjparam int get object integer parameter
getobjparam float get object float parameter
signal int send named integer signal
signal float send named float signal
signal str send named string signal
setparam bool set simulator boolean parameter
setparam int set simulator integer parameter
setparam str set simulator string parameter
setparam float set simulator float parameter
getparam bool get simulator boolean parameter
getparam int get simulator integer parameter
getparam str get simulator string parameter
getparam float get simulator float parameter
delete shutdown the connection and cleanup
simstart start the simulator running
simstop stop the simulator running
simpause pause the simulator
getversion get V-REP version number
checkcomms return status of connection
pausecomms pause the comms
loadscene load a scene file
clearscene clear the current scene
loadmodel load a model into current scene
display print the link parameters in human readable form
char convert to string

See also

VREP obj, VREP arm, VREP camera, VREP hokuyo

Robotics Toolbox 9.10 for MATLAB
R©

285 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.VREP
VREP object constructor

v = VREP(options) create a connection to an instance of the V-REP simulator.

Options

‘timeout’, T Timeout T in ms (default 2000)
‘cycle’, C Cycle time C in ms (default 5)
‘port’, P Override communications port
‘reconnect’ Reconnect on error (default noreconnect)
‘path’, P The path to VREP install directory

Notes

• The default path is taken from the environment variable VREP

VREP.arm
Return VREP arm object

V.arm(name) is a factory method that returns a VREP arm object for the V-REP robot
object named NAME.

Example

vrep.arm(’IRB 140’);

See also

VREP arm

Robotics Toolbox 9.10 for MATLAB
R©

286 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.camera
Return VREP camera object

V.camera(name) is a factory method that returns a VREP camera object for the V-REP
vision sensor object named NAME.

See also

VREP camera

VREP.char
Convert to string

V.char() is a string representation the VREP parameters in human readable foramt.

See also

VREP.display

VREP.checkcomms
Check communications to V-REP simulator

V.checkcomms() is true if a valid connection to the V-REP simulator exists.

VREP.clearscene
Clear current scene in the V-REP simulator

V.clearscene() clears the current scene and switches to another open scene, if none, a
new (default) scene is created.

See also

VREP.loadscene

Robotics Toolbox 9.10 for MATLAB
R©

287 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.delete
VREP object destructor

delete(v) closes the connection to the V-REP simulator

VREP.display
Display parameters

V.display() displays the VREP parameters in compact format.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a VREP object and the command has no trailing semicolon.

See also

VREP.char

VREP.getchildren
Find children of object

C = V.getchildren(H) is a vector of integer handles for the children of the V-REP
object denoted by the integer handle H.

VREP.gethandle
Return handle to VREP object

H = V.gethandle(name) is an integer handle for named V-REP object.

H = V.gethandle(fmt, arglist) as above but the name is formed from sprintf(fmt, ar-
glist).

Robotics Toolbox 9.10 for MATLAB
R©

288 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

sprintf

VREP.getjoint
Get value of V-REP joint object

V.getjoint(H, q) is the position of joint object with integer handle H.

VREP.getobjname
Find names of objects

V.getobjname() will display the names and object handle (integers) for all objects in
the current scene.

name = V.getobjname(H) will return the name of the object with handle H.

VREP.getobjparam bool
Get boolean parameter of a V-REP object

V.getobjparam bool(H, param) gets the boolean parameter with identifier param of
object with integer handle H.

VREP.getobjparam float
Get float parameter of a V-REP object

V.getobjparam float(H, param) gets the float parameter with identifier param of ob-
ject with integer handle H.

Robotics Toolbox 9.10 for MATLAB
R©

289 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.getobjparam int
Get integer parameter of a V-REP object

V.getobjparam int(H, param) gets the integer parameter with identifier param of
object with integer handle H.

VREP.getorient
Get orientation of V-REP object

R = V.getorient(H) is the orientation of the V-REP object with integer handle H as a
rotation matrix (3× 3).

EUL = V.getorient(H, ‘euler’, OPTIONS) as above but returns ZYZ Euler angles.

V.getorient(H, hrr) as above but orientation is relative to the position of object with
integer handle HR.

V.getorient(H, hrr, ‘euler’, OPTIONS) as above but returns ZYZ Euler angles.

Options

See tr2eul.

See also

VREP.setorient, VREP.getpos, VREP.getpose

VREP.getparam bool
Get boolean parameter of the V-REP simulator

V.getparam bool(name) is the boolean parameter with name name from the V-REP
simulation engine.

Example

v = VREP();
v.getparam_bool(’sim_boolparam_mirrors_enabled’)

Robotics Toolbox 9.10 for MATLAB
R©

290 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP.setparam bool

VREP.getparam float
Get float parameter of the V-REP simulator

V.getparam float(name) gets the float parameter with name name from the V-REP
simulation engine.

Example

v = VREP();
v.getparam_float(’sim_floatparam_simulation_time_step’)

See also

VREP.setparam float

VREP.getparam int
Get integer parameter of the V-REP simulator

V.getparam int(name) is the integer parameter with name name from the V-REP sim-
ulation engine.

Example

v = VREP();
v.getparam_int(’sim_intparam_settings’)

See also

VREP.setparam int

Robotics Toolbox 9.10 for MATLAB
R©

291 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.getparam str
Get string parameter of the V-REP simulator

V.getparam str(name) is the string parameter with name name from the V-REP sim-
ulation engine.

Example

v = VREP();
v.getparam_str(’sim_stringparam_application_path’)

See also

VREP.setparam str

VREP.getpos
Get position of V-REP object

V.getpos(H) is the position (1× 3) of the V-REP object with integer handle H.

V.getpos(H, hr) as above but position is relative to the position of object with integer
handle hr.

See also

VREP.setpose, VREP.getpose, VREP.getorient

VREP.getpose
Get pose of V-REP object

T = V.getpose(H) is the pose of the V-REP object with integer handle H as a homoge-
neous transformation matrix (4× 4).

T = V.getpose(H, hr) as above but pose is relative to the pose of object with integer
handle R.

Robotics Toolbox 9.10 for MATLAB
R©

292 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP.setpose, VREP.getpos, VREP.getorient

VREP.getversion
Get version of the V-REP simulator

V.getversion() is the version of the V-REP simulator server as an integer MNNNN
where M is the major version number and NNNN is the minor version number.

VREP.hokuyo
Return VREP hokuyo object

V.hokuyo(name) is a factory method that returns a VREP hokuyo object for the V-REP
Hokuyo laser scanner object named NAME.

See also

VREP hokuyo

VREP.loadmodel
Load a model into the V-REP simulator

m = V.loadmodel(file, options) loads the model file file with extension .ttm into the
simulator and returns a VREP obj object that mirrors it in MATLAB.

Options

‘local’ The file is loaded relative to the MATLAB client’s current folder, otherwise from the
V-REP root folder.

Example

vrep.loadmodel(’people/Walking Bill’);

Robotics Toolbox 9.10 for MATLAB
R©

293 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• If a relative filename is given in non-local (server) mode it is relative to the V-
REP models folder.

See also

VREP.arm, VREP.camera, VREP.object

VREP.loadscene
Load a scene into the V-REP simulator

V.loadscene(file, options) loads the scene file file with extension .ttt into the simulator.

Options

‘local’ The file is loaded relative to the MATLAB client’s current folder, otherwise from the
V-REP root folder.

Example

vrep.loadscene(’2IndustrialRobots’);

Notes

• If a relative filename is given in non-local (server) mode it is relative to the V-
REP scenes folder.

See also

VREP.clearscene

VREP.mobile
Return VREP mobile object

V.mobile(name) is a factory method that returns a VREP mobile object for the V-REP
mobile base object named NAME.

Robotics Toolbox 9.10 for MATLAB
R©

294 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP mobile

VREP.object
Return VREP obj object

V.objet(name) is a factory method that returns a VREP obj object for the V-REP object
or model named NAME.

Example

vrep.obj(’Walking Bill’);

See also

VREP obj

VREP.pausecomms
Pause communcations to the V-REP simulator

V.pausecomms(p) pauses communications to the V-REP simulation engine if p is true
else resumes it. Useful to ensure an atomic update of simulator state.

VREP.setjoint
Set value of V-REP joint object

V.setjoint(H, q) sets the position of joint object with integer handle H to the value q.

VREP.setjointtarget
Set target value of V-REP joint object

V.setjointtarget(H, q) sets the target position of joint object with integer handle H to
the value q.

Robotics Toolbox 9.10 for MATLAB
R©

295 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.setjointvel
Set velocity of V-REP joint object

V.setjointvel(H, qd) sets the target velocity of joint object with integer handle H to the
value qd.

VREP.setobjparam bool
Set boolean parameter of a V-REP object

V.setobjparam bool(H, param, val) sets the boolean parameter with identifier param
of object H to value val.

VREP.setobjparam float
Set float parameter of a V-REP object

V.setobjparam float(H, param, val) sets the float parameter with identifier param of
object H to value val.

VREP.setobjparam int
Set Integer parameter of a V-REP object

V.setobjparam int(H, param, val) sets the integer parameter with identifier param
of object H to value val.

VREP.setorient
Set orientation of V-REP object

V.setorient(H, R) sets the orientation of V-REP object with integer handle H to that
given by rotation matrix R (3× 3).

V.setorient(H, T) sets the orientation of V-REP object with integer handle H to rota-
tional component of homogeneous transformation matrix T (4× 4).

V.setorient(H, E) sets the orientation of V-REP object with integer handle H to ZYZ
Euler angles (1× 3).

Robotics Toolbox 9.10 for MATLAB
R©

296 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

V.setorient(H, x, hr) as above but orientation is set relative to the orientation of object
with integer handle hr.

See also

VREP.getorient, VREP.setpos, VREP.setpose

VREP.setparam bool
Set boolean parameter of the V-REP simulator

V.setparam bool(name, val) sets the boolean parameter with name name to value val
within the V-REP simulation engine.

See also

VREP.getparam bool

VREP.setparam float
Set float parameter of the V-REP simulator

V.setparam float(name, val) sets the float parameter with name name to value val
within the V-REP simulation engine.

See also

VREP.getparam float

VREP.setparam int
Set integer parameter of the V-REP simulator

V.setparam int(name, val) sets the integer parameter with name name to value val
within the V-REP simulation engine.

Robotics Toolbox 9.10 for MATLAB
R©

297 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP.getparam int

VREP.setparam str
Set string parameter of the V-REP simulator

V.setparam str(name, val) sets the integer parameter with name name to value val
within the V-REP simulation engine.

See also

VREP.getparam str

VREP.setpos
Set position of V-REP object

V.setpos(H, T) sets the position of V-REP object with integer handle H to T (1× 3).

V.setpos(H, T, hr) as above but position is set relative to the position of object with
integer handle hr.

See also

VREP.getpos, VREP.setpose, VREP.setorient

VREP.setpose
Set pose of V-REP object

V.setpos(H, T) sets the pose of V-REP object with integer handle H according to ho-
mogeneous transform T (4× 4).

V.setpos(H, T, hr) as above but pose is set relative to the pose of object with integer
handle hr.

Robotics Toolbox 9.10 for MATLAB
R©

298 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP.getpose, VREP.setpos, VREP.setorient

VREP.signal float
Send a float signal to the V-REP simulator

V.signal float(name, val) send a float signal with name name and value val to the
V-REP simulation engine.

VREP.signal int
Send an integer signal to the V-REP simulator

V.signal int(name, val) send an integer signal with name name and value val to the
V-REP simulation engine.

VREP.signal str
Send a string signal to the V-REP simulator

V.signal str(name, val) send a string signal with name name and value val to the
V-REP simulation engine.

VREP.simpause
Pause V-REP simulation

V.simpause() pauses the V-REP simulation engine. Use V.simstart() to resume the
simulation.

See also

VREP.simstart

Robotics Toolbox 9.10 for MATLAB
R©

299 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP.simstart
Start V-REP simulation

V.simstart() starts the V-REP simulation engine.

See also

VREP.simstop, VREP.simpause

VREP.simstop
Stop V-REP simulation

V.simstop() stops the V-REP simulation engine.

See also

VREP.simstart

VREP.youbot
Return VREP youbot object

V.youbot(name) is a factory method that returns a VREP youbot object for the V-REP
YouBot object named NAME.

See also

vrep youbot

VREP arm
Mirror of V-REP robot arm object

Mirror objects are MATLAB objects that reflect the state of objects in the V-REP envi-
ronment. Methods allow the V-REP state to be examined or changed.

Robotics Toolbox 9.10 for MATLAB
R©

300 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

This is a concrete class, derived from VREP mirror, for all V-REP robot arm objects
and allows access to joint variables.

Methods throw exception if an error occurs.

Example

vrep = VREP();
arm = vrep.arm(’IRB140’);
q = arm.getq();
arm.setq(zeros(1,6));
arm.setpose(T); % set pose of base

Methods

getq get joint coordinates
setq set joint coordinates
setjointmode set joint control parameters
animate animate a joint coordinate trajectory
teach graphical teach pendant

Superclass methods (VREP obj)

getpos get position of object
setpos set position of object
getorient get orientation of object
setorient set orientation of object
getpose get pose of object given
setpose set pose of object

can be used to set/get the pose of the robot base.

Superclass methods (VREP mirror)

getname get object name
setparam bool set object boolean parameter
setparam int set object integer parameter
setparam float set object float parameter

getparam bool get object boolean parameter
getparam int get object integer parameter
getparam float get object float parameter

Properties

n Number of joints

Robotics Toolbox 9.10 for MATLAB
R©

301 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP mirror, VREP obj, VREP arm, VREP camera, VREP hokuyo

VREP arm.VREP arm
Create a robot arm mirror object

arm = VREP arm(name, options) is a mirror object that corresponds to the robot arm
named name in the V-REP environment.

Options

‘fmt’, F Specify format for joint object names (default ‘%s joint%d’)

Notes

• The number of joints is found by searching for objects with names systematically
derived from the root object name, by default named NAME N where N is the
joint number starting at 0.

See also

VREP.arm

VREP arm.animate
Animate V-REP robot

R.animate(qt, options) animates the corresponding V-REP robot with configurations
taken from consecutive rows of qt (M × N) which represents an M-point trajectory
and N is the number of robot joints.

Options

‘delay’, D Delay (s) betwen frames for animation (default 0.1)
‘fps’, fps Number of frames per second for display, inverse of ‘delay’ option
‘[no]loop’ Loop over the trajectory forever

Robotics Toolbox 9.10 for MATLAB
R©

302 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

SerialLink.plot

VREP arm.getq
Get joint angles of V-REP robot

ARM.getq() is the vector of joint angles (1×N) from the corresponding robot arm in
the V-REP simulation.

See also

VREP arm.setq

VREP arm.setjointmode
Set joint mode

ARM.setjointmode(m, C) sets the motor enable m (0 or 1) and motor control C (0 or
1) parameters for all joints of this robot arm.

VREP arm.setq
Set joint angles of V-REP robot

ARM.setq(q) sets the joint angles of the corresponding robot arm in the V-REP simu-
lation to q (1×N).

See also

VREP arm.getq

Robotics Toolbox 9.10 for MATLAB
R©

303 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP arm.setqt
Set joint angles of V-REP robot

ARM.setq(q) sets the joint angles of the corresponding robot arm in the V-REP simu-
lation to q (1×N).

VREP arm.teach
Graphical teach pendant

R.teach(options) drive a V-REP robot by means of a graphical slider panel.

Options

‘degrees’ Display angles in degrees (default radians)
‘q0’, q Set initial joint coordinates

Notes

• The slider limits are all assumed to be [-pi, +pi]

See also

SerialLink.plot

VREP camera
Mirror of V-REP vision sensor object

Mirror objects are MATLAB objects that reflect the state of objects in the V-REP envi-
ronment. Methods allow the V-REP state to be examined or changed.

This is a concrete class, derived from VREP mirror, for all V-REP vision sensor objects
and allows access to images and image parameters.

Methods throw exception if an error occurs.

Robotics Toolbox 9.10 for MATLAB
R©

304 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Example

vrep = VREP();
camera = vrep.camera(’Vision_sensor’);
im = camera.grab();
camera.setpose(T);
R = camera.getorient();

Methods

grab return an image from simulated camera
setangle set field of view
setresolution set image resolution
setclipping set clipping boundaries

Superclass methods (VREP obj)

getpos get position of object
setpos set position of object
getorient get orientation of object
setorient set orientation of object
getpose get pose of object
setpose set pose of object

can be used to set/get the pose of the robot base.

Superclass methods (VREP mirror)

getname get object name
setparam bool set object boolean parameter
setparam int set object integer parameter
setparam float set object float parameter

getparam bool get object boolean parameter
getparam int get object integer parameter
getparam float get object float parameter

See also

VREP mirror, VREP obj, VREP arm, VREP camera, VREP hokuyo

Robotics Toolbox 9.10 for MATLAB
R©

305 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP camera.VREP camera
Create a camera mirror object

C = VREP camera(name, options) is a mirror object that corresponds to the vision
senor named name in the V-REP environment.

Options

‘fov’, A Specify field of view in degreees (default 60)
‘resolution’, N Specify resolution. If scalar N ×N else N(1)xN(2)
‘clipping’, Z Specify near Z(1) and far Z(2) clipping boundaries

Notes

• Default parameters are set in the V-REP environmen

• Can be applied to “DefaultCamera” which controls the view in the simulator
GUI.

See also

VREP obj

VREP camera.char
Convert to string

V.char() is a string representation the VREP parameters in human readable foramt.

See also

VREP.display

VREP camera.getangle
Fet field of view for V-REP vision sensor

fov = C.getangle(fov) is the field-of-view angle to fov in radians.

Robotics Toolbox 9.10 for MATLAB
R©

306 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP camera.setangle

VREP camera.getclipping
Get clipping boundaries for V-REP vision sensor

C.getclipping() is the near and far clipping boundaries (1 × 2) in the Z-direction as a
2-vector [NEAR,FAR].

See also

VREP camera.setclipping

VREP camera.getresolution
Get resolution for V-REP vision sensor

R = C.getresolution() is the image resolution (1× 2) of the vision sensor R(1)xR(2).

See also

VREP camera.setresolution

VREP camera.grab
Get image from V-REP vision sensor

im = C.grab(options) is an image (W ×H) returned from the V-REP vision sensor.

C.grab(options) as above but the image is displayed using idisp.

Options

‘grey’ Return a greyscale image (default color).

Robotics Toolbox 9.10 for MATLAB
R©

307 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• V-REP simulator must be running.

• Color images can be quite dark, ensure good light sources.

• Uses the signal ‘handle rgb sensor’ to trigger a single image generation.

See also

idisp, VREP.simstart

VREP camera.setangle
Set field of view for V-REP vision sensor

C.setangle(fov) set the field-of-view angle to fov in radians.

See also

VREP camera.getangle

VREP camera.setclipping
Set clipping boundaries for V-REP vision sensor

C.setclipping(near, far) set clipping boundaries to the range of Z from near to far.
Objects outside this range will not be rendered.

See also

VREP camera.getclipping

VREP camera.setresolution
Set resolution for V-REP vision sensor

C.setresolution(R) set image resolution to R × R if R is a scalar or R(1)xR(2) if it is
a 2-vector.

Robotics Toolbox 9.10 for MATLAB
R©

308 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• By default V-REP cameras seem to have very low (32× 32) resolution.

• Frame rate will decrease as frame size increases.

See also

VREP camera.getresolution

VREP mirror
V-REP mirror object class

Mirror objects are MATLAB objects that reflect the state of objects in the V-REP envi-
ronment. Methods allow the V-REP state to be examined or changed.

This abstract class is the root class for all V-REP mirror objects.

Methods throw exception if an error occurs.

Methods

getname get object name
setparam bool set object boolean parameter
setparam int set object integer parameter
setparam float set object float parameter
getparam bool get object boolean parameter
getparam int get object integer parameter
getparam float get object float parameter
remove remove object from scene
display display object info
char convert to string

Properties (read only)

h V-REP integer handle for the object
name Name of the object in V-REP
vrep Reference to the V-REP connection object

Robotics Toolbox 9.10 for MATLAB
R©

309 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Notes

• This has nothing to do with mirror objects in V-REP itself which are shiny re-
flective surfaces.

See also

VREP obj, VREP arm, VREP camera, VREP hokuyo

VREP mirror.VREP mirror
Construct VREP mirror object

obj = VREP mirror(name) is a V-REP mirror object that represents the object named
name in the V-REP simulator.

VREP mirror.char
Convert to string

OBJ.char() is a string representation the VREP parameters in human readable foramt.

See also

VREP.display

VREP mirror.display
Display parameters

OBJ.display() displays the VREP parameters in compact format.

Notes

• This method is invoked implicitly at the command line when the result of an
expression is a VREP object and the command has no trailing semicolon.

Robotics Toolbox 9.10 for MATLAB
R©

310 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP.char

VREP mirror.getname
Get object name

OBJ.getname() is the name of the object in the VREP simulator.

VREP mirror.getparam bool
Get boolean parameter of V-REP object

OBJ.getparam bool(id) is the boolean parameter with id of the corresponding V-REP
object.

See also VREP mirror.setparam bool, VREP mirror.getparam int, VREP mirror.getparam float.

VREP mirror.getparam float
Get float parameter of V-REP object

OBJ.getparam float(id) is the float parameter with id of the corresponding V-REP
object.

See also VREP mirror.setparam bool, VREP mirror.getparam bool, VREP mirror.getparam int.

VREP mirror.getparam int
Get integer parameter of V-REP object

OBJ.getparam int(id) is the integer parameter with id of the corresponding V-REP
object.

See also VREP mirror.setparam int, VREP mirror.getparam bool, VREP mirror.getparam float.

Robotics Toolbox 9.10 for MATLAB
R©

311 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP mirror.setparam bool
Set boolean parameter of V-REP object

OBJ.setparam bool(id, val) sets the boolean parameter with id to value val within the
V-REP simulation engine.

See also VREP mirror.getparam bool, VREP mirror.setparam int, VREP mirror.setparam float.

VREP mirror.setparam float
Set float parameter of V-REP object

OBJ.setparam float(id, val) sets the float parameter with id to value val within the
V-REP simulation engine.

See also VREP mirror.getparam float, VREP mirror.setparam bool, VREP mirror.setparam int.

VREP mirror.setparam int
Set integer parameter of V-REP object

OBJ.setparam int(id, val) sets the integer parameter with id to value val within the
V-REP simulation engine.

See also VREP mirror.getparam int, VREP mirror.setparam bool, VREP mirror.setparam float.

VREP obj
V-REP mirror of simple object

Mirror objects are MATLAB objects that reflect objects in the V-REP environment.
Methods allow the V-REP state to be examined or changed.

This is a concrete class, derived from VREP mirror, for all V-REP objects and allows
access to pose and object parameters.

Robotics Toolbox 9.10 for MATLAB
R©

312 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

Example

vrep = VREP();
bill = vrep.object(’Bill’); % get the human figure Bill
bill.setpos([1,2,0]);
bill.setorient([0 pi/2 0]);

Methods throw exception if an error occurs.

Methods

getpos get position of object
setpos set position of object
getorient get orientation of object
setorient set orientation of object
getpose get pose of object
setpose set pose of object

Superclass methods (VREP mirror)

getname get object name
setparam bool set object boolean parameter
setparam int set object integer parameter
setparam float set object float parameter
getparam bool get object boolean parameter
getparam int get object integer parameter
getparam float get object float parameter
display print the link parameters in human readable form
char convert to string

See also

VREP mirror, VREP obj, VREP arm, VREP camera, VREP hokuyo

VREP obj.VREP obj
VREP obj mirror object constructor

v = VREP base(name) creates a V-REP mirror object for a simple V-REP object type.

Robotics Toolbox 9.10 for MATLAB
R©

313 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

VREP obj.getorient
Get orientation of V-REP object

V.getorient() is the orientation of the corresponding V-REP object as a rotation matrix
(3× 3).

V.getorient(’euler’, OPTIONS) as above but returns ZYZ Euler angles.

V.getorient(base) is the orientation of the corresponding V-REP object relative to the
VREP obj object base.

V.getorient(base, ‘euler’, OPTIONS) as above but returns ZYZ Euler angles.

Options

See tr2eul.

See also

VREP obj.setorient, VREP obj.getopos, VREP obj.getpose

VREP obj.getpos
Get position of V-REP object

V.getpos() is the position (1× 3) of the corresponding V-REP object.

V.getpos(base) as above but position is relative to the VREP obj object base.

See also

VREP obj.setpos, VREP obj.getorient, VREP obj.getpose

VREP obj.getpose
Get pose of V-REP object

V.getpose() is the pose (4× 4) of the the corresponding V-REP object.

V.getpose(base) as above but pose is relative to the pose the VREP obj object base.

Robotics Toolbox 9.10 for MATLAB
R©

314 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

See also

VREP obj.setpose, VREP obj.getorient, VREP obj.getpos

VREP obj.setorient
Set orientation of V-REP object

V.setorient(R) sets the orientation of the corresponding V-REP to rotation matrix R
(3× 3).

V.setorient(T) sets the orientation of the corresponding V-REP object to rotational
component of homogeneous transformation matrix T (4× 4).

V.setorient(E) sets the orientation of the corresponding V-REP object to ZYZ Euler
angles (1× 3).

V.setorient(x, base) as above but orientation is set relative to the orientation of VREP obj
object base.

See also

VREP obj.getorient, VREP obj.setpos, VREP obj.setpose

VREP obj.setpos
Set position of V-REP object

V.setpos(T) sets the position of the corresponding V-REP object to T (1× 3).

V.setpos(T, base) as above but position is set relative to the position of the VREP obj
object base.

See also

VREP obj.getpos, VREP obj.setorient, VREP obj.setpose

VREP obj.setpose
Set pose of V-REP object

V.setpose(T) sets the pose of the corresponding V-REP object to T (4× 4).

Robotics Toolbox 9.10 for MATLAB
R©

315 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

V.setpose(T, base) as above but pose is set relative to the pose of the VREP obj object
base.

See also

VREP obj.getpose, VREP obj.setorient, VREP obj.setpos

wtrans
Transform a wrench between coordinate frames

wt = wtrans(T, w) is a wrench (6 × 1) in the frame represented by the homogeneous
transform T (4× 4) corresponding to the world frame wrench w (6× 1).

The wrenches w and wt are 6-vectors of the form [Fx Fy Fz Mx My Mz]’.

See also

tr2delta, tr2jac

xaxis
Set X-axis scaling

xaxis(max) set x-axis scaling from 0 to max.

xaxis(min, max) set x-axis scaling from min to max.

xaxis([min max]) as above.

xaxis restore automatic scaling for x-axis.

See also

yaxis

Robotics Toolbox 9.10 for MATLAB
R©

316 Copyright c©Peter Corke 2015

CHAPTER 2. FUNCTIONS AND CLASSES

xyzlabel
Label X, Y and Z axes

XYZLABEL label the x-, y- and z-axes with ‘X’, ‘Y’, and ‘Z’ respectiveley

yaxis
Y-axis scaling

yaxis(max) set y-axis scaling from 0 to max.

yaxis(min, max) set y-axis scaling from min to max.

yaxis([min max]) as above.

yaxis restore automatic scaling for y-axis.

See also

yaxis

Robotics Toolbox 9.10 for MATLAB
R©

317 Copyright c©Peter Corke 2015

	Preface
	Functions by category
	Introduction
	What's changed
	New features and changes to RTB 9.10
	Earlier changes to RTB 9

	Migrating from RTB 8 and earlier
	New functions
	General improvements

	How to obtain the Toolbox
	Documentation

	MATLAB version issues
	Use in teaching
	Use in research
	Support
	Related software
	Octave
	Python version
	Machine Vision toolbox

	Contributing to the Toolboxes
	Acknowledgements

	Functions and classes
	about
	angdiff
	angvec2r
	angvec2tr
	Animate
	Arbotix
	bresenham
	Bug2
	ccodefunctionstring
	circle
	CodeGenerator
	colnorm
	colorname
	ctraj
	delta2tr
	DHFactor
	diff2
	distancexform
	distributeblocks
	dockfigs
	doesblockexist
	Dstar
	DXform
	e2h
	edgelist
	EKF
	eul2jac
	eul2r
	eul2tr
	gauss2d
	h2e
	homline
	homtrans
	ishomog
	ishomog2
	isrot
	isrot2
	isvec
	joy2tr
	joystick
	jsingu
	jtraj
	Link
	lspb
	makemap
	Map
	mdl_3link3d
	mdl_ball
	mdl_baxter
	mdl_coil
	mdl_Fanuc10L
	mdl_hyper2d
	mdl_hyper3d
	mdl_irb140
	mdl_irb140_mdh
	mdl_jaco
	mdl_KR5
	mdl_m16
	mdl_mico
	mdl_MotomanHP6
	mdl_nao
	mdl_offset3
	mdl_offset6
	mdl_onelink
	mdl_p8
	mdl_phantomx
	mdl_planar1
	mdl_planar2
	mdl_planar3
	mdl_puma560
	mdl_puma560akb
	mdl_quadrotor
	mdl_S4ABB2p8
	mdl_simple6
	mdl_stanford
	mdl_stanford_mdh
	mdl_twolink
	mdl_twolink_mdh
	mstraj
	mtraj
	multidfprintf
	Navigation
	numcols
	numrows
	oa2r
	oa2tr
	ParticleFilter
	peak
	peak2
	PGraph
	plot2
	plot_arrow
	plot_box
	plot_circle
	plot_ellipse
	plot_ellipse_inv
	plot_homline
	plot_point
	plot_poly
	plot_sphere
	plot_vehicle
	plotbotopt
	plotp
	polydiff
	Polygon
	Prismatic
	PrismaticMDH
	PRM
	qplot
	Quaternion
	r2t
	randinit
	RandomPath
	RangeBearingSensor
	Revolute
	RevoluteMDH
	RobotArm
	rot2
	rotx
	roty
	rotz
	rpy2jac
	rpy2r
	rpy2tr
	RRT
	rt2tr
	rtbdemo
	runscript
	rvcpath
	se2
	se3
	Sensor
	SerialLink
	simulinkext
	skew
	startup_rtb
	symexpr2slblock
	t2r
	tb_optparse
	tpoly
	tr2angvec
	tr2delta
	tr2eul
	tr2jac
	tr2rpy
	tr2rt
	tranimate
	transl
	transl2
	trchain
	trchain2
	trinterp
	trnorm
	trot2
	trotx
	troty
	trotz
	trplot
	trplot2
	trprint
	trscale
	unit
	Vehicle
	vex
	VREP
	VREP_arm
	VREP_camera
	VREP_mirror
	VREP_obj
	wtrans
	xaxis
	xyzlabel
	yaxis

