CA\ Zhaaﬂ '

HWE

27

5
o~

reference
point

7.
Breadth-First-Search:
a-b-c-d-e—-f-g-h q?/«
Depth-First-Search:
a-b-e—-f-c—d-g-h. 5
o

root

i
%
®

goal

T

9.

As shown below, “hit the obstacle tangentially” can also be described as “glance the obstacle instead of running
into it”.

As shown in the figure below, assume that in the optimal path, the path has to go bypass obstacle A from node a
to b. If the optimal path contains edge a-c, which is an edge running into the obstacle, then it has to go along edge
c-d or c-e to go round the obstacle A. In either case, let’s say a-c-d, it is longer than the tangential edge a-d, as in

Aacd, ad < ac + cd. Therefore, for any edge that runs into the obstacle, another edge that goes along the obstacle
is required for the robot to round it, and these 2 edges will be replaced by a shorter edge glancing the obstacle.

Qe

10: The code and the graph is shown below:

function[runtime, success flag] = P10()

%Generate a random undirected graph and find the shortest path with A* search
%The function returns the runtime in wms of A% search and whether there
$exists a path.

clear;

clc;

N=10;

E=20;
% The random graph contains N nodes and E edges ((j}

position = cell(N,1); T

for i=1:N;
position{i}=[100*rand(1),100*rand(1)];
end
$Generate N nodes' x and y coordinate with random numbers in the 100%100 grid

edge = cell(E,1);

i=1;

available table = triu(ones(N,N),0) - eye(N);

$For the edges, first define an N*N 0-1 matrix representing the possibility
%o0f adding edges between the two nodes. As this is an undirected graph,
%gdge i-j and j-i are the same, so an upper triangle matrix is used here.
%Also, there is no edge i-i, so the diagnal is 0. Therefore, the
%initialized available matrix would be an upper triangle matrix with all
%elements equals to 1, each of which representing a possible edge between
$node i and j.

while (i<=E && sum(sum(available table))~=0)
rand_edge = randi (sum(sum(available table))) ;
count = 0;

break flag = 0;
for k = 1:N-1
for 1 = k+1:N
P

/

5

if (available table(k,1) == 1)
count = count + 1;

end

if (count == rand edge)
edge{i} (1) = k;
edge{i}(2) = 1;

available_table(k,1l) = 0;
break flag = 1;

break;
end
end
if (break_flag)
break;
end
end
i=1+ 1;

end
%While the number of edges is not E and the available table is not empty,

%generate a random number with the maz of the sum of all "1"s in the
%available matrix, which means from the first element representing

fedge 1-2, count all available "l1"s till the random number generated, then
%add this edge to the graph, and change the availability of this edge to "0".

%Plot the random graph generated above
for i=1:E

x = [position{edge{i}(1)}(1),position{edge{i}(2)}(1)]1;
y = [position{edge{i}(1)}(2),position{edge{i}(2)}(2)];
plot(x,y,'g', 'linewidth’,1.5);
hold on;

end

for i=1:N
plot(position{i}(1),position{i}(2),'.', 'MarkerSize',18);
hold on;

end

akis equal;
axis ([0 100 0 100]1);

$Use a matrix to memorize the length of edges. If there is no edge between
¥the two nodes then set the length infinity. 1000 is large enough here.
edge_length table = 1000* (ones (N,N)-eye(N));
for i=1:E
d = sgrt((position{edge{i}(2)}(1)-position{edge{i}(1)}(1))"2 +
(position{edge{i} (2)} (2)-position{edge{i} (1)} (2))"*2);
edge_length table(edge{i}(1),edge{i} (2)) = 4&;
edge_length_table(edge{i}(2),edge{i} (1)) = d;
end

$Initialization for A* Search, initialize the variables needed. The OPEN
$set memorizes both the number of nodes to be explered and the estimated
¥total cost.

past_cost = 10000*ones(1,N);

past_cost (1) = 0;

parent = [];

est_total cost = [];

do = sqgrt((position{1}(1)-position{N} (1)) 2+ (position{1}(2)-position{N}(2))"2);
OREN = [1,d0];

GLOSED = [];

path = [];

success_flag = 0;

$Use an N*1 cell to memorize all the neighbours of all nodes, judging
%easily ‘by the length of edges in the edge length matrix.
nbr = cell(N,1);
for i=1:N
for k=1:N
if (edge_length table(i,k)~=0 && edge length table(i,k)~=1000)
nbr{i} = [nbr{i}, kl;
end
end
end

%A* Search, use the psudo code in the book, use tic-toc to calculate
Fruntime
tic;
while ~isempty (OPEN)
current = OPEN(1,1);
OPEN(1,:) = [];
<., CLOSED = [current,CLOSED];
Qﬂ: if current==N
' success flag = 1;
break;
end
for i=1:length (nbr{current})
if ~ismember (nbr{current} (i), CLOSED)
tentative_past cost = past cost(current) +
edge length table(current,nbr{current}(i));
if tentative past cost < past cost(nbr{current} (i))
past_cost (nbr{current}(i)) = tentative past cost;
parent (nbr{current} (i)) = current;
d = sqgrt((position{nbr{current} (i)} (1)-
position{N} (1)) "2+ (position{nbr{current} (i)} (2)-position{N}(2))"2);

est_total cost (nbr{current}(i)) = past_cost (nbr{current}(i)) + d;
OPEN = [OPEN;nbr{current} (i), est total cost (nbr{current}(i))];
end
end
end
OPEN = sortrows (OPEN, 2) ;

end
runtime = 1000*toc;

5If A* search runs successfully, then return the path from 1 to N and draw
¥it on the graph: Simply by picking node N, and then the parents of previous
4riodes till node 1.
if success flag
i = 1;
trace = N;
while (trace~=0)
path(i) = trace;
trace = parent (trace);
i=1+1;
end

for i=1:(length(path)-1)
x = [position{path(i)} (1), p051t10n{path(1+l)} 1)],
y = [position{path(i)}(2),position{path(i+1)}(2
plot(x,y,':k', 'linewidth',2.0);
hold on;
end
end

$Plot node 1 and node N in a different color
plot (position{1l}(1),position{1}(2),'.k', 'MarkerSize',h 22);

11. Revise code for problem 10 so that it runs 2 different A* search on the same graph and returns the runtime,
distance and success-or-not sign for the 2 searches, then use the following code to calculate the max, min and
average distance and runtime, The results are shown below the code.

clear;

cle;

M = 100;

search_timel = 0;

success_timel = 0;

search time2 = 0;

success_time2 = 0;

avg_distancel = 0;

avg_distance2 = 0;

max_distl = 0;

min _distl = 200;

max_dist2 = 0;

min dist2 = 200;

max_timel = 0;

min timel = 1000;

max time2 = 0;

min _time2 = 1000;

for i=1:M
[runtimel,success_flagl,distancel,runtime2,success_flagz,distanceZ]=A_star();
search timel = search timel + runtimel;

success_timel = success_timel + success flagl;
avg_distancel = avg distancel + distancel;
if max_distl <= distancel
max_distl = distancel;
end
if {min_distl >= distancel && distancel~=0)

min distl = distancel;
end
if max_timel <= runtimel
max_timel = runtimel;
end
if min timel >= runtimel
min_timel = runtimel;
end
search time2 = search time2 + runtime2;

it

success_time2 + success flag2;
avg_distance2 + distance2;
distance2

distance2;

success_ time2

avg_distance2

if max dist2 <
max dist2

end

if (min_dist2 »>= distance2 && distance2~=0)
min_dist2 = distance2;

11

end

if max_time2 <= runtime2
max_time2 = runtime2;

end

if min_time2 >= runtime2
min_time2 = runtime2;

end

end

search timel = search timel/M;
search time2 search time2/M;
avg_distancel = avg _distancel/success _timel;
avg_distance2 avg_distance2/success time2;

For convenience, we call the original A* search A*(1), and the one with 10 times large heuristic distance to go
A*(2).

SEARCH AVG.DISTANCE _ MAX DISTANCE _ MINDISTANCE __ AVG.RUNTIME MAX RUNTIME MIN RUNTIME
A*(1) ’ 61.86 102.60 11.76 0.976 5.18 0.352
A*(2) | 67.13 198.16 11.76 0.952 2.90 0.288

* Both of the success time is 100 in 100 tests, the time is in ms.

From the result we could see that on average A*(2) runs faster than A*(1), and when A*(1) can find a path, A*(2)
can always find one. However, sometimes the path found by A*(2) is longer, it is because when the heuristic
distance is over estimated, sometimes the path found by A*(2) will not be optimal. The figure below shows such
an example, in which the full line is the path found by A*(1), and the dash line is the path found by A*(2), we
can see clearly that path (2) is longer than path (1).

This result meats with the statement on the textbook, the suboptimal A* search on pp. 266.

100

90

80

50

40

30+

20

0 10 20 30 40 50 60 70 80 90 100

